Digital Signal Processing - Chapter 9

The Z-Transform

Prof. Yasser Mostafa Kadah

Z-Transform

- Just as with the Laplace transform for continuous-time signals and systems, the Z-transform provides a way to represent discrete-time signals and systems, and to process discrete-time signals
 - Although the Z-transform can be related to the Laplace transform, the relation is operationally not very useful
- Representation of discrete-time signals by Z-transform is very intuitive—it converts a sequence of samples into a polynomial
 - As with Laplace transform and convolution integral, the most important property of the Z-transform is the implementation of the convolution sum as a multiplication of polynomials

Laplace Transform of Sampled Signals

• Consider a sampled signal:

$$x(t) = \sum_{n} x(nT_s)\delta(t - nT_s)$$

- Then, $X(s) = \sum_{n} x(nT_s)\mathcal{L}[\delta(t - nT_s)]$ $= \sum_{n} x(nT_s)e^{-nsT_s}$
- Let $z = e^{sT_s}$, then this is called the Z-transform of x(n):

$$\mathcal{Z}[x(nT_s)] = \mathcal{L}[x_s(t)]\Big|_{z=e^{sT_s}}$$
$$= \sum_n x(nT_s)z^{-n}$$

Comments About Z-Transform

- Letting $s=j\Omega$, we find that the Fourier transform is a special case when $z=e^{j\Omega}$
 - Periodic Fourier transform since x(t) is sampled
- While Laplace transform may have an infinite number of poles or zeros—complicating the partial fraction expansion when finding its inverse, the inverse Z-transform can be readily obtained using the time-shift property from the *z* polynomial:

$$\mathcal{Z}[x(nT_s)] = \mathcal{L}[x_s(t)]|_{z=e^{sT_s}}$$
$$= \sum_n x(nT_s)z^{-n}$$
$$x(t) = \sum_n x(nT_s)\delta(t-nT_s)$$

z-Plane vs. s-Plane

• Connection between the s-plane and the z-plane

 $z = e^{sT_s} = e^{(\sigma + j\Omega)T_s} = e^{\sigma T_s} e^{j\Omega T_s}$

Forward Z-Transform Definitions

• Two-sided

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

defined in a region of convergence (ROC) in the z-plane.

One-Sided

$$X_1(z) = \mathcal{Z}(x[n]u[n]) = \sum_{n=0}^{\infty} x[n]u[n]z^{-n}$$

defined in a region of convergence (ROC) in the z-plane.

Region of Convergence

- The infinite summation of the two-sided Z-transform must converge for some values of z
 - For X(z) to converge it is necessary that:

$$|X(z)| = \left|\sum_{n} x[n] z^{-n}\right| \le \sum_{n} |x[n]| |r^{-n} e^{j\omega n}| = \sum_{n} |x[n]| |r^{-n}| < \infty$$

Poles and zeros

The poles of a Z-transform X(z) are complex values $\{p_k\}$ such that

 $X(p_k) \to \infty$

while the zeros of X(z) are the complex values $\{z_k\}$ that make

 $X(z_k) = 0$

Poles and Zeros: Example

• Find the poles and zeros of the following Z-transforms: (a) $X_1(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$ **(b)** $X_2(z) = \frac{(z^{-1} - 1)(z^{-1} + 2)^2}{z^{-1}(z^{-2} + \sqrt{2}z^{-1} + 1)}$ $X_1(z) = \frac{z^3(1+2z^{-1}+3z^{-2}+4z^{-3})}{z^3}$ $X_2(z) = \frac{z^3(z^{-1}-1)(z^{-1}+2)^2}{z^3(z^{-1}(z^{-2}+\sqrt{2}z^{-1}+1))}$ $=\frac{z^3+2z^2+3z+4}{z^3}=\frac{N_1(z)}{D_1(z)}$ $=\frac{(1-z)(1+2z)^2}{1+\sqrt{2}z+z^2}=\frac{N_2(z)}{D_2(z)}$ poles of $X_2(z)$ are the roots three poles at z = 0of $D_2(z) = 1 + \sqrt{2}z + z^2 = 0$ \checkmark zeros are the roots of $N_1(z)$ zeros of $X_2(z)$ are the roots of $N_2(z) = (1-z)(1+2z)^2 = 0$

ROC of Finite-Support Signals

• The ROC of the Z-transform of a signal x[n] of finite support [N0,N1] where $-\infty < N_0 < n < N_1 < \infty$,

$$X(z) = \sum_{n=N_0}^{N_1} x[n] z^{-n}$$

is the whole z-plane, excluding the origin z= 0 and/or z= $\pm \infty$ depending on N₀ and N₁

• Example:

ROC: Whole z plane except origin

ROC of Infinite-Support Signals

- Signals of infinite support are either causal, anti-causal, or a combination of these or non-causal
- Z-transform of a causal signal $x_c[n]$:

$$X_{c}(z) = \sum_{n=0}^{\infty} x_{c}[n] z^{-n} = \sum_{n=0}^{\infty} x_{c}[n] r^{-n} e^{-jn\omega}$$

• Let R1 be the radius of the farthest-out pole of $X_c(z)$,

$$|X_{c}(z)| \leq \sum_{n=0}^{\infty} |x_{c}[n]| |r^{-n}| < M \sum_{n=0}^{\infty} \left| \frac{R_{1}}{r} \right|^{n} < \infty$$
$$R_{1}/r < 1 \qquad |z| = r > R_{1}$$

• Anti-causal $x_a[n]$: ROC is the opposite: $|z| = r < R_2$

ROC of Infinite-Support Signals

• If the signal *x*[*n*] is non-causal, it can be expressed as,

 $x[n] = x_c[n] + x_a[n]$

• ROC: combination of causal and anti-causal ROCs,

 $0 \leq R_1 < |z| < R_2 < \infty$

For the Z-transform X(z) of an infinite-support signal:

- A causal signal x[n] has a region of convergence $|z| > R_1$ where R_1 is the largest radius of the poles of X(z)—that is, the region of convergence is the outside of a circle of radius R_1 .
- An anti-causal signal x[n] has as region of convergence the inside of the circle defined by the smallest radius R_2 of the poles of X(z), or $|z| < R_2$.
- A noncausal signal x[n] has as region of convergence $R_1 < |z| < R_2$, or the inside of a torus of inside radius R_1 and outside radius R_2 corresponding to the maximum and minimum radii of the poles of $X_c(z)$ and $X_a(z)$, which are the Z-transforms of the causal and anti-causal components of x[n].

ROC: Example

• Find ROC of the Z-transforms of the following signals: (b) $x_2[n] = (1)^n$. (a) $x_1[n] = \left(\frac{1}{2}\right)^n u[n]$

 $x_1[n]$ is causal

 $\mathcal{R}_1: |z| > 0.5$

(b)
$$x_2[n] = -\left(\frac{1}{2}\right) u[-n-1]$$

 $x_2[n]$ is anti-causal.

$$X_1(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} = \frac{1}{1 - 0.5z^{-1}} = \frac{z}{z - 0.5}$$

$$X_2(z) = -\sum_{n=-\infty}^{-1} \left(\frac{1}{2}\right)^n z^{-n} = -\sum_{m=0}^{\infty} \left(\frac{1}{2}\right)^{-m} z^m + 1$$

$$= -\sum_{m=0}^{\infty} 2^m z^m + 1 = \frac{-1}{1 - 2z} + 1 = \frac{z}{z - 0.5}$$

Note: ROC for $x_1[n] + x_2[n]$ is empty: Z-transform does not exist for this sum !!

Linearity and Convolution

The Z-transform is a linear transformation, meaning that

 $\mathcal{Z}(ax[n] + by[n]) = a\mathcal{Z}(x[n]) + b\mathcal{Z}(y[n])$

for signals x[n] and y[n] and constants a and b.

• Convolution: similar to Laplace and Fourier transforms

$$y[n] = [x * h][n] = \sum_{k=0}^{n} x[k]h[n-k] = \sum_{k=0}^{n} h[k]x[n-k]$$
$$Y(z) = \mathcal{Z}\{[x * h][n]\} = \mathcal{Z}\{x[n]\}\mathcal{Z}\{h[n]\} = X(z)H(z)$$
$$H(z) = \frac{Y(z)}{X(z)} = \frac{\mathcal{Z}[output \ y[n]]}{\mathcal{Z}[input \ x[n]]}$$

Convolution Sum As a Polynomial Multiplication

- Consider $X_1(z) = 1 + a_1 z^{-1} + a_2 z^{-2}$ and $X_2(z) = 1 + b_1 z^{-1}$ $X_1(z)X_2(z) = 1 + b_1 z^{-1} + a_1 z^{-1} + a_1 b_1 z^{-2} + a_2 z^{-2} + a_2 b_1 z^{-3}$ $= 1 + (b_1 + a_1)z^{-1} + (a_1 b_1 + a_2)z^{-2} + a_2 b_1 z^{-3}$
- The convolution sum of the two sequences $[1 \ a1 \ a2]$ and $[1 \ b1]$, formed by the coefficients of $X_1(z)$ and $X_2(z)$, is given as $[1 \ (a1+b1) \ (a2+b1 \ a1) \ a2]$, which corresponds to the coefficients of the product of the polynomials $X_1(z)X_2(z)$
- Notice that the sequence of length 3 and the sequence of length 2 when convolved give a sequence of length 3+2-1=4

Finite Impulse Response (FIR) Filter

- A finite-impulse response or FIR filter is implemented by means of the convolution sum
- Consider an FIR with an input-output equation:

$$y[n] = \sum_{k=0}^{N-1} b_k x[n-k]$$

• Impulse response: let $x[n] = \delta[n]$

$$h[n] = \sum_{k=0}^{N-1} b_k \delta[n-k]$$

• Hence,

$$y[n] = \sum_{k=0}^{N-1} h[k]x[n-k] \qquad Y(z) = H(z)X(z)$$

Convolution Sum Length

- The length of the convolution sum of two sequences of lengths M and N is M+N-1
- If one of the sequences is of infinite length, the length of the convolution is infinite
- Thus, for an *Infinite Impulse Response (IIR)* or recursive filters the output is always of infinite length for any input signal, given that the impulse response of these filters is of infinite length

Interconnecting Discrete-Time Systems

Initial and Final Value Properties

Initial value: $x[0] = \lim_{z \to \infty} X(z)$ Final value: $\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z - 1)X(z)$

$$\lim_{z \to \infty} X(z) = \lim_{z \to \infty} \left(x[0] + \sum_{n \ge 1} \frac{x[n]}{z^n} \right) = x[0] \qquad (z - 1)X(z) = \sum_{n=0}^{\infty} x[n]z^{-n+1} - \sum_{n=0}^{\infty} x[n]z^{-n}$$

Use to check on your Z-Transform or Inverse Z-Transform

$$\lim_{z \to 1} (z - 1)X(z) = x[0] + \sum_{n=0}^{\infty} (x[n+1] - x[n])$$
$$= x[0] + (x[1] - x[0]) + (x[2] - x[1]) + (x[3] - x[2]) \cdots$$
$$= \lim_{n \to \infty} x[n]$$

n=0

 $= x[0]z + \sum [x[n+1] - x[n]]z^{-n}$

ed Z-Transforms
ed Z-Transforms

	Function of Time	Function of z, ROC
1.	$\delta[n]$	1, whole <i>z</i> -plane
2.	<i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}, \ z > 1$
3.	nu[n]	$\frac{z^{-1}}{(1-z^{-1})^2}, z > 1$
4.	$n^2u[n]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}, z > 1$
5.	$\alpha^n u[n], \alpha < 1$	$\frac{1}{1-\alpha z^{-1}}, z > \alpha $
6.	$n\alpha^n u[n], \alpha < 1$	$\frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2}, \ z > \alpha $
7.	$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}, z > 1$
8.	$\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}, z > 1$
9.	$\alpha^n \cos(\omega_0 n) u[n], \ \alpha < 1$	$\frac{1 - \alpha \cos(\omega_0) z^{-1}}{1 - 2\alpha \cos(\omega_0) z^{-1} + z^{-2}}, z > 1$
10.	$\alpha^n \sin(\omega_0 n) u[n], \ \alpha < 1$	$\frac{\alpha \sin(\omega_0) z^{-1}}{1 - 2\alpha \cos(\omega_0) z^{-1} + z^{-2}}, z > \alpha $

Table 9.2 Basic Properties of One-Sided Z-Transform

Causal signals and constants	$\alpha x[n], \beta \gamma[n]$	$\alpha X(z), \beta Y(z)$
Linearity	$\alpha x[n] + \beta \gamma[n]$	$\alpha X(z) + \beta Y(z)$
Convolution sum	$(x * \gamma)[n] = \sum_k x[n]\gamma[n-k]$	X(z)Y(z)
Time shifting—causal	x[n-N]N integer	$z^{-N}X(z)$
Time shifting-noncausal	x[n-N]	$z^{-N}X(z) + x[-1]z^{-N+1}$
	x[n] noncausal, N integer	$+ x[-2]z^{-N+2} + \cdots + x[-N]$
Time reversal	x[-n]	$X(z^{-1})$
Multiplication by n	n x[n]	$-z\frac{dX(z)}{dz}$
Multiplication by n^2	$n^2 x[n]$	$z^2 \frac{d^2 X(z)}{dz^2} + z \frac{dX(z)}{dz}$
Finite difference	x[n] - x[n - 1]	$(1 - z^{-1})X(z) - x[-1]$
Accumulation	$\sum_{k=0}^{n} x[k]$	$\frac{X(z)}{1-z^{-1}}$
Initial value	<i>x</i> [0]	$\lim_{z \to \infty} X(z)$
Final value	$\lim_{n \to \infty} x[n]$	$\lim_{z \to 1} (z - 1)X(z)$

Inverse Z-Transform (One-Sided)

• <u>Method #1</u>: If the Z-transform is given as a finite-order polynomial, the inverse can be found by inspection

$$X(z) = \sum_{n=0}^{N} x[n]z^{-n}$$

= $x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots + x[N]z^{-N}$

• Example:

$$X(z) = 1 + 2z^{-10} + 3z^{-20} \qquad \Longrightarrow \qquad x[n] = \delta[n] + 2\delta[n - 10] + 3\delta[n - 20]$$

Inverse Z-Transform (One-Sided)

- <u>Method #2</u>: Partial Fraction Expansion for rational functions given as X(z) = B(z)/A(z)
- To find the inverse we simply divide the polynomial B(z) by (z) to obtain a possible infinite-order polynomial in negative powers of z⁻¹
 - Coefficients of this polynomial are the inverse values
- Disadvantage: it does not provide a closed-form solution
 Useful when interested to get a few initial values of x[n]
- Example: x[0] = 1

 $x[4] = (-2)^2$

Inverse Z-Transform (One-Sided)

Method #3: Partial Fraction Expansion
Similar to Laplace transform

$$X(z) = \frac{IV(z)}{D(z)}$$

Example: $X(z) = \frac{1+z^{-1}}{(1+0.5z^{-1})(1-0.5z^{-1})}$
 $X(z) = \frac{1+z^{-1}}{(1+0.5z^{-1})(1-0.5z^{-1})}$
 $= \frac{A}{1+0.5z^{-1}} + \frac{B}{1-0.5z^{-1}}$ $X(z) = \frac{-0.5z}{z+0.5} + \frac{1.5z}{z-0.5}$

 $NI(\pi)$

 $x[n] = [-0.5(-0.5)^{n} + 1.5(0.5)^{n}]u[n]$

Solution of Difference Equations

- Use the shifting in time property of the Z-transform in the solution of difference equations with initial conditions
 - Very similar to Laplace transform when solving differential equations

Time shifting-causal	x[n-N]N integer	$z^{-N}X(z)$
Time shifting—noncausal	x[n-N]	$z^{-N}X(z) + x[-1]z^{-N+1}$
	x[n] noncausal, N integer	$+ x[-2]z^{-N+2} + \cdots + x[-N]$

$$\gamma[n] = \gamma_{zs}[n] + \gamma_{zi}[n]$$

Solution of Difference Equations: Example 1

 Solve the following difference equation with zero initial conditions and x[n]=u[n]

$$y[n] = y[n-1] - 0.25y[n-2] + x[n] \qquad n \ge 0$$

Solution:

$$Y(z) = \frac{X(z)}{1 - z^{-1} + 0.25z^{-2}}$$

= $\frac{1}{(1 - z^{-1})(1 - z^{-1} + 0.25z^{-2})} = \frac{z^3}{(z - 1)(z^2 - z + 0.25)}$ |z| > 1
$$y[n] = Au[n] + [B(0.5)^n + Cn(0.5)^n]u[n]$$

Solution of Difference Equations: Example 2

Fine the complete response for the following difference equation: y[n] + y[n - 1] - 4y[n - 2] - 4y[n - 3] = 3x[n] n ≥ 0 y[-1] = 1 y[-2] = y[-3] = 0 x[n] = u[n]
Solution: Y(z)[1 + z⁻¹ - 4z⁻² - 4z⁻³] = 3X(z) + [-1 + 4z⁻¹ + 4z⁻²] Y(z) = 3 X(z)/A(z) + (-1 + 4z⁻¹ + 4z⁻²)/A(z) |z| > 2

 $A(z) = 1 + z^{-1} - 4z^{-2} - 4z^{-3} = (1 + z^{-1})(1 + 2z^{-1})(1 - 2z^{-1})$

 $y[n] = y_{zs}[n] + y_{zi}[n]$

Problem Assignments

- Problems: 9.3, 9.7, 9.8, 9.9, 9.10, 9.11, 9.14, 9.16, 9.17, 9.18, 9.19
- Partial Solutions available from the student section of the textbook web site