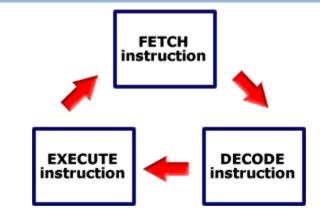


STM32 MICROCONTROLLER

Lecture 2

Prof. Yasser Mostafa Kadah

Harvard and von Neumann Architectures


Harvard Architecture—a type of computer architecture where the instructions (program code) and data are stored in separate memory spaces

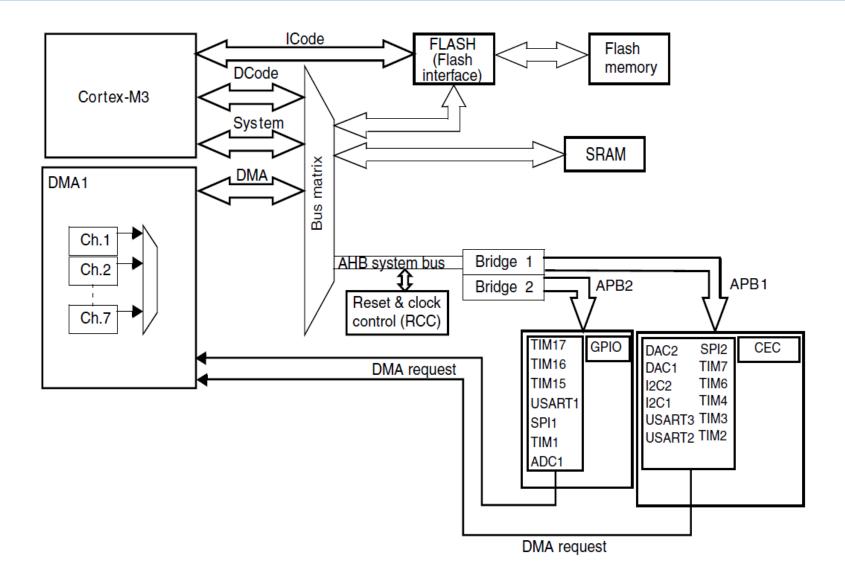
Example: Intel 8051 architecture

- von Neumann Architecture—another type of computer architecture where the instructions and data are stored in the same memory space
 - Example: ARM, Intel x86 architecture (Intel Pentium, AMD Athlon, etc.)

Instruction Execution Cycle

- Fetch operation—retrieves an instruction from the location in code memory pointed to by the program counter (PC)
- Execute operation—executes the instruction that was fetched during the fetch operation. In addition to executing the instruction, the CPU also adds the appropriate number to the PC to point it to the next instruction to be fetched.

Microcontroller Architectures


- Microcontroller architecture refers to the internal hardware organization of a microcontroller
- Each hardware architecture has its own set of software instructions called assembly language that allows programming of the microcontroller
- □ Some of the popular microcontroller architectures
 - Intel 8051
 - Zilog Z80
 - Atmel AVR
 - Microchip PIC
 - ARM

Memory and Bus Architecture

Three masters:

- □ CortexTM-M3 core DCode bus (D-bus) and System bus (S-bus)
- GP-DMA1 (general-purpose DMA)
- Three slaves:
 - Internal SRAM
 - Internal Flash memory
 - AHB to APB bridges (AHB to APBx), which connect all the APB peripherals

System Architecture

Definitions

ICode bus

■ Connects the instruction bus of the CortexTM-M3 core to the Flash memory instruction interface. Instruction fetches are performed on this bus.

DCode bus

■ Connects the DCode bus (literal load and debug access) of the CortexTM-M3 core to the Flash memory data interface

System bus

Connects the system bus of the CortexTM-M3 core (peripherals bus) to a bus matrix which manages the arbitration between the core and the DMA

Definitions

DMA bus

Connects the AHB master interface of the DMA to the bus matrix which manages the access of CPU DCode and DMA to the SRAM, Flash memory and peripherals

Bus matrix

 Manages the access arbitration between the core system bus and the DMA master bus. The arbitration uses a round robin algorithm

AHB/APB bridges (APB)

- The two AHB/APB bridges provide full synchronous connections between the AHB and the two APB buses
- APB buses operate at full speed (up to 24 MHz)

- Program memory, data memory, registers and I/O ports are organized within the same linear 4-Gbyte address space
- Bytes are coded in memory in *little endian* format
 - The lowest numbered byte in a word is considered the word's least significant byte and the highest numbered byte, the most significant
- Addressable memory space is divided into 8 main blocks, each of 512 MB

Memory Map

Boundary address	Peripheral	Bus
0x4002 3000 - 0x4002 33FF	CRC	
0x4002 2400 - 0x4002 2FFF	Reserved	
0x4002 2000 - 0x4002 23FF	Flash memory interface	
0x4002 1400 - 0x4002 1FFF	Reserved	AHB
0x4002 1000 - 0x4002 13FF	Reset and clock control RCC	
0x4002 0400 - 0x4002 0FFF	Reserved	
0x4002 0000 - 0x4002 03FF	DMA1	
0x4001 4C00 - 0x4001 FFFF	Reserved	
0x4001 4800 - 0x4001 4BFF	TIM17 timer	
0x4001 4400 - 0x4001 47FF	TIM16 timer	
0x4001 4000 - 0x4001 43FF	TIM15 timer	
0x4001 3C00 - 0x4001 3FFF	Reserved	
0x4001 3800 - 0x4001 3BFF	USART1	
0x4001 3400 - 0x4001 37FF	Reserved	
0x4001 3000 - 0x4001 33FF	SPI1	
0x4001 2C00 - 0x4001 2FFF	TIM1 timer	
0x4001 2800 - 0x4001 2BFF	Reserved	APB2
0x4001 2400 - 0x4001 27FF	ADC1	
0x4001 1C00 - 0x4001 23FF	Reserved	
0x4001 1800 - 0x4001 1BFF	GPIO Port E	
0x4001 1400 - 0x4001 17FF	GPIO Port D	t
0x4001 1000 - 0x4001 13FF	GPIO Port C	t
0x4001 0C00 - 0x4001 0FFF	GPIO Port B	t
0x4001 0800 - 0x4001 0BFF	GPIO Port A	t
0x4001 0400 - 0x4001 07FF	EXTI	
0x4001 0000 - 0x4001 03FF	AFIO	t

Boundary address	Peripheral	Bus
0x4000 7C00 - 0x4000 FFFF	Reserved	
0x4000 7800 - 0x4000 7BFF	CEC]]
0x4000 7400 - 0x4000 77FF	DAC	
0x4000 7000 - 0x4000 73FF	Power control PWR	
0x4000 6C00 - 0x4000 6FFF	Backup registers (BKP)	
0x4000 5C00 - 0x4000 6BFF	Reserved	
0x4000 5800 - 0x4000 5BFF	I2C2	1 1
0x4000 5400 - 0x4000 57FF	I2C1	1 1
0x4000 4C00 - 0x4000 53FF	Reserved	1 1
0x4000 4800 - 0x4000 4BFF	USART3	1 1
0x4000 4400 - 0x4000 47FF	USART2	1 1
0x4000 3C00 - 0x4000 3FFF	Reserved	APR1
0x4000 3800 - 0x4000 3BFF	SPI2	AFBI
0x4000 3400 - 0x4000 37FF	Reserved	1 1
0x4000 3000 - 0x4000 33FF	Independent watchdog (IWDG)	1 1
0x4000 2C00 - 0x4000 2FFF	Window watchdog (WWDG)]]
0x4000 2800 - 0x4000 2BFF	RTC	1 1
0x4000 1800 - 0x4000 27FF	Reserved	1 1
0x4000 1400 - 0x4000 17FF	TIM7 timer	1 1
0x4000 1000 - 0x4000 13FF	TIM6 timer	
0x4000 0C00 - 0x4000 0FFF	Reserved	
0x4000 0800 - 0x4000 0BFF	TIM4 timer	
0x4000 0400 - 0x4000 07FF	TIM3 timer	
0x4000 0000 - 0x4000 03FF	TIM2 timer	

Embedded SRAM

The STM32F100xx features up to 32 Kbytes of static SRAM. It can be accessed as bytes, half-words (16 bits) or full words (32 bits). The SRAM start address is 0x2000 0000

Bit banding

- The CortexTM-M3 memory map includes two bit-band regions. These regions map each word in an alias region of memory to a bit in a bit-band region of memory. Writing to a word in the alias region has the same effect as a read-modify-write operation on the targeted bit in the bit-band region.
- In the STM32F100xx, both peripheral registers and SRAM are mapped in a bit-band region. This allows single bit-band write and read operations to be performed.

Bit-Banding Mapping formula:

bit_word_addr = bit_band_base + (byte_offset x 32) + (bit_number × 4)

- bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit
- bit_band_base is the starting address of the alias region
- byte_offset is the number of the byte in the bit-band region that contains the targeted bit
- bit_number is the bit position (0-7) of the targeted bit

Bit Banding Example

Mapping bit 2 of the byte located at SRAM address 0x2000 0300 in the alias region is done as follows:

 $0x2200\ 6008 = 0x2200\ 0000 + (0x300^*32) + (2^*4).$

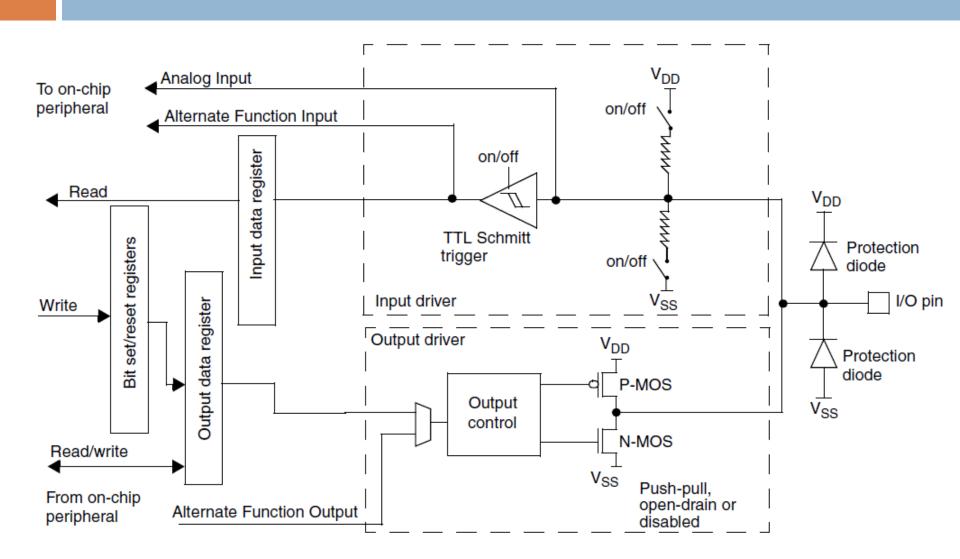
- Writing to address 0x2200 6008 has the same effect as a readmodify-write operation on bit 2 of the byte at SRAM address 0x2000 0300
- Reading address 0x2200 6008 returns the value (0x01 or 0x00) of bit 2 of the byte at SRAM address 0x2000 0300 (0x01: bit set; 0x00: bit cleared)

Embedded Flash memory organization

Block	Name	Base addresses	Size (bytes)
	Page 0	0x0800 0000 - 0x0800 03FF	1 Kbyte
	Page 1	0x0800 0400 - 0x0800 07FF	1 Kbyte
	Page 2	0x0800 0800 - 0x0800 0BFF	1 Kbyte
	Page 3	0x0800 0C00 - 0x0800 0FFF	1 Kbyte
Main memory	Page 4	0x0800 1000 - 0x0800 13FF	1 Kbyte
	-	-	
	Page 31	0x0800 7C00 - 0x0800 8000	1 Kbyte
Information block	System memory	0x1FFF F000 - 0x1FFF F7FF	2 Kbytes
Information block	Option Bytes	0x1FFF F800 - 0x1FFF F80F	16
	FLASH_ACR	0x4002 2000 - 0x4002 2003	4
	FLASH_KEYR	0x4002 2004 - 0x4002 2007	4
	FLASH_OPTKEYR	0x4002 2008 - 0x4002 200B	4
Flash memory	FLASH_SR	0x4002 200C - 0x4002 200F	4
interface	FLASH_CR	0x4002 2010 - 0x4002 2013	4
registers	FLASH_AR	0x4002 2014 - 0x4002 2017	4
	Reserved	0x4002 2018 - 0x4002 201B	4
	FLASH_OBR	0x4002 201C - 0x4002 201F	4
	FLASH_WRPR	0x4002 2020 - 0x4002 2023	4

Boot Configuration

- Values on the BOOT pins are latched on the 4th rising edge of SYSCLK after a reset
 - It is up to the application to set the BOOT1 and BOOT0 pins after reset to select the required boot mode.
 - BOOT pins also resampled when exiting the Standby mode and hence must be kept in the required boot mode in the Standby mode
 - After this startup delay has elapsed, the CPU fetches the top-of-stack value from address 0x0000 0000, then starts code execution from the boot memory starting from 0x0000 0004.


Boot mode s	election pins	Boot mode	Aliaging
BOOT1	BOOT0	Boot mode	Aliasing
х	0	Main Flash memory	Main Flash memory is selected as the boot space
0	1	System memory	System memory is selected as the boot space
1	1	Embedded SRAM	Embedded SRAM is selected as the boot space

General-Purpose I/Os (GPIOs)

Each of the general-purpose I/O ports has:

- Two 32-bit configuration registers (GPIOx_CRL, GPIOx_CRH)
- Two 32-bit data registers (GPIOx_IDR, GPIOx_ODR)
- 32-bit set/reset register (GPIOx_BSRR)
- 16-bit reset register (GPIOx_BRR)
- 32-bit locking register (GPIOx_LCKR)
- Each port bit of GPIOs can be individually configured by software in several modes:
 - Input floating
 - Input pull-up
 - Input-pull-down
 - Analog
 - Output open-drain
 - Output push-pull
 - Alternate function push-pull
 - Alternate function open-drain

Basic Structure of GPIO Bit

GPIO Bit Configuration Table

Configura	tion mode	CNF1	CNF0	MODE1	MODE0	PxODR register	
General purpose	Push-pull	0	0	0	1	0 or 1	
output	Open-drain	0	1	10 11 See Table on following page		0 or 1	
Alternate Function	Push-pull	1	0			don't care	
output	Open-drain		1			don't care	
	Analog	0	0			don't care	
Input	Input floating	0	1	00		don't care	
Input	Input pull-down	1	0		U	0	
	Input pull-up		0			1	

 Note: During and just after reset, the alternate functions are not active and the I/O ports are configured in Input Floating mode (CNFx[1:0]=01b, MODEx[1:0]=00b)

GPIO Configuration: Output MODE Bits

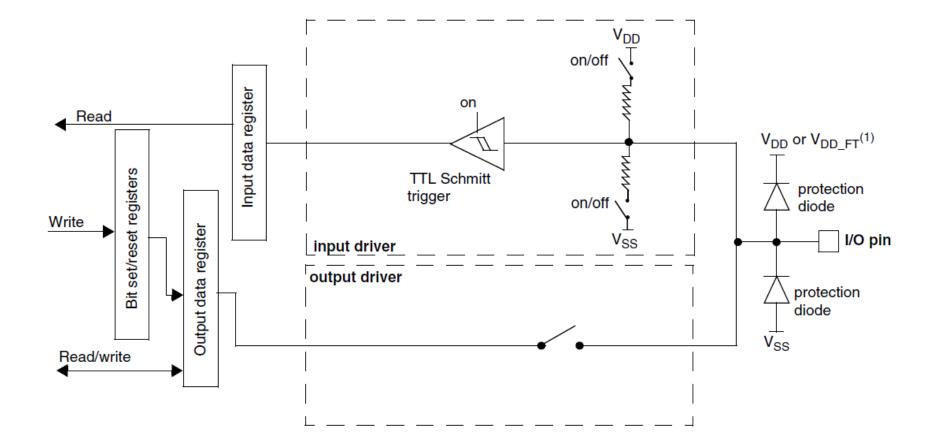
MODE[1:0]	Meaning
00	Reserved
01	Max. output speed 10 MHz
10	Max. output speed 2 MHz
11	Max. output speed 50 MHz

GPIO Operation

- During and just after reset, the alternate functions are not active and the I/O ports are configured in Input Floating mode (CNFx[1:0]=01b, MODEx[1:0]=00b)
- When configured as output, the value written to the Output Data register (GPIOx_ODR) is output on the I/O pin.
 - It is possible to use the output driver in Push-Pull mode or Open-Drain mode (only the N-MOS is activated when outputting 0).
- The Input Data register (GPIOx_IDR) captures the data present on the I/O pin at every APB2 clock cycle
- All GPIO pins have an internal weak pull-up and weak pulldown which can be activated or not when configured as input

GPIO Atomic Bit Set or Reset

Atomic Read/Modify access

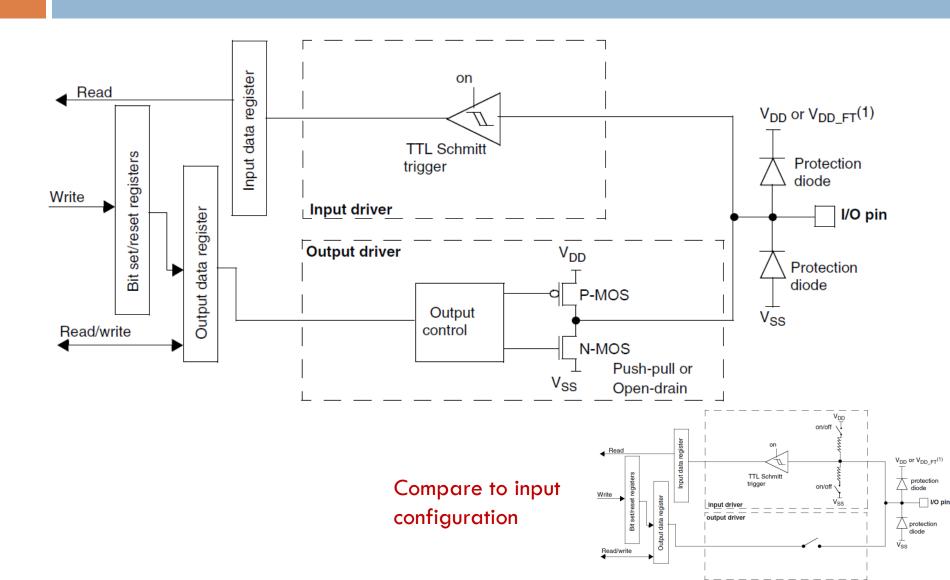

No interruption in the middle to cause errors

- Atomic operations ensure that the desired change is not interrupted resulting in partial set/reset of GPIOs
- There is no need for the software to disable interrupts when programming the GPIOx_ODR at bit level: it is possible to modify only one or several bits in a single atomic APB2 write access
- This is achieved by programming to '1' the Bit Set/Reset Register (GPIOx_BSRR, or for reset only GPIOx_BRR) to select the bits you want to modify.
 - Unselected bits will not be modified

Input Configuration

- When the I/O Port is programmed as Input:
 - The Output Buffer is disabled
 - The Schmitt Trigger Input is activated
 - The weak pull-up and pull-down resistors are activated or not depending on input configuration (pull-up, pull-down or floating)
 - The data present on the I/O pin is sampled into the Input Data Register every APB2 clock cycle
 - A read access to the Input Data Register obtains the I/O State

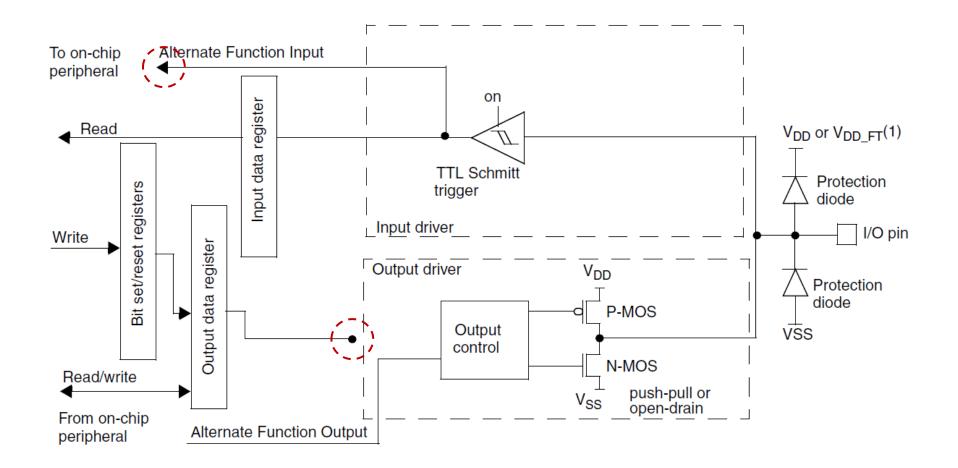
Input Configuration


Output Configuration

When the I/O Port is programmed as Output:

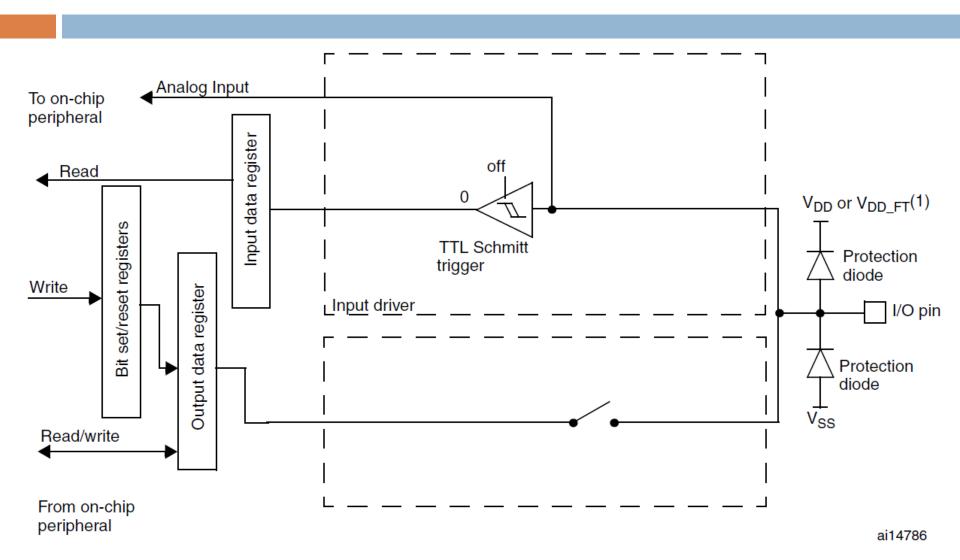
The Output Buffer is enabled:

- Open Drain Mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register leaves the port in Hi-Z. (the P-MOS is never activated)
- Push-Pull Mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register activates the P-MOS
- The Schmitt Trigger Input is activated.
- The weak pull-up and pull-down resistors are disabled.
- The data present on the I/O pin is sampled into the Input Data Register every APB2 clock cycle
- Read access to Input Data Register gets the I/O state in open drain mode
- Read access to Output Data register gets last written value in Push-Pull mode


Output Configuration

Alternate Function Configuration

- When the I/O Port is programmed as Alternate Function:
 - The Output Buffer is turned on in Open Drain or Push-Pull configuration
 - The Output Buffer is driven by the signal coming from the peripheral (alternate function out)
 - The Schmitt Trigger Input is activated
 - The weak pull-up and pull-down resistors are disabled
 - The data present on the I/O pin is sampled into the Input Data Register every APB2 clock cycle
 - A read access to the Input Data Register gets the I/O state in open drain mode
 - A read access to the Output Data register gets the last written value in Push-Pull mode


Alternate Function Configuration

Analog Configuration

- When the I/O Port is programmed as Analog configuration:
 - The Output Buffer is disabled.
 - The Schmitt Trigger Input is de-activated providing zero consumption for every analog value of the I/O pin. The output of the Schmitt Trigger is forced to a constant value (0).
 - The weak pull-up and pull-down resistors are disabled.
 - Read access to the Input Data Register gets the value "0".

Analog Configuration

GPIO Registers

7.2.1 Port configuration register low (GPIOx_CRL) (x=A..G)

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF	7[1:0]	MODE	7[1:0]	CNF	6[1:0]	MODE	E6[1:0]	CNF	CNF5[1:0]		5[1:0]	1:0] CNF4[1:0]		MODE4[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF	3[1:0]	MODE	E3[1:0]	CNF	2[1:0]	MODE	MODE2[1:0]		CNF1[1:0]		MODE1[1:0]		0[1:0]	MODE	E0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

7.2.2 Port configuration register high (GPIOx_CRH) (x=A..G)

Address offset: 0x04

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF1	5[1:0]	MODE	15[1:0]	CNF1	4[1:0]	MODE	14[1:0]	CNF1	3[1:0]	MODE	MODE13[1:0]		2[1:0]	MODE12[1:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF1	1[1:0]	MODE	11[1:0]	CNF1	0[1:0]	MODE	MODE10[1:0]		CNF9[1:0]		MODE9[1:0]		B[1:0]	MODE	8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Address offset: 0x00

GPIO Registers

7.2.3 Port input data register (GPIOx_IDR) (x=A..G)

Reset value: 0x0000 XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

7.2.4 Port output data register (GPIOx_ODR) (x=A..G)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

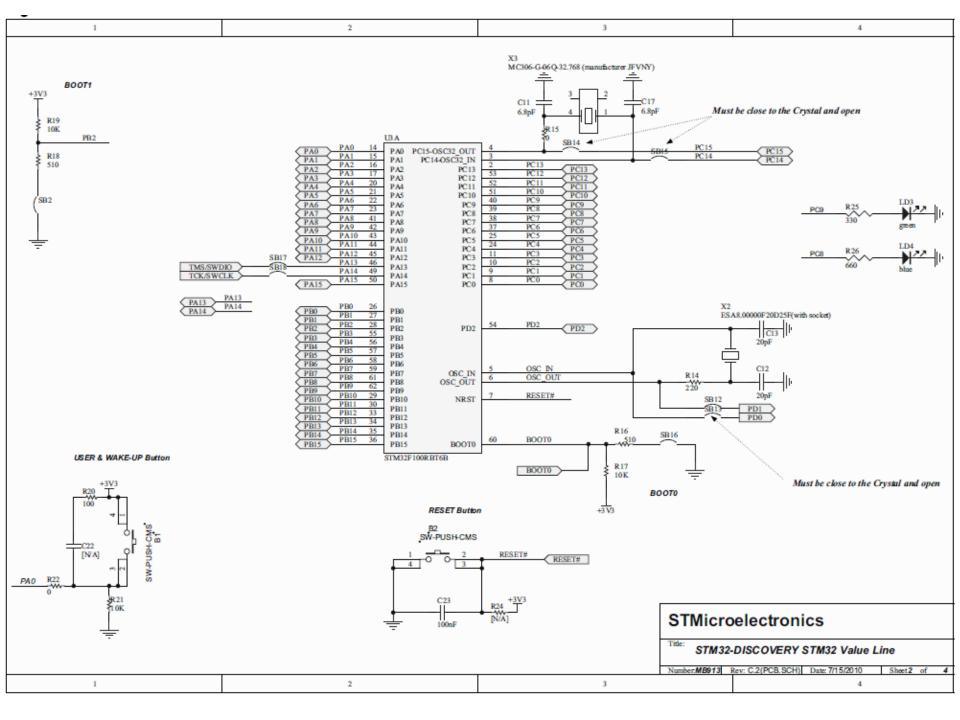
Address offset: 0x08h

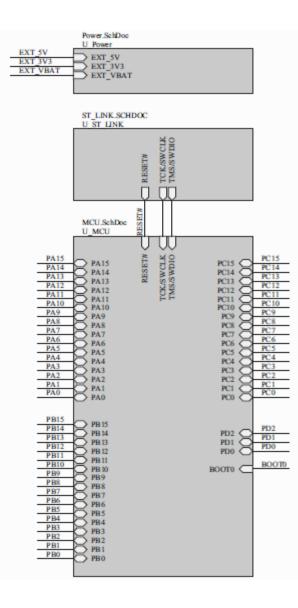
GPIO Registers

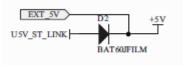
7.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G)

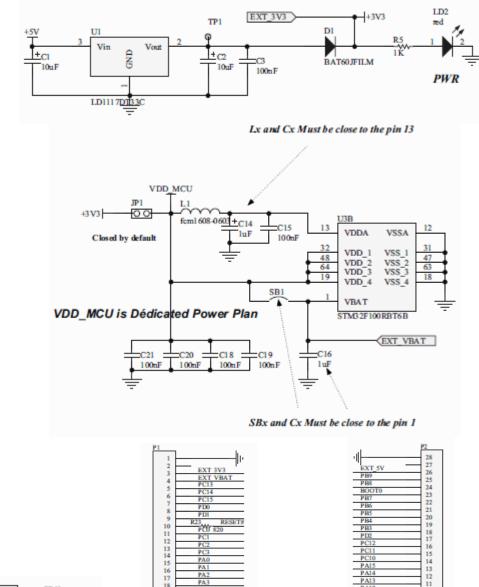
Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
							_	_	-	-			-		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BS15	14 BS14	13 BS13	12 BS12	11 BS11	10 BS10	9 BS9	8 BS8	7 BS7	6 BS6	5 BS5	4 BS4	3 BS3	2 BS2	1 BS1	0 BS0


7.2.6 Port bit reset register (GPIOx_BRR) (x=A..G)


Address offset: 0x14


Reset value: 0x0000 0000


31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	W	w	w	w	w	w	w	w	w	w

Address offset: 0x10

PA12

PA11 PA10 PA9

PA8 PC9

PC8

PC7 PC6

·II

10

9

8

- 5

Header 28

18

19

20

21

22

23

24

25

26

27

28

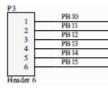
Header 28

PA4

PA5

PA6

PA7


PC4

PC5

PB0

PB1

PB2

□ ARM Project #1 (To start this week)