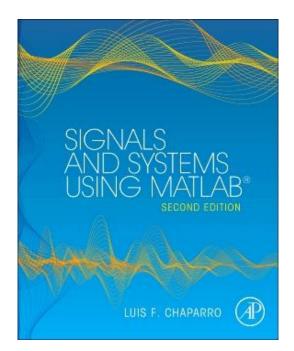
EE 470 - Signals and Systems

4. The Fourier Transform

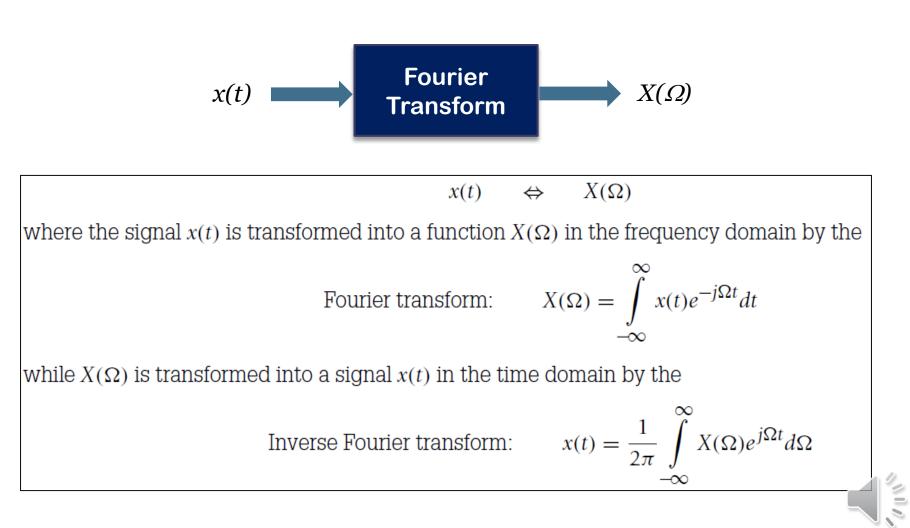
Prof. Yasser Mostafa Kadah

Textbook

Luis Chapparo, Signals and Systems Using Matlab, 2nd ed., Academic Press, 2015.



Fourier Transform Definition



Existence of Fourier Transform

- The Fourier transform of a signal *x*(*t*) exists (i.e., we can calculate its Fourier transform via this integral) provided that:
 - x(t) is absolutely integrable or the area under |x(t)| is finite
 - x(t) has only a finite number of discontinuites as well as maxima and minima
- These conditions are "<u>sufficient</u>" not "<u>necessary</u>"

Fourier Transforms from Laplace Transforms

• If the region of convergence (ROC) of the Laplace transform *X*(*s*) contains the $j\Omega$ axis, so that *X*(*s*) can be defined for $s = j\Omega$, then:

$$\mathcal{F}[x(t)] = \mathcal{L}[x(t)]|_{s=j\Omega} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$
$$= X(s)|_{s=j\Omega}$$

Fourier Transforms from Laplace Transforms - Example

• Discuss whether it is possible to obtain the Fourier transform of the following signals using their Laplace transforms:

(a) $x_1(t) = u(t)$ (b) $x_2(t) = e^{-2t}u(t)$

- (a) The Laplace transform of $x_1(t)$ is $X_1(s) = 1/s$ with a region of convergence corresponding to the open right *s*-plane, or ROC = { $s = \sigma + j\Omega : \sigma > 0, -\infty < \Omega < \infty$ }, which does not include the $j\Omega$ axis, so the Laplace transform cannot be used to find the Fourier transform of $x_1(t)$.
- (b) The signal $x_2(t)$ has as Laplace transform $X_2(s) = 1/(s+2)$ with a region of convergence ROC = { $s = \sigma + j\Omega : \sigma > -2, -\infty < \Omega < \infty$ } containing the $j\Omega$ axis. Then the Fourier transform of $x_2(t)$ is

$$X_2(\Omega) = \frac{1}{s+2} \Big|_{s=j\Omega} = \frac{1}{j\Omega+2}$$

Table 5.2 Fourier Transform Pairs				
	Function of Time	Function of Ω		
1	$\delta(t)$	1		
2	$\delta(t-\tau)$	$e^{-j\Omega\tau}$		
3	u(t)	$\frac{1}{i\Omega} + \pi \delta(\Omega)$		
4	u(-t)	$\frac{-1}{i\Omega} + \pi \delta(\Omega)$		
5	$\operatorname{sgn}(t) = 2[u(t) - 0.5]$	$\frac{2}{i\Omega}$		
6	$A, -\infty < t < \infty$	$2\pi A\delta(\Omega)$		
7	$Ae^{-at}u(t), a > 0$	$\frac{A}{j\Omega+a}$		
8	$Ate^{-at}u(t), \ a > 0$	$\frac{A}{(j\Omega+a)^2}$		
9	$e^{-a t }, \ a > 0$	$\frac{2a}{a^2+\Omega^2}$		
10	$\cos(\Omega_0 t), -\infty < t < \infty$	$\pi \left[\delta(\Omega - \Omega_0) + \delta(\Omega + \Omega_0) \right]$		
11	$\sin(\Omega_0 t), -\infty < t < \infty$	$-j\pi \left[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)\right]$		
12	$A[u(t+\tau)-u(t-\tau)],\ \tau>0$	$2A\tau \frac{\sin(\Omega\tau)}{\Omega\tau}$		
13	$\frac{\sin(\Omega_0 t)}{\pi t}$	$u(\Omega+\Omega_0)-u(\Omega-\Omega_0)$		
14	$x(t)\cos(\Omega_0 t)$	$0.5[X(\Omega - \Omega_0) + X(\Omega + \Omega_0)]$		

Table 5.1 Basic Properties of the Fourier Transform						
	Time Domain	Frequency Domain				
Signals and constants Linearity Expansion/contraction in time Reflection Parseval's energy relation Duality Time differentiation Frequency differentiation Integration Time shifting	$X(t)$ $\frac{d^{n}x(t)}{dt^{n}}, n \ge 1, \text{ integer}$ $-jtx(t)$ $\int_{-\infty}^{t} x(t')dt'$ $x(t - \alpha)$	$\alpha X(\Omega) + \beta Y(\Omega)$ $\frac{1}{ \alpha } X\left(\frac{\Omega}{\alpha}\right)$ $X(-\Omega)$ $E_x = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) ^2 d\Omega$ $2\pi x(-\Omega)$				
Frequency shifting Modulation Periodic signals Symmetry Convolution in time Windowing/multiplication Cosine transform Sine transform	$e^{j\Omega_0 t} x(t)$ $x(t) \cos(\Omega_c t)$ $x(t) = \sum_k X_k e^{jk\Omega_0 t}$ $x(t) \text{ real}$ $z(t) = [x * y](t)$ $x(t)y(t)$ $x(t) \text{ even}$ $x(t) \text{ odd}$	$X(\Omega - \Omega_0)$ $0.5[X(\Omega - \Omega_c) + X(\Omega + \Omega_c)]$ $X(\Omega) = \sum_k 2\pi X_k \delta(\Omega - k\Omega_0)$ $ X(\Omega) = X(-\Omega) $ $\angle X(\Omega) = -\angle X(-\Omega)$ $Z(\Omega) = X(\Omega)Y(\Omega)$ $\frac{1}{2\pi}[X * Y](\Omega)$ $X(\Omega) = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt, \text{ real}$ $X(\Omega) = -j \int_{-\infty}^{\infty} x(t) \sin(\Omega t) dt, \text{ imaginary}$				

Linearity

Fourier transform is a linear operator
Superposition holds

If $\mathcal{F}[x(t)] = X(\Omega)$ and $\mathcal{F}[y(t)] = Y(\Omega)$, for constants α and β , we have that $\mathcal{F}[\alpha x(t) + \beta y(t)] = \alpha \mathcal{F}[x(t)] + \beta \mathcal{F}[y(t)]$ $= \alpha X(\Omega) + \beta Y(\Omega)$

Inverse Proportionality of Time and Frequency

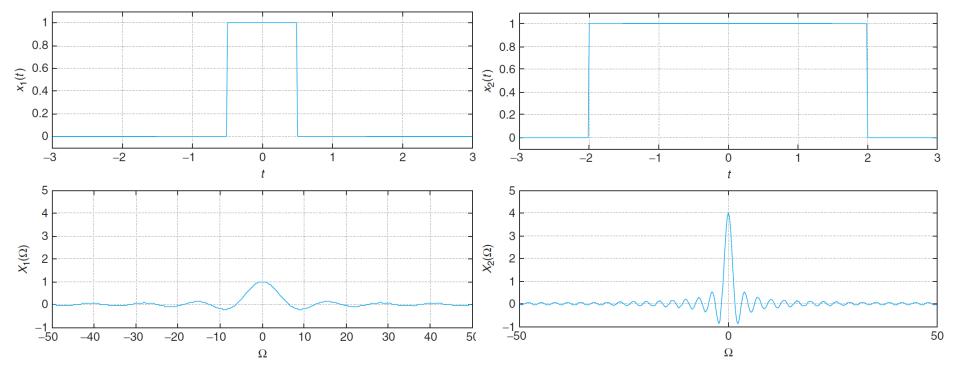
- Support of $X(\Omega)$ is inversely proportional to support of x(t)
- If *x*(*t*) has a Fourier transform *X*(Ω) and *α*≠0 is a real number, then *x*(*αt*) is:
 - Contracted ($\alpha > 1$),
 - Contracted and reflected ($\alpha < -1$),
 - Expanded $(0 < \alpha < 1)$,
 - Expanded and reflected $(-1 < \alpha < 0)$, or
 - Simply reflected ($\alpha = -1$)

• Then,

$$x(\alpha t) \quad \Leftrightarrow \quad \frac{1}{|\alpha|} X\left(\frac{\Omega}{\alpha}\right)$$

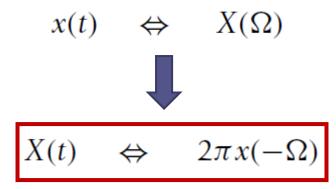
Inverse Proportionality of Time and Frequency - Example

- Fourier transform of 2 pulses of different width
 - 4-times wider pulse have 4-times narrower Fourier transform

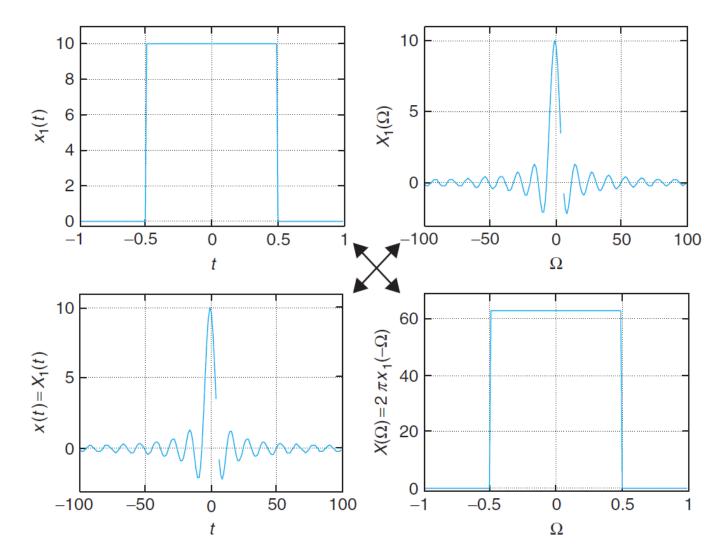


Duality

- By interchanging the frequency and the time variables in the definitions of the direct and the inverse Fourier transform similar equations are obtained
- Thus, the direct and the inverse Fourier transforms are termed to be <u>dual</u>



Duality: Example



Signal Modulation

- Frequency shift: If $X(\Omega)$ is the Fourier transform of x(t), then we have the pair $x(t)e^{j\Omega_0 t} \Leftrightarrow X(\Omega \Omega_0)$
- Modulation: The Fourier transform of the modulated signal

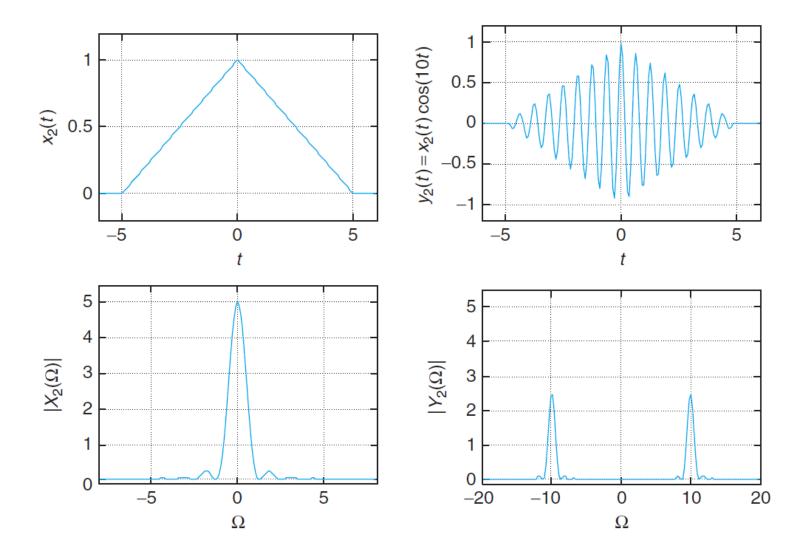
 $x(t)\cos(\Omega_0 t)$

is given by

 $0.5 \left[X(\Omega - \Omega_0) + X(\Omega + \Omega_0) \right]$

That is, $X(\Omega)$ is shifted to frequencies Ω_0 and $-\Omega_0$, and multiplied by 0.5.

Signal Modulation: Example



Fourier Transform of Periodic Signals

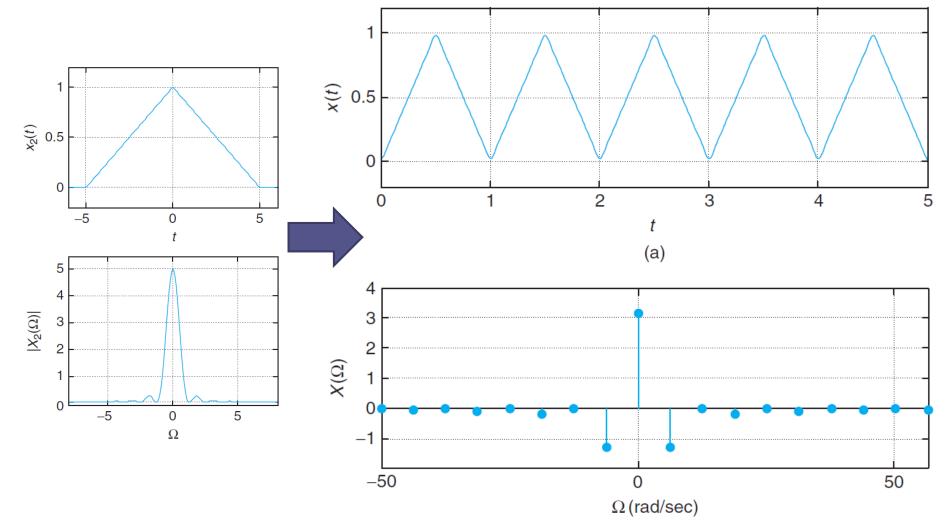
For a periodic signal x(t) of period T_0 , we have the Fourier pair

$$x(t) = \sum_{k} X_{k} e^{jk\Omega_{0}t} \quad \Leftrightarrow \quad X(\Omega) = \sum_{k} 2\pi X_{k} \delta(\Omega - k\Omega_{0})$$

obtained by representing x(t) by its Fourier series.

- Periodic Signals are represented by Sampled Fourier transform
- Sampled Signals are representing by Periodic Fourier Transform (from duality)

Fourier Transform of Periodic Signals: Example



Parseval's Energy Conservation

For a finite-energy signal x(t) with Fourier transform $X(\Omega)$, its energy is conserved when going from the time to the frequency domain, or

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\Omega)|^2 d\Omega$$
(5.15)

Thus, $|X(\Omega)|^2$ is an energy density indicating the amount of energy at each of the frequencies Ω . The plot $|X(\Omega)|^2$ versus Ω is called the energy spectrum of x(t), and it displays how the energy of the signal is distributed over frequency.

• Energy in Time Domain = Energy in Frequency Domain

Symmetry of Spectral Representations

If $X(\Omega)$ is the Fourier transform of a real-valued signal x(t), periodic or aperiodic, the magnitude $|X(\Omega)|$ is an even function of Ω :

$$|X(\Omega)| = |X(-\Omega)| \tag{5.16}$$

and the phase $\angle X(\Omega)$ is an odd function of Ω :

$$\angle X(\Omega) = -\angle X(-\Omega) \tag{5.17}$$

We then have:

Magnitude spectrum:	$ X(\Omega) $ versus Ω
Phase spectrum:	$\angle X(\Omega)$ versus Ω
Energy/power spectrum:	$ X(\Omega) ^2$ versus Ω

 Clearly, if the signal is complex, the above symmetry will NOT hold

Convolution and Filtering

If the input x(t) (periodic or aperiodic) to a stable LTI system has a Fourier transform $X(\Omega)$, and the system has a frequency response $H(j\Omega) = \mathcal{F}[h(t)]$ where h(t) is the impulse response of the system, the output of the LTI system is the convolution integral y(t) = (x * h)(t), with Fourier transform

$$Y(\Omega) = X(\Omega) H(j\Omega)$$

(5.18)

Relation between transfer function and frequency response:

$$H(j\Omega) = \mathcal{L}[h(t)]|_{s=j\Omega}$$

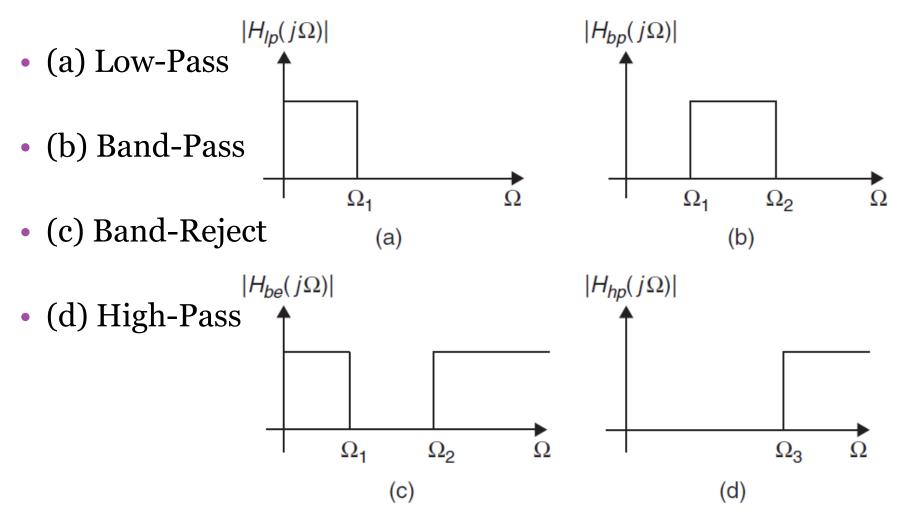
$$= H(s)|_{s=j\Omega}$$

$$H(j\Omega) = \frac{Y(\Omega)}{X(\Omega)}$$

Basics of Filtering

 The filter design consists in finding a transfer function *H*(*s*)= *B*(*s*)/*A*(*s*) that satisfies certain specifications that will allow getting rid of the noise. Such specifications are typically given in the frequency domain.

 $Y(\Omega) = H(j\Omega)X(\Omega)$



Time Shifting Property

If x(t) has a Fourier transform $X(\Omega)$, then $x(t - t_0) \Leftrightarrow X(\Omega)e^{-j\Omega t_0}$ $x(t + t_0) \Leftrightarrow X(\Omega)e^{j\Omega t_0}$

• Example: $x(t) = A[\delta(t - \tau) + \delta(t + \tau)]$

 $X(\Omega) = A [1e^{-j\Omega\tau} + 1e^{j\Omega\tau}]$

Differentiation and Integration

If x(t), $-\infty < t < \infty$, has a Fourier transform $X(\Omega)$, then $\frac{d^{N}x(t)}{dt^{N}} \quad \Leftrightarrow \quad (j\Omega)^{N}X(\Omega)$ $\int_{0}^{t} x(\sigma)d\sigma \quad \Leftrightarrow \quad \frac{X(\Omega)}{j\Omega} + \pi X(0)\delta(\Omega)$ where $X(0) = \int x(t)dt$

Table 5.1 Basic Properties of the Fourier Transform						
	Time Domain	Frequency Domain				
Signals and constants Linearity Expansion/contraction in time Reflection Parseval's energy relation Duality Time differentiation Frequency differentiation Integration Time shifting	$X(t)$ $\frac{d^{n}x(t)}{dt^{n}}, n \ge 1, \text{ integer}$ $-jtx(t)$ $\int_{-\infty}^{t} x(t')dt'$ $x(t - \alpha)$	$\alpha X(\Omega) + \beta Y(\Omega)$ $\frac{1}{ \alpha } X\left(\frac{\Omega}{\alpha}\right)$ $X(-\Omega)$ $E_x = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) ^2 d\Omega$ $2\pi x(-\Omega)$				
Frequency shifting Modulation Periodic signals Symmetry Convolution in time Windowing/multiplication Cosine transform Sine transform	$e^{j\Omega_0 t} x(t)$ $x(t) \cos(\Omega_c t)$ $x(t) = \sum_k X_k e^{jk\Omega_0 t}$ $x(t) \text{ real}$ $z(t) = [x * y](t)$ $x(t)y(t)$ $x(t) \text{ even}$ $x(t) \text{ odd}$	$X(\Omega - \Omega_0)$ $0.5[X(\Omega - \Omega_c) + X(\Omega + \Omega_c)]$ $X(\Omega) = \sum_k 2\pi X_k \delta(\Omega - k\Omega_0)$ $ X(\Omega) = X(-\Omega) $ $\angle X(\Omega) = -\angle X(-\Omega)$ $Z(\Omega) = X(\Omega)Y(\Omega)$ $\frac{1}{2\pi}[X * Y](\Omega)$ $X(\Omega) = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt, \text{ real}$ $X(\Omega) = -j \int_{-\infty}^{\infty} x(t) \sin(\Omega t) dt, \text{ imaginary}$				

Covered Material and Assignments

- Chapter 5 of Chaparro's textbook
- Assigned Problems Set #4