

MEDICAL EQUIPMENT (4) TOPIC 1: ULTRASOUND IMAGING-2

Prof. Yasser Mostafa Kadah

Term 2 - 2013

Doppler effect: Change in the observed frequency of the sound wave compared to the emitted frequency which occurs due to relative motion between observer and source

RBCS in blood are hardly visible in ultrasound images

Scattering because of its very small size

Carotid artery with calcified plaque

Doppler Shift Equation

$$f_d = f_r - f_t = \frac{2f_t v \cos \theta}{c}$$

Doppler display modes

Spectral Doppler

Color Doppler

Time (s)

Continuous Wave (CW) Doppler

- Only a small region for Doppler sensitivity
- No range information
- No limitation on maximum velocity and high velocity accuracy

Pulsed-Wave (PW) Doppler

- Range information is available and region is selectable by user
- Limitations on maximum velocity and accuracy

CW Signal Processing

Clutter: signal from stationary tissues

- Low Doppler shift and much stronger signal
- Signal from stationary tissue and wall motion
- Critical step in Doppler processing

	Velocity ranges	Signal intensity
Blood	$0-600 \text{ cm s}^{-1}$	Low
Tissue	$0-10 \text{ cm s}^{-1}$	40 dB higher than blood

PW Doppler processing: Sampled version of CW Doppler

□ Time-domain PW processing techniques (a) First pulse, time t₁

(b) Second pulse, time t₂

$$d_1 = c t_1/2,$$
 $d_2 = c t_2/2$
 $d_m = d_2 - d_1$

$$d_{\rm m}=c(t_2-t_1)/2$$

$$PRI = t_2 - t_1$$
 $PRI = 1/PRF$

$$v = d_m / PRI = (t_2 - t_1) c PRF/2$$

Example: Consider Doppler imaging of a vessel at depth d1= 10 cm. derive the maximum detectible velocity if the transmitted signal frequency was 5 MHz and Doppler angle was 45°.

Time to collect one sample = PRI = $13\mu s/cm \times (10 cm) = 130\mu s$ Sampling frequency = PRF = $1/PRI = 7692 Sa/s = 2 f_d^{max}$ $v = \frac{c f_d}{2f_t \cos \theta} v_{max} = (1540 \times 7692/2)/(2 \times 5 \times 10^6 \times Cos(45^\circ))$

Aliasing

Highest Doppler frequency shift that can be measured is equal to PRF/2

Angle dependence

Estimated Doppler shift is dependent on cosine of the angle between the beam and the direction of motion

Clutter breakthrough

 Tissue motion giving rise to Doppler frequencies above wall thump or clutter filter may be displayed on spectral Doppler or color flow systems

Loss of low Doppler

Blood velocities which give rise to low Doppler frequencies (as a result of low velocity or angle near to 90°) will not be displayed if value of Doppler frequency is below the level of wall thump or clutter filter

Color Doppler

Maps mean blood velocity at each points and encodes it in color on the usual B&W ultrasound image

Power Doppler

Estimate of the power of all shifted components

Ultrasound Safety

- A fundamental approach to the safe use of diagnostic ultrasound is to use the lowest output power and the shortest scan time consistent with acquiring the required diagnostic information
 - "ALARA" principle (i.e. as low as reasonably achievable)

Assignments

- Chapter 7: problems 3, 4, 5, 6, 7, 8
- Consider Doppler blood flow velocity estimation in a vessel at depth of 5 cm and angle of 60°. Find out whether aliasing will occur when estimating blood velocity if the actual velocity in that vessel is 50 cm/s. Let the transmitted signal frequency be 7 MHz.