

BIOSIGNAL PROCESSING

Research problem 1: ECG Artifact Removal

Identifying Signal Artifact

- Qualitative Method: Check whether the artifact signal has lower or higher frequency than original signal
 - Check one period of original signal and corresponding period from artifact signal and compare their frequencies
 - Works for low-frequency (e.g., baseline wander) or high-frequency (e.g., EMG superimposed on ECG) artifacts

Identifying Signal Artifact

Identifying Signal Artifact

- Obtain "engineering" initial estimate of artifact frequency
 - Estimate time period T between artifact signal peaks (or valleys)
 - $lue{}$ Compute artifact frequency initial estimate = 1/T
- More accurate method: using Fourier transform (later)

Digital Filter Design Using Matlab

Choose Filter Specs

Use Digital Filter Design on Signal

FIR vs. IIR Response

Group Delay

 Since a delay in the time domain results in a linear phase in the frequency domain, the group delay of a filter response is defined as,

Group Delay =
$$-\frac{d\phi}{d\omega}$$

Note: Group delay is constant in FIR filters and nonlinear in IIR filters

Quantitative Comparison of Signals

- You have two signals: True X and Estimated Xest
- Required: a quantitative measure of how close they are
- Possible Solution: Root Mean Squared Error (RMSE)
- Matlab: using vector notation

```
RMSE = sqrt (mean((Xest - X).^2));
```

- Requirement: Signals must be aligned to be able to do that
 - Note that shift in filter output does not allow direct subtraction

Group Delay Correction

- Shift in filter output is due to Group Delay of filter
 - Use average of group delay for designed filter
 - Shift output signal to correct for it to align input and output signals

```
N2 = mean(grpdelay(Hd)) % filter delay (samples)
                sigin = s118bw12(1,:);
                sigout= filter(Hd, sigin);
                sigout shifted= sigout(N2+1:end);
        1500
                 2000
                    3000
                        4000
                           5000 6000
                                  7000
                                                                    2000
                                                                           4000
         500
                                                             500
                                                   Shifted
Delayed
Output
                                                   Output
        1500
                                                            1000
                                                     Error
  Error
        1000
                                                             500
 Signal
                                                     Signal
```

http://www.mathworks.com/help/signal/examples/practical-introduction-to-digital-filtering.html

Zero-Phase Filtering

- Zero-phase digital filtering is done by processing the input data in both the forward and reverse directions (Matlab: filtfilt)
 - Zero-phase distortion minimizes start-up and ending transients
 - Filter transfer function = squared magnitude of original filter
 - Filter order = double order of original filter

Example: Baseline Wander

- □ Estimated artifact frequency ≈ 0.1 Hz
 - $T \approx 3000 \text{ Sa} * 1/(360 \text{ Sa/s}) \approx 9 \text{ s}$

Clearly a low-pass artifact: remove using highpass filter

Example: EMG Artifact

- Clearly a high-frequency artifact
 - Need a lowpass filter
- Strategy: use cutoff as low as possible
 - Try to retain as much of ECG signal content (reasonable value = 40 Hz)

Example: Electrode Motion Artifact

Complex artifact

- High frequency + low frequency components
- Needs a bandpass filter

Research Information Sources

Source	Advantages	Information	Disadvantages
Books	Comprehensive information	Historical context	Dated information
	 Background and historical 	• Broad overviews	Content level
	information	• broader audience	• Bias or slant (author)
	 Bibliography of sources 		
Popular/Special Interest	 Current information 	• Long-form stories.	Authors not experts
Magazine	• Shorter, easy to understand	• Discuss impact on society	May lack depth
	 Photos and illustrations 	 Offers perspectives 	• Sources not always cited
		General audience	• Editorial bias
Professional/Trade	Specialized information	Long articles or reports	Vary between short, easy
Magazines	 Current information 	 Context and analysis 	to lengthy and specialized
	 Some bibliographies 	 Professional audience 	Sources not always cited
Scholarly/Academic	• Depth	Often theoretical	Specialized Terminology
Journals	 Written by experts 	• Peer-reviewed	and depth
	Charts and graphs	Often narrow focus	Dated information
	• Recent research	• Scholars, researchers,	
	 Bibliographies of sources 	professionals and students	
Newspapers	Daily local information	General audience	• Authors usually not experts
Web Sites	Various points of view	• Explains the who, what,	Credibility and accuracy
	• Statistics	when and where of an event	cannot be assured
	 Industry information 	• Is intended for a general	• Information may be biased
		audience	• Sources not always cited

Lab Notebook Documentation

 Please take the habit of documenting all your experiments in a Lab notebook (paper or electronic)