
STM32 MICROCONTROLLER:

GENERAL-PURPOSE TIMERS

(TIM2-TIM5)

Prof. Yasser Mostafa Kadah Lecture 5

TIM2-TIM5 Introduction

 The general-purpose timers consist of a 16-bit auto-reload

counter driven by a programmable prescaler.

 Measuring the pulse lengths of input signals (input capture)

 Generating output waveforms (output compare, PWM)

 Pulse lengths and waveform periods can be modulated from a

few microseconds to several milliseconds using the timer

prescaler and the RCC clock controller prescalers

 General-purpose (TIMx) timers are completely independent,

and do not share any resources

 They can still be synchronized together

TIM2-TIM5 Main Features

 16-bit up, down, up/down auto-reload counter

 16-bit programmable prescaler allowing dividing (also “on the fly”)
the counter clock frequency either by any factor between 1 and
65535.

 Up to 4 independent channels for:

 Input Capture

 Output Compare

 PWM generation (Edge and Center-aligned Mode)

 One-pulse mode output

 Synchronization circuit to control timer with external signals and to
interconnect several timers together

 Interrupt/DMA generation based on several events

TIM2-TIM5 Block Diagram

Time-Base Unit

 The main block of the programmable timer is a 16-bit counter

with its related auto-reload register

 The counter can count up, down or both up and down

 The counter clock can be divided by a prescaler.

 The counter, the auto-reload register and the prescaler

register can be written or read by software

 This is true even when the counter is running

 The time-base unit includes:

 Counter register (TIMx_CNT)

 Prescaler register (TIMx_PSC)

 Auto-reload register (TIMx_ARR)

Time-Base Unit

 Auto-reload register is preloaded

 Writing to or reading from the auto-reload register accesses the
preload register

 Contents of preload register are transferred into the shadow
register permanently or at each update event (UEV), depending on
the auto-reload preload enable bit (ARPE) in TIMx_CR1 register

 Update event is sent when counter reaches overflow or underflow
and if the UDIS bit equals 0 in TIMx_CR1 register

 Update event can also be generated by software

 Counter is clocked by prescaler output CK_CNT, which is enabled
only when counter enable bit (CEN) in TIMx_CR1 register is set

 actual counter enable signal CNT_EN is set 1 clock cycle after CEN

Prescaler

 Prescaler can divide the counter clock frequency by any factor

between 1 and 65536

 Based on a 16-bit counter controlled through a 16-bit register

(in the TIMx_PSC register)

 It can be changed on the fly as this control register is buffered

 New prescaler ratio is taken into account at the next update event

Prescaler

 Counter timing diagram with prescaler division change from 1 to 2

Prescaler

 Counter timing diagram with prescaler division change from 1 to 4

Counter Modes: Upcounting Mode

 Counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a
counter overflow event

 An Update event can be generated at each counter overflow
or by setting the UG bit in the TIMx_EGR register

 When an update event occurs, all the registers are updated
and the update flag (UIF bit in TIMx_SR register) is set
(depending on the URS bit):

 The buffer of the prescaler is reloaded with the preload value (content
of the TIMx_PSC register)

 The auto-reload shadow register is updated with the preload value
(TIMx_ARR)

Upcounting Mode Example

 TIMx_ARR=0x36 , internal clock divided by 1

Upcounting Mode Example

 TIMx_ARR=0x36 , internal clock divided by 2

Upcounting Mode Example

 TIMx_ARR=0x36 , internal clock divided by 4

Upcounting Mode Example

 TIMx_ARR=0x36 , Update event when ARPE=0 (TIMx_ARR not preloaded)

Upcounting Mode Example

 TIMx_ARR=0x36 , Update event when ARPE=1 (TIMx_ARR preloaded)

Counter Modes: Downcounting Mode

 Counter counts from the auto-reload value (content of the

 TIMx_ARR register) down to 0, then restarts from the auto-
reload value and generates a counter underflow event

 An Update event can be generate at each counter underflow
or by setting the UG bit in the TIMx_EGR register

 When an update event occurs, all the registers are updated
and the update flag (UIF bit in TIMx_SR register) is set
(depending on the URS bit):

 The buffer of the prescaler is reloaded with the preload value (content
of the TIMx_PSC register)

 The auto-reload shadow register is updated with the preload value
(TIMx_ARR)

Downcounting Mode Example

 TIMx_ARR=0x36 , internal clock divided by 1

Downcounting Mode Example

 TIMx_ARR=0x36 , internal clock divided by 2

Downcounting Mode Example

 TIMx_ARR=0x36 , internal clock divided by 4

Counter Modes: Center-Aligned Mode

(Up/Down Counting)

 Counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then
counts from the autoreload value down to 1 and generates a counter
underflow event. Then it restarts counting from 0

 Center-aligned mode is active when CMS bits in TIMx_CR1 register
are not equal to '00'. The Output compare interrupt flag of channels
configured in output is set when: the counter counts down (Center
aligned mode 1, CMS = "01"), the counter counts up (Center aligned
mode 2, CMS = "10") the counter counts up and down (Center
aligned mode 3, CMS = "11")

 In this mode, the direction bit (DIR from TIMx_CR1 register) cannot
be written

 Updated by hardware and gives the current direction of the counter

Up/Down Counting Example

 Internal clock divided by 1, TIMx_ARR=0x6

Up/Down Counting Example

 Internal clock divided by 2, TIMx_ARR=0x6

Up/Down Counting Example

 Counter timing diagram, Update event with ARPE=1 (counter underflow)

Up/Down Counting Example

 Counter timing diagram, Update event with ARPE=1 (counter overflow)

Clock Selection

 The counter clock can be provided by the following clock

sources:

 Internal clock (CK_INT) (Our focus in this part)

 External clock mode1: external input pin (TIx)

 External clock mode2: external trigger input (ETR)

 Internal trigger inputs (ITRx): using one timer as prescaler for another

timer, for example, you can configure Timer 1 to act as a prescaler for

Timer 2

Internal Clock Source (CK_INT)

 If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR

register), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the

TIMx_EGR register) are actual control bits and can be changed only by

software (except UG which remains cleared automatically)

 As soon as the CEN bit is written to 1, the prescaler is clocked by the

internal clock CK_INT.

TIMx Control Register 1 (TIMx_CR1)

TIMx Slave Mode Control Register

(TIMx_SMCR)

TIMx Event Generation Register

(TIMx_EGR)

TIMx Counter (TIMx_CNT)

TIMx Prescaler (TIMx_PSC)

TIMx Auto-Reload Register (TIMx_ARR)

TIMx DMA/Interrupt Enable Register

(TIMx_DIER)

TIMx Status Register (TIMx_SR)

Vector Table for STM32F100xx Devices

Timer Standard Driver

 Standard interface to all STM32 timers

 TIM_CounterModeConfig

 TIM_SetCounter

 TIM_SetAutoreload

 TIM_PrescalerConfig

 TIM_ITConfig

 TIM_Cmd

 TIM_ClearITPendingBit

Note: Modify only files in the “User” group of your project and never change the

standard peripheral drivers since they will affect other programs not just the one you

are working on at the time. Modification of such files will result in deducting points off

your project grade.

Assignments

 ARM Project #4

