1. Determine a suitable sampling frequency for the signals with the following Fourier transforms:

(b) *x*(*t*)= sin(100π*x*)/*x* + 2 sin(200π*x*)/*x*

- 2. A signal $f(t) = e^{-j(140\pi t)}$ was sampled with an ideal pulse train. Sketch the continuous-time Fourier transformation for the following values of the sampling rate and estimate the reconstructed signal using a lowpass filter with cutoff frequency of $\Omega_s/2$:
 - (a) fs= 1k Samples/s
 - (b) f_s= 100 Samples/s
- ^{3.} For the following CT signals, calculate the maximum sampling period T_s that produces no aliasing:
 - (a) $x_1(t) = 5 \operatorname{sinc}(200t);$
 - (b) $x_2(t) = 5 \operatorname{sinc}(200t) + 8 \operatorname{sin}(100\pi t);$
 - (c) $x_3(t) = 5 \operatorname{sinc}(200t) \operatorname{sin}(100\pi t);$
 - (d) $x_4(t) = 5 \operatorname{sinc}(200t) * \operatorname{sin}(100\pi t)$, where * denotes the CT convolution operation.
- 4. (Problem 8.14 in textbook)

Consider the periodic signals

 $x_1(t) = \cos(2\pi t), \quad x_2(t) = \cos((2\pi + \phi)t)$

- (a) Let $\phi = 4\pi$, show that if we sample these signals using $T_s = 0.5$ we get the same sample values from the two signals. Is any of these signals aliased? Explain.
- (b) What would be possible values of φ so that when using T_s = 0.5 we get the same sample values from the two signals? How does φ relate to the sampling frequency Ω_s?

[•] Assigned: Sunday June 28, 2015

[•] Deadline: Thursday July 2, 2015