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A method for magnetic resonance image denoising based on wavelet domain bilateral filtering (WDBF) is pro-
posed. The main problem in bilateral filtering based methods is that the choice of filtration parameters has a
trade-off between preserving edges and noise removal. In this work, a solution that would allow different com-
ponents of the image to be filtered using different parameters is presented. The bilateral filtering is applied in a
customized manner to different wavelet subbands and followed by subband mixing to form the final image. The
proposed method is implemented to filter magnetic resonance images and verified both qualitatively and quan-
titatively. Verification of the new method was carried out on synthetic as well as real data sets. Qualitative and
quantitative comparisons with present techniques indicate that the proposed method produces superior denois-
ing results and suggesting potential for clinical application to boost the signal-to-noise ratio of low magnetic field
scanners.
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1. INTRODUCTION
In magnetic resonance imaging (MRI), the signal-to-noise ratio
(SNR) depends mainly on the strength of the static magnetic
field of the system in addition to the protocol used in image
acquisition. For example, in lower field MRI systems such as
open MRI, the SNR is very low and it is a common practice to
repeat the image acquisition multiple times to do averaging in
order to improve the image quality. Also, in some protocols such
as with diffusion tensor imaging the SNR is usually very low
and again multiple scans and averaging are done. This amounts
to added discomfort to the patient in addition to lower efficiency
of MRI facilities. Besides improving visual quality of the images
required for correct diagnosis, image denoising is usually used
as a preprocessing step to improve the accuracy of subsequent
image processing algorithms such as registration or segmentation.
As a result, many denoising methods have been developed by
many groups such as wavelet shrinkage and anisotropic diffusion
based method.1�2 An important class of denoising methods is
based on the bilateral filter3 which computes a weighted sum
of the pixels in a local neighborhood based on both the spatial
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separation and the difference in intensity. The filtered image can
be calculated as follows,3

�X�= Ĭ
1
C

∑
y∈N�x�

e�−�y−x�2/2�2
d�e�−�I�y�−I�x��2/2�2

r �I�y� (1)

where �d and �r are parameters controlling the filter support
along both spatial and intensity variables, respectively, N�x� is a
spatial neighborhood of I�x�, and C is a normalization constant.

Although the bilateral filter was originally proposed as an inde-
pendent idea, recent papers have pointed out theoretical connec-
tions with several other techniques. For example, it was shown
to be related to the Jacobi algorithm,4 anisotropic diffusion,5�6

and nonlocal means filter with patch size of one pixel.6 Hence,
the bilateral filtering idea offers generality and can be tailored
to custom applications. The main problem is that the choice of
bilateral filtration parameters has a trade-off between preserving
edges and noise removal as with many methods. In this work, we
propose a solution that would allow different components of the
image to be filtered using different bilateral filtering parameters
and hence allow for better performance. The proposed method
is implemented to filter magnetic resonance images and verified
both qualitatively and quantitatively.
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2. NOISE PROPERTIES OF MR DATA
The raw MRI data consists of complex valued samples with real
and imaginary parts that can each be modeled as the summa-
tion of deterministic and Gaussian random noise components.7

After reconstruction by inverse Fourier transformation, the real
and imaginary data are still corrupted with Gaussian white noise
because of the orthogonality of the Fourier transform. However,
it is common practice to transform the complex valued images
into magnitude and phase images.7–8 The magnitude image is
formed by calculating the magnitude, pixel by pixel, from the
real and the imaginary images. This is a nonlinear mapping and
therefore the noise distribution is no longer Gaussian and the
noise within each pixel belongs to the Rician distribution.9–10 This
distribution form depends in a complex manner on the value of
the means of the real and imaginary part distributions, which are
unknown (in fact their values represent the solution for the denois-
ing problem). The Rician distribution is far from being Gaussian
for small SNR (A/� ≤ 1). For ratios as small as A/� = 3, how-
ever, it starts to approximate the Gaussian distribution. A special
case of the Rician distribution is obtained in image regions where
only noise is present, i.e., A = 0, which reduces to the known
the Rayleigh distribution. Since practical acquisitions of tissue
signals involve A/� that is greater than 3, it is possible to use
the Gaussian white noise as a good model for the type of noise
encountered in the MRI magnitude images.

3. METHODOLOGY
3.1. Wavelet Domain Bilateral Filter
Image features usually have different spatial details spanning par-
ticular spatial frequency bands, whereas noise is usually present
everywhere in a very much uniform manner. Therefore, multires-
olution analysis can be useful since it is possible to differentiate
noise from actual image information in some resolution levels
more than others.11 We observe that this can be used to tailor
the filtering parameters in different resolution levels. Therefore,
we propose using the bilateral filter in a multiresolution manner
summarized as follows:
(a) Processing the original image I using two optimal sets of
bilateral filtering parameters: one is optimized for noise com-
ponents removal while the other is optimized for image feature
preservation. This yields two images Io (low noise and poor fea-
ture preservation) and Iu (medium noise and excellent feature
preservation) similar to Ref. [11].
(b) Decomposing both Io and Iu into four subbands using
Daubachies-8 filters (low- and high-frequency subbands).
(c) Mixing the high frequency subbands of Io and the low
frequency subbands of Iu to produce the filtered wavelet
transformation.
(d) Reconstruction of the final image is done using inverse
wavelet transformation from the combination of the selected
subbands.

A block diagram of the proposed method is presented in
Figure 1.

3.1.1. Wavelet Decomposition
Wavelet decomposition is performed on both Io and Iu images
using a particular wavelet family of choice (here, Daubachies-8
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Fig. 1. A block diagram of the proposed method. First, the noisy image I is
denoised with two sets of filtering parameters Iu and Io . Then, Iu and Io are
decomposed into low- and high-frequency subbands by wavelet transform
(WT). The lowest frequency of Iu are mixed with the three highest-frequency
subbands of Io (i.e., HL, LH, and HH). Finally, the resultant image is obtained
by inverse WT.

family was used). For each image, four subbands are obtained:
LL, LH, HL, and HH. In the four wavelet subbands obtained
with Io, all frequencies of noise were removed but tend to blur
some features in the original image. In the four wavelet subbands
obtained with Iu, they generally preserve image features but at
the expense of poor noise removal.

3.1.2. Investigation of Optimal Parameter Selection
The behavior of the bilateral filter3 relies on the selection of �d

and �r in Eq. (1) that control the extent of spatial and inten-
sity domain filtration. The issue of choosing optimal parameter
values is not been resolved from a theoretical perspective. Also,
empirical studies available in the literature focus on different
image types (cf. Ref. [11]). Hence, it is necessary to have our
own empirical study of parameter selection to obtain the optimal
parameters to be used in this study.

3.2. Evaluation Criteria of Filtering Results
As defined in Ref. [3], let u be the original image and Dh a
denoising operator depending on h. Then the method noise of u
is defined as the image difference,

�Dh�u�= u−Dh�u� (2)

This method noise should be as similar to Gaussian white
noise as possible if the denoising operator preserves the image
features.
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Four criteria can and will be taken into account in the com-
parison of denoising methods:
(a) A display of typical artifacts in denoised images.
(b) A formal computation of the method noise on smooth
images, evaluating how small it is in accordance with image local
smoothness.
(c) A comparative display of the method noise of each method
on MR images with five different levels of noise.
(d) A classical comparison based on noise simulation: it con-
sists of taking a good quality image, adding Gaussian noise with
known � , and then computing the best image recovered from the
noisy one by each method.

3.3. Image Quality Evaluation Metrics
To quantify the performance, the noise reduction method, various
measures may be used. The commonly preferred measures are
mean squared error (MSE), and root mean squared error (RMSE),
signal to noise ratio (SNR), peak signal to noise ratio (PSNR),12

which can be evaluated as a function of the original, gi�j , and
the denoised, fi�j , the metrics used in our study are defined as
follows:
(a) The root-mean-square error (RMSE), which is the square
root of the squared error averaged over an M ×N window:13

RMSE =
√√√√ 1

MN

M∑
i=1

N∑
j=1

�gi� j − fi� j �
2 (3)

(b) The signal-to-noise ratio (SNR) is given by:14

SNR= 10 log10

∑M
i=1

∑N
j=1�g

2
i� j + f 2

i� j �∑M
i=1

∑n
j=1�gi� j − fi� j �

2
(4)

Fig. 2. From left to right: T 1-weighted noise-free MR image, the corresponding noisy image (� = 5%) and applied the method noise (difference between both
images).

(c) The peak SNR (PSNR) is computed using:14

PSNR=−10 log10
MSN
g2max

(5)

where g2max is the maximum intensity in the unfiltered image.
The PSNR is higher for a better-transformed image and lower
for a poorly transformed image. It measures image fidelity,
which is how closely the denoised image resembles the original
image.

4. EXPERIMENTAL RESULTS AND
DISCUSSION

To experimentally verify the new method, more than twenty real
brain MR images of different orientations were used from dif-
ferent sources (e.g. Refs. [17, 18], in addition to data collected
from Biomedical Imaging Technology Center). In our quanti-
tative experiments, images collected using averaging were cor-
rupted with Gaussian white noise of five different levels. This
provides accurate simulation since the Rician noise in brain tis-
sues can be generally well approximated by Gaussian white
noise. Figure 2 shows two such images before and after corrup-
tion with noise and their method noise. All experiments were
performed using MATLAB 7.0 (Mathworks Inc.) on a Pentium
Core-2 Duo Laptop with 2 GB of RAM.

To understand the relationship between �d and �r , the fol-
lowing experiments were done. Gaussian white noise was added
to a reference image and the bilateral filter was applied for dif-
ferent values of the parameters �d and �r . Figure 3 illustrates
the results for different combinations of parameter values. As the
range parameter �r increases, the bilateral filter is nearly constant
over the intensity interval of the image. Increasing the spatial
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Fig. 3. The bilateral filter range and spatial parameters provide more versatile control than other methods. As soon as either of the bilateral filter weights
reaches values near zero, no smoothing occurs. As a consequence, increasing the spatial sigma will not blur an edge as long as the range sigma is smaller
than the edge amplitude.
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Fig. 4. Comparison of the different denoising on two different classes of images.
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(a) LL  subband

(c) LH subband

(b) HL subband

(d) HH subband

Fig. 5. Four subbands obtained by wavelet decomposition adapted to the
noise components removal (with �d = 8 and �r = 0�2).

parameter �d smooth larger features. In practice, adapting the
range parameter �r to estimates of the local noise level yields
better results. An important characteristic of bilateral filtering is
that the weights are multiplied and so, if either of the weights is
close to zero, no smoothing occurs.

The accuracy of the proposed method and compared filters over
usual noise levels (3%, 5%, 7%, 9%, and 12% of the maximum
T 1-weighted image intensity) can be seen in Figure 4. As pre-
sented in Figure 4 our proposed WDBF produced the best SNR
value whatever the noise level is. The SNR values between the
noisy image and original image is called “No processing” and is
used as reference. Figures 5 and 6 show the wavelet subbands LL,
HL, LH and HH obtained by wavelet decomposition after denois-
ing the original image I using two sets of filtering parameters:
one optimized for noise removal (i.e., �d = 8 and �r = 0�2) and

(a) LL subband (b) HL subband

(c) LH subband (d) HH subband

Fig. 6. Four subbands obtained by wavelet decomposition adapted to the
image features preservation (with �d = 2 and �r = 0�05).

the other optimized for image feature preservation (i.e., �d = 2
and �r = 0�05) respectively. Part (a) in both figures shows the
low frequency subband LL, whereas parts (b), (c) and (d) present
the high frequency subbands of horizontal, vertical and diagonal
directions, respectively. In Figure 5, one can see that most of
the texture concentrates on the three high frequency subbands.
In Figure 6(c), the noise can be visualized but the texture is over-
whelmed by noise.

Qualitative and quantitative comparisons were done in this
study to evaluate the effectiveness of the new method. The
performance of the new method was compared against several
well-established (and widely used) filtering algorithms; namely
the anisotropic diffusion filter (ADF),15 Median, total varia-
tion (TV),16 nonlocal mean (NLM), wavelet thresholding, and
bilateral filtering. The results of this comparison are shown in
Figures 7 and 8 for two sample transverse and sagittal slices of
the head. The visual comparison shows the advantage of the pro-
posed filter to increase the apparent SNR of the MR images with-
out noticeably affecting image structures. The results presented
in these figures were obtained for a 5% of Gaussian noise, but
this screening was performed for the five levels of noise with
similar results.

4.1. Method Noise Comparison
As described above, the method noise is used to measure the geo-
metrical features or details that are not preserved by the denois-
ing process and which are eliminated. From Figures 9 and 10,
one can observe that the method noise of the anisotropic filter
shows highlighting of the edges and high frequency features, but
effective within texture. Also, the method noise of the total vari-
ation indicates modification of most structures and details of the
image and that of the nonlocal mean method shows reduction in
the loss of details, and removed noise. The method noise of the
wavelet Thresholding indicates poorer performance in removing
noise and also shows artifacts in the denoised image. The results
of bilateral Filtering shows smoothed images while preserving
edges. The median filtering shows unnatural edge enhancement
and small edges blurring. On the other hand, the method noise of
the proposed wavelet domain bilateral filtering was clearly clean
from image edges and looks more like Gaussian white noise than
any of the other methods.

To quantitatively verify the quality of the filters, Tables I and II
show the quantitative performance measures including SNR,
Peak SNR, MSE, and RMSE for the different types of noise
reduction filters. These results were obtained using Monte Carlo
simulations of adding Gaussian random noise to real MRI images
obtained with averaging using different noise levels. A total of 10
simulations for 10 images were used. Best values were obtained
for the proposed method, nonlocal mean, median, and total vari-
ation, with lower MSE, and RMSE, and higher SNR, and PSNR.
The proposed algorithm was quantitatively compared with the
other six referred methods showing a lower MSE and RMSE and
higher SNR and PSNR in almost all the cases as demonstrated
in Figures 11 and 12.

It should be noted that the proposed method is a modified
denoising method based on the method by Tomasi et al.3 where it
is enhanced using an automatic tuning of the filtering parameter,
and a mixing of wavelet subbands to overcome the main limi-
tation of the classical bilateral filter. It also bears resemblance
to the multiresolution bilateral filter proposed in Ref. [14] for
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(a)  (b) (c) (d)

(e)  (f) (g) (h)

Fig. 7. Qualitative comparison of the filtering results obtained with the different compared methods. The original image given in (a) obtained via the compared
methods given in (b)–(k). (a) Original image, (b) ADF, (c) wavelet, (d) median, (e) bilateral filters, (f) NL-mean, (g) TV, and (h) proposed method.

(a) (b)  (c) (d)

(e) (f)  (g) (h)

Fig. 8. Qualitative comparison of the filtering results obtained with the different compared methods. The original image given in (a) obtained via the compared
methods given in (b)–(k). (a) Original image, (b) ADF, (c) wavelet, (d) median, (e) bilateral filter, (f) NL-mean, (g) TV, and (h) proposed method.

different image type with a different strategy in using double
bilateral filtering and subband mixing similar to what was pro-
posed in Ref. [19] for a different processing chain.

The issue of selecting which wavelet family to use in different
problems is not resolved in image processing in general. Here,
our experiments did not show fundamental differences between
different wavelet families to suggest that one of them is better.

So, the wavelet family used here can be considered as a spec-
ification to “one” working version of the method so that there
are no missing steps for complete implementation and also for
the reader to be able to reproduce the results to the ones here
without confusion. We encourage further research on the prob-
lem of optimizing the selection of wavelets or even the design of
custom ones for different problems.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Qualitative comparison of the method noise results obtained with the different filters for a transverse section of the head: (a) proposed method,
(b) ADF, (c) wavelet, (d) median, (e) bilateral filter, (f) NL-mean, (g) TV, and (h) Gaussian noise (reference).

(a) (b)

(e)

(d)(c)

(h)(g)(f)

Fig. 10. Qualitative comparison of the method noise results obtained with the different filters in a sagittal head section: (a) proposed method, (b) ADF,
(c) wavelet, (d) median, (e) bilateral filter, (f) NL-mean, (g) TV, and (h) Gaussian noise (reference).

Table I. Image quality evaluation metrics at statistical measurements;
for different filter types.

Feature set

Filter types SNR PSNR MSE RMSE

Median 23.8157 33.7101 8.53 2.92
Anisotropic 22.6730 30.9510 15.37 3.92
Wavelet 21.4370 27.3061 16.81 4.10
TV 24.7767 30.6353 14.38 3.76
Bilateral 23.2921 28.0482 11.71 3.42
NLM 25.5030 35.3928 5.76 2.40
WDBF 26.7125 36.5736 4.41 2.10

Table II. Image quality evaluation metrics at statistical measurements;
for different filter types.

Feature set

Filter types SNR PSNR MSE RMSE

Median 24.91 34.01 7.95 2.82
Anisotropic 21.43 30.04 16.97 4.12
Wavelet 19.76 26.83 17.89 4.23
TV 23.83 32.42 15.13 3.89
Bilateral 22.77 27.84 10.96 3.31
NLM 25.53 35.34 5.86 2.42
WDBF 26.60 35.96 5.38 2.32
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Fig. 11. Comparison of the image quality evaluation metrics for different
filters (1: ADF, 2: wavelet filtering, 3: median, 4: bilateral filter, 5: NL-mean,
6: TV, and 7: proposed method). The proposed method outperforms the oth-
ers in almost all the cases (in terms of MSE, RMSE, SNR and PSNR).
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Fig. 12. Comparison of the image quality evaluation metrics for different
filters (1: ADF, 2: wavelet filtering, 3: median, 4: bilateral filter, 5: NL-mean,
6: TV, and 7: proposed method). The proposed method outperforms the oth-
ers in almost all the cases (in terms of MSE, RMSE, SNR and PSNR).

5. CONCLUSIONS
A denoising method for magnetic resonance images that com-
bines bilateral filtering, wavelet decomposition and subband
mixing is presented. The input image is decomposed into
subbands using wavelet decomposition and different bilateral
filtration parameters are used for each subband. The final image
is formed by combining such subbands using subbands mixing.
The performance of the new method is compared qualitatively
and quantitatively to present techniques and shows promising
results. The results suggest potential for practical application of
the new method to boost SNR and hence reduce scan time in low
magnetic field scanners.
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