EE 470 – Extra Practice Problem Set #3

- 1. The CT signal $x(t) = \sin(400\pi t) + 2\cos(150\pi t)$ is sampled with an ideal impulse train. Sketch the CTFT of the sampled signal for the following values of the sampling rate:
 - (a) $f_s = 100 \text{ samples/s};$
 - (b) $f_s = 200 \text{ samples/s};$
 - (c) $f_s = 400 \text{ samples/s}$;
 - (d) $f_s = 500 \text{ samples/s}$.

In each case, calculate the reconstructed signal using an ideal LPF with the transfer function given in Eq. (9.7) and a cut-off frequency of $\omega_s/2 = \pi f_s$.

2. A CT band-limited signal x(t) is sampled at its Nyquist rate f_s and transmitted over a band-limited channel modeled with the transfer function

$$H_{\rm ch}(\omega) = \begin{cases} 1 & 4\pi f_{\rm s} \le |\omega| \le 8\pi f_{\rm s} \\ 0 & \text{otherwise.} \end{cases}$$

Let the signal received at the end of the channel be $x_{ch}(t)$. Determine the reconstruction system that recovers the CT signal x(t) from $x_{ch}(t)$.

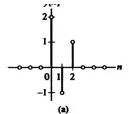
- 3. Consider a digital mp3 player that has 1024×10^6 bytes of memory. Assume that the audio clips stored in the player have an average duration of five minutes.
 - (a) Assuming a sampling rate of 44 100 samples/s and 16 bits/sample/channel quantization, determine the average storage space required (without any form of compression) to store a stereo (i.e. two-channel) audio clip.
 - (b) Assume that the audio clips are stored in the mp3 format, which reduces the audio file size to roughly one-eighth of its original size. Calculate the storage space required to store an mp3-compressed audio clip.
 - (c) How many mp3-compressed audio files can be stored in the mp3 player?

4. Consider the input sequence x[k] = 2u[k] applied to a DT system modeled with the following input–output relationship:

$$y[k+1] - 2y[k] = x[k],$$

and ancillary condition y[-1] = 2.

- (a) Determine the response y[k] by iterating the difference equation for $0 \le k \le 5$.
- (b) Determine the zero-state response $y_{zi}[k]$ for $0 \le k \le 5$.
- (c) Calculate the zero-input response $y_{zs}[k]$ for $0 \le k \le 5$.
- (d) Verify that $y[k] = y_{zi}[k] + y_{zs}[k]$.
- 5. A discrete-time system is both linear and time invariant. Suppose the output due to an input $x[n] = \delta[n]$ is given in Fig. P1.77(a).



- (a) Find the output due to an input $x[n] = \delta[n-1]$.
- (b) Find the output due to an input $x[n] = 2\delta[n] \delta[n-2]$.
- $x[n] = 2\delta[n] \delta[n-2].$ (c) Find the output due to the input depicted in Fig. P1.77(b).
- 6. For each of the following impulse responses, determine whether the corresponding system is causal.

$$h[n] = (-1)^{n}u[-n]$$

$$h[n] = (1/2)^{|n|}$$

$$h[n] = \cos(\frac{\pi}{8}n)\{u[n] - u[n-10]\}$$

$$h[n] = 2u[n] - 2u[n-5]$$

$$h[n] = \sin(\frac{\pi}{2}n)$$

$$h[n] = \sum_{p=-1}^{\infty} \delta[n-2p]$$

7. Determine the output of the systems described by the following difference equations with input and initial conditions as specified:

(a)
$$y[n] - \frac{1}{2}y[n-1] = 2x[n],$$

 $y[-1] = 3, x[n] = \left(\frac{-1}{2}\right)^n u[n]$

(b)
$$y[n] - \frac{1}{9}y[n-2] = x[n-1],$$

 $y[-1] = 1, y[-2] = 0, x[n] = u[n]$

(c)
$$y[n] + \frac{1}{4}y[n-1] - \frac{1}{8}y[n-2] = x[n] + x[n-1]$$

$$y[-1] = 4, y[-2] = -2, x[n] = (-1)^n u[n]$$

(d)
$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n],$$

 $y[-1] = 1, y[-2] = -1, x[n] = 2u[n]$

8. The systems that follow have input x[n] and output y[n]. For each system, determine whether it is (i) linear, (ii) time-invariant, (iii) causal:

$$y[n] = 2x[n]u[n]$$

$$y[n] = \log_{10}(|x[n]|)$$

$$y[n] = \sum_{k=-\infty}^{n} x[k+2]$$

$$y[n] = \cos(2\pi x[n+1]) + x[n]$$

$$y[n] = x[n] \sum_{k=-\infty}^{\infty} \delta[n-2k]$$

$$y[n] = 2x[2^n]$$

9. Given x[n] and y[n] as shown, sketch the following signals:

(a)
$$x[2n]$$

(b)
$$x[3n-1]$$

(c)
$$y[1 - n]$$

(d)
$$y[2-2n]$$

(e)
$$x[n-2] + y[n+2]$$

(f)
$$x[2n] + y[n-4]$$

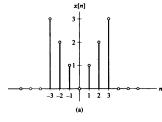
(g)
$$x[n+2]y[n-2]$$

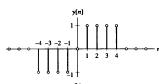
(h)
$$x[3-n]y[n]$$

(i)
$$x[-n]y[-n]$$

(j)
$$x[n]y[-2-n]$$

(k)
$$x[n+2]y[6-n]$$





10. Determine whether the following signals are periodic, and for those which are, find the fundamental period:

$$x[n] = \cos\left(\frac{8}{15}\pi n\right)$$

$$x[n] = \cos\left(\frac{7}{15}\pi n\right)$$

$$x[n] = \sum_{k=-\infty}^{\infty} \left\{\delta[n-3k] + \delta[n-k^2]\right\}$$

$$x[n] = \cos\left(\frac{1}{5}\pi n\right) \sin\left(\frac{1}{3}\pi n\right)$$

$$x[n] = (-1)^n$$

$$x[n] = (-1)^{n^2}$$

$$x[n] = \cos(2n)$$
$$x[n] = \cos(2\pi n)$$

