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Detection of pulmonary nodules in chest computed tomography scans play an important role in the early diagno-
sis of lung cancer. A simple yet effective computer-aided detection system is developed to distinguish pulmonary
nodules in chest CT scans. The proposed system includes feature extraction, normalization, selection and clas-
sification steps. One hundred forty-nine gray level statistical features are extracted from selected regions of
interest. A min–max normalization method is used followed by sequential forward feature selection technique
with logistic regression model used as criterion function that selected an optimal set of five features for classifi-
cation. The classification step was done using nearest neighbor and support vector machine (SVM) classifiers
with separate training and testing sets. Several measures to evaluate the system performance were used includ-
ing the area under ROC curve (AUC), sensitivity, specificity, precision, accuracy, F1 score and Cohen-k factor.
Excellent performance with high sensitivity and specificity is reported using data from two reference datasets
as compared to previous work.
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1. INTRODUCTION
Lung cancer remains the leading cause of cancer-related deaths
in the world.1 Early diagnosis can improve the effectiveness of
treatment hence enhance the chances of survival.2 The detection
of pulmonary nodules in chest CT scans helps in early diagnosis
of lung cancer and in risk assessment of malignancy. However,
pulmonary nodule detection is time-consuming and oftentimes
some nodules are missed due to the large number of axial thin-
slices per scan (which usually range between 200–400 slices),
and the small size of some pulmonary nodules.3 Therefore, com-
puter aided detection (CADe) has been being developed to aid
the radiologist and serve as a second reviewer. The purpose of
CADs is to distinguish pulmonary nodules automatically from
other normal lung structures in high-resolution CT chest scans.
This helps reduce the chances of missing nodules, improve per-
formance, reduce intra- and inter-observer variability of radiolo-
gists, and quantitatively estimate the degree of malignancy risk.

Many studies were conducted to develop CADe systems.
Ge et al. extracted forty-four features from volumes of inter-
est, including geometric features, histogram-based features, gra-
dient field and ellipsoid features.4 Wilks’ lambda stepwise feature
selection feature selection and linear discriminant analysis (LDA)
classification were used for nodules classification. Golosio et al.
computed forty-three geometric features from selected region of
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interests (ROIs).5 Iso-surface triangulation method was used to
select regions of interest. Feed forward neural network with one
hidden layer and logistic activation function was used for nod-
ules classification. An Algorithm for automatic pulmonary nod-
ule detection in chest CT was also developed by Murphy et al.6

One hundred and thirty-five features calculated over segmented
voxels and two KNN classifiers applied. Sequential-forward-
floating-selection (SFFS) with leave-one-out cross-validation was
used for feature selection. Messay et al. developed CADe sys-
tem with a total of two hundreds forty-five features extracted
from segmented nodule.7 They use three feature types: geomet-
ric, intensity and gradient features. A sequential forward selec-
tion used to select the optimal subset for classification. Fisher
linear discriminant (FLD) and quadratic classifiers were used.
Another CADe system was developed by Tan et al.,8 where nod-
ule and vessel enhancement filters were used for nodule seg-
mentation and divergence features were computed to locate the
centers of the nodule clusters. Real nodules were differenti-
ated from false positive ones using forty-five features (including
invariant features calculated in a 3-D gauge coordinates, shape
and regional descriptors). Feature selective classifier based on
a genetic algorithm and artificial neural networks were devel-
oped for classification. Cao et al. developed another system with
forty-three multiple type features based on intensity, shape and
gradient to study the class imbalance issue, which occurs dur-
ing the training of support vector machine (SVM) classifier.9
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They employed particle swarm optimization method (PSO) to
improve the performance of classification by simultaneously opti-
mizing the best pair of misclassification cost parameter, feature
subset and intrinsic parameters in the objective function of cost
sensitive SVM. Choi et al. developed an automated method to
detect pulmonary nodules based on three dimensional shape-
based feature descriptors, the surface saliency and surface normal
vector are shape-based feature descriptors, which were obtained
through eigenvalue decomposition of the Hessian matrix. Multi-
scale dot enhancement filters were used to detect nodules in the
segmented lung volume. Three-dimensional shape-based feature
descriptors were then extracted from the detected nodules and
an iterative wall elimination method was used to refine the fea-
ture descriptors. SVM classifier was used to classify nodules
and non-nodules. Tater et al. also developed a new method for
pulmonary nodule detection in CT scans using decision trees
based on twelve geometric features. Their system used random
forest (RF), logistic model trees (LMT) and J48 decision tree
classifiers.

Even though the previous studies achieved excellent results
using their respective methods, there is always a room for fur-
ther enhancement of CADe performance that can be targeted.
In this study, we develop a comprehensive CADe system for
classification lung tissues in chest CT scans by using different
combinations of 2-D features based on statistical texture features.
Min–max normalization method (Rescaling) utilized. Sequential
forward selection (SFS) with logistic regression model as eval-
uation function was used to select the significant feature set.
Finally, k-nearest neighbor (KNN) and support vector machine
(SVM) classifiers used for classification. The performance of
the developed system was verified on LIDC reference database12

with quantitative measures such as the area under curve (AUC)
of the receiver operating characteristics curves (ROC), sensitiv-
ity, specificity, precision, accuracy, F1 score and geometric mean
are utilized to assess the performance. Moreover, the agreement
of the performance of the new system with the ground truth
classification was assessed using the cohen-k factor. This paper
presents the details of the system design as well as the results of
its implementation.

2. METHODOLOGY
The components of the CADe system include feature extraction,
feature normalization, feature selection and classification (nod-
ule or non-nodule). A block diagram of the system is shown
in Figure 1. Each stage will explained briefly in the following
subsections.

2.1. Dataset
Several databases for research in lung cancer have been devel-
oped over the last decade. Some databases have been made pub-
licly available, whereas others have remained privately owned
by the research groups. The most commonly used databases are
from the Cancer Imaging Archive.12 The set that used in this
work is the Lung Image Database Consortium (LIDC-IDRI). The
LIDC-IDRI data used here is comprised of 112 CT scan images
containing 112 nodules with diameter greater than or equal to
5 mm in effective size. The size of all images is 512×512 pixels
in DICOM format. LIDC-IDRI database has its own annotation
table.

Fig. 1. Block diagram of the proposed system.

2.2. Feature Extraction
Feature extraction in pattern recognition is based on find-
ing mathematical methods for reducing dimensionality of pat-
tern representation.13 Extraction procedure consists of three
steps:
(1) Region of interest (ROI) selection where selection of nodule
and non-nodule ROIs in LIDC-IDRI dataset is done manually
according to the interpretation of the database and its annotation
table.
(2) Extraction of the selected ROIs in 30×30 windows.
(3) Calculation of 149 features from the selected ROIs.
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We chose CT-scans including nodules with different sizes and
types to measure the sensitivity of the classifiers to most practi-
cal types of lung nodules. Total number of ROIs of LIDC-IDRI
dataset is 224 (including 112 non-nodules and 112 nodules).
Nodule diameters were greater than or equal to 5 mm in effective
size and different types are selected including well-circumscribed
nodule, juxta-pleural nodule, juxta-vascular nodule and nod-
ule with pleural tail. Figure 2 shows samples of nodule and
non-nodule patterns respectively. Features extracted include one
hundred forty-nine gray level statistics features summarized as
follows:
(1) First order statistical or histogram-based features, which
depend only on pixel values, with seventeen features calcu-
lated from extracted ROIs (mean, standard deviation, third-order
moment, smoothness, skewness, kurtosis, harmonic mean and
variance, percentiles).10�14

(2) Gray-level co-occurrence matrix (GLCM) high order statisti-
cal features, which depend on pixel values and their spatial inter-
relationships. The GLCM matrix is constructed in four direction
�= 0�, 45�, 90� and 135� with distance d= 1 pixel. Based on the
computed GLCM, 88 statistical features were extracted including
auto-correlation, contrast, correlation, cluster prominence, clus-
ter shade, dissimilarity, energy, entropy, homogeneity, maximum
probability, sum of squares variance, sum average, sum variance,
sum entropy, difference variance, difference entropy, information
measure of correlation, information of correlation 1, information
of correlation 2, inversed difference moment normalized, and
inversed difference normalized.15–18

(3) Gray-level-run-length matrix (GLRLM) high order statis-
tical features where this matrix is constructed then its prop-
erties are calculated as features. Features are calculated in
four direction (0�, 45�, 90� and 135�) using zigzag method.
A total of 44 features were computed including short run empha-
sis (SRE), long run emphasis (LRE), gray-level non unifor-
mity (GLN), run-length non-uniformity (RLN), run percentage
(RP), low gray-level run emphasis (LGRE), high gray-level run
emphasis (HGRE), short run low gray-level emphasis (SRLGE),
short run high gray-level emphasis (SRHGE), long run low
gray-level emphasis (LRLGE), and long run high gray-level
emphasis.19

The details of all features including their mathematical definitions
are presented in Appendix I.

Fig. 2. Illustration of sample images of nodule (left) and non-nodule (right) patterns.

2.3. Normalization
Normalization of feature values is necessary preprocessing step
before training classifiers. The main advantage of normaliza-
tion (scaling) is to avoid dominating of the features with greater
numeric ranges.20 Another advantage is to avoid numerical diffi-
culties during the calculation. Recommend linearly scaling each
feature to the range [−1�+1] or �0�1�.18 The simplest normaliza-
tion method used is the min–max rescaling method. Equation (1)
describes the min–max rescaling method in which each value in
the feature vector subtracted from minimum value and divided by
the difference between minimum and maximum values to make
all values in range �0�1�.

x′ = �x−min�x��/�max�x�−min�x�� (1)

where x, an original value of a feature, x′ is the normalized value.
So each value in the features vector will be within range of �0�1�.

2.4. Feature Selection
Feature selection is an important part of any classification
scheme. Only a few features may be relevant and hence useful
while many may contain irrelevant or redundant information that
may result in degradation of classification performance. The suc-
cess of a classification scheme largely depends on the selected
features and the extent of their role in the model.21 In this study,
we utilize forward stepwise feature selection (SFS) algorithm to
select the best features for classification by using logistic regres-
sion model as evaluation function (feature selection criterion).
SFS is a wrapper approach that uses the performance of a clas-
sifier as its optimization criterion. It adds features sequentially
from a candidate subset while evaluating the criterion, and seeks
to minimize over all possible feature subsets. Common criteria
used for this purpose include mean squared error (for regres-
sion models) and misclassification rate (for classification mod-
els). In logistic regression method, a logistic model is fitted to
the data and deviation of this fit (mean square error) is com-
puted. Such deviation of the model changes by adding of any
other extra feature. The minimum value of this deviation indi-
cates significant subset features and so it will be selected for
inclusion. The algorithm continues adding features so long as the
change in deviation is more than an amount that has a chi-square
distribution with one degree of freedom.21
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2.5. Feature Classification
To differentiate between nodule and non-nodule regions, a clas-
sifier is trained to discriminate between the classes in the fea-
ture space based only on the significant selected features. In this
work, we used k-nearest neighbor (KNN) and the support vec-
tor machine (SVM) classifiers. Both can be used to perform a
hard classification, where the output is a class label 0 label for
non-nodule and 1 label for nodule. The KNN classifier is one
of the simplest and widely used non-parametric machine learn-
ing algorithms. An object is classified based on computing the
Euclidean distances from its k neighbors. The unknown test case
is assigned to the closest cluster based on a majority vote among
its labelled k neighbors. In this work, to minimize the errors due
to the dimensionality of the feature space and sparsity of sam-
ples within that space, we use nearest neighbor classifier (K = 1).
The SVM classifier is a supervised learning model. It has been
applied to classification and regression problems with excep-
tionally good performance on a range of binary classification
tasks. In SVM the original input space is mapped into a high
dimensional dot product space called feature space. In this space,
the optimal classification hyper-plane is determined to maximize
the generalization ability of the classifier.22 Table I presents the
set of parameters associated with the used classifiers. Half-and-
Half method used for training and testing of KNN and SVM
classifiers.

2.6. Performance Evaluation
Given that we are considering a detection problem, we evalu-
ate the performance of classifiers by considering the confusion
matrix for a dichotomous problem where the testing results can
be divided into four categories as shown in Table II with columns
referring to the true (expected) values and rows referring to the
predicted values. P stands for positive cases and N stands for
negative cases. True positives (TP) are positive cases correctly
classified as positive, true negatives (TN) are negative cases cor-
rectly classified as negative; false positives (FP) are negative
cases incorrectly classified as positive and false negatives (FN)
are positive cases incorrectly classified as negative. Using these
distinct notions of correct and incorrect classification, we can uti-
lize different measures to quantitatively evaluate the performance
of a classifier as follows:23

• The Sensitivity measures the ability to identify the presence of
the disease, expresses the ratio between the correctly predicted
positive cases and the total number of the positive cases:

Sensitivity = TP/�TP +F N � (2)

• The Specificity measures the ability to identify the absence
of the disease, expresses the ratio between the correctly pre-
dicted Negative cases and the total number of the negative
cases:

Specificity = TN/�TN +FP� (3)

Table I. Parameters of the used classifiers.

Classifier Parameters

KNN K = 1, Euclidean distance metric, and nearest neighbor rule
SVM Linear kernel function with sequential minimal optimization

method (SMO)

Table II. Confusion matrix for a dichotomous problem.

Expected

P N

Predicted
P TP FP
N FN TN

• The Precision measures the reliability of the positive result,
expresses the ratio between the correctly predicted positive cases
and the total number of cases predicted as positive:

Precision = TP/�TP +FP� (4)

• The complementary of the Specificity (1-Specificity) is the
ratio between the cases incorrectly predicted as positive and the
total number of negative cases, i.e., it expresses the fraction of
the incorrectly classified negative cases with respect to the total
number of negative cases:

1-Specificity= 1−TN/�TN +FP�= FP/�TN +FP� (5)

• The Accuracy is the ratio between the number of correctly
classified cases and the total number of cases given as:

Accuracy = �TP +TN �/�TP +TN +FP +F N � (6)

• The F1 score (FMeasure) is a measure of a test’s performance
when a single value is wanted. It considers both the Precision
and the Sensitivity of the test to compute the score. The tradi-
tional or balanced F-score is the harmonic mean of Precision and
Sensitivity:

FMeasure = �2×Precision×Sensitivity�

/�Precision+Sensitivity� (7)

• The Cohen-k factor which is a measure of the reproducibil-
ity, the methods for estimating intra- and inter variability for
categorical variables. The Cohen-k is the ratio between the true
agreement (P0−Pa) and the maximum achievable true agreement
(1−Pa). It is the fraction of the observed agreement on its max-
imum value not due to chance.

k = �P0−Pa�/�1−Pa� (8)

where

P0 = TP +TN

TP +TN +FP +F N
(9)

and

Pa =
�TP +FP��TP +F N �+ �FP +TN ��F N +TN �

�TP +TN +FP +F N �2
(10)

The Cohen-k measures concordances and discordances in a
dichotomous judgment between two observers, which are in our
case the database annotation tables and the output result of the
classifiers. If the Cohen-k factor values near one, it indicates near
perfect agreement between observers. If it is near zero, it indicate
the total absence of agreement between the observers.23
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Table III. Confusion matrix entries obtained for both classifiers.

Entry KNN SVM

TP 56 56
TN 53 55
FP 3 1
FN 0 0

• The receiver operator characteristic (ROC) analysis graph is
used where the area under the curve (AUC) measure is com-
puted. The ROC comprises two performance evaluation mea-
sures; sensitivity and specificity where it represents a plot of the
true positive rate (sensitivity) against the false positive rate (1-
specificity) for the different possible cut points of a diagnostic
test. It clearly demonstrates the tradeoff between sensitivity and
specificity where any increase in sensitivity will be accompanied
by a decrease in specificity. The area under the curve is widely
used a measure of classification performance where an area close
unity represents a perfect classification and an area near one half
represents a poor classification.

3. RESULTS AND DISCUSSION
The total number of ROIs used from the LIDC-IDRI database was
224 (including 112 Non-nodules and 112 nodules). The training
and testing of KNN and SVM classifiers was based on indepen-
dent half-and-half training and testing sets with random selection
of each from the database. Min–max normalization method was
used to make each feature values range between 0 and 1. The out-
come of the feature selection resulted in five optimal features that
were skewness, 8th percentile, short run high gray-level empha-
sis (SRHGE) at direction 0�, run length non-uniformity (RLN) at
direction 45�, and maximum probability at direction 0�. Table III
summarizes the confusion matrix entries computed for both KNN
and SVM classifiers. Table IV summaries the performance mea-
sures calculated from the results in Table III. Figure 3 shows the
comparison between KNN and SVM in a graph. The ROC analy-
sis of both classifiers with selected features shows that SVM was
better than KNN where the AUC measure for SVM was 0.9868
whereas it was 0.9703 for KNN.

Table V shows the comparison of the proposed CAD system
with the previously reported CAD systems. From the table, it is
clear that the proposed CAD system achieves highest sensitivity
and smallest false positives. These particular measures were used
because of their importance to the selection of the best detection
system and due to the availability of the information on such
previous methods in the literature. We expect the conclusions
of this comparison to hold for other measures given that both
measures displayed affect all of them.

Feature space distributions, the dimensionality, and the avail-
able training sample sizes play an important role on feature
selection method and classifiers relative performance.24 Nodule
size affects the performance of the classification process as well.
Moreover, the large number of nodules that was used for training

Table IV. Performance evaluation of KNN and SVM classifiers.

Classifier Sensitivity Specificity Cohen-k Precision Accuracy F-measure AUC

KNN 1 0.9464 0.9464 0.9491 0.9732 0.9739 0.9703
SVM 1 0.9821 0.9821 0.9825 0.9911 0.9912 0.9868

Fig. 3. Comparison of KNN and SVM performance measures.

enhances the performance of classification. Our datasets con-
tained reasonable nodules number 112 nodules and nodules of
diameter 15 mm were the dominant.
In using ROC analysis, it is very important to realize that the

ROC curve is highly dependent on the dataset being used for
evaluation and the nodule size. If the dominant nodule size 5 mm
and above, very high sensitivity will be achieved, the curve of
ROC will be closer to the left-hand border and then the top border
of the ROC space and area under curve (AUC) will reach one.
This is explaining why our ROC graphs reach the perfect. SVM
classifier got better values than KNN classifier. Area under curve
of ROC graph for SVM was 0.9868 whereas Area under curve
of ROC graph for KNN was 0.9703.
Normalization and feature selection boost the performance of

the classification process. Normalization will avoid numerical
instabilities in the process of training the classifiers and allow
variations in different features to be well represented equally
with no dominating features that happen to have wider numeric
ranges. Feature selection reduces the time of classification and
will choose the optimal set that yield the best performance.
Feature selection chooses optimal set of features. Number of
the selected features depends on the datasets used. The training
and testing method (half-and-half or cross validation) is chosen
according to the available number of samples. If we have large
number of samples, it is preferred to use half-and-half.
Since each measure indicates only one variable, we used more

than one measure to compare the performance of classifiers in
best way. Table IV summarized the different measures that used
to evaluate the performance of the used classifiers. SVM classifier
got the best values in all measures. This indicates that the feature
space is somewhat sparse and therefore correct class assignment
may not be possible by simple distance measures. SVM shows
better generalization characteristics that play well into the results.
In this work, we considered 2D textural features to build the

CAD system even though the CT data is available for the whole
volume. This can be considered a limitation of the current system
since the performance may vary with the location and orienta-
tion of the lesions with respect to the available slices. Therefore,
we expect the performance to be enhanced if 3D features are
considered and in particular those that are affine transformation
invariant. The development and experimental validation of the
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Table V. Comparison of proposed method (shown in bold) to reported
CAD systems.

Nodule size Sensitivity False positives
CAD system (mm) (%) (%)

Ge et al.4 3–30.6 mm 80 2.15
Golosio et al.5 3–30 mm 79 4
Murphy et al.6 ≥4.5 mm 80 4.20
Messay et al.7 3–30 mm 82�66 3
Tan et al.8 3–30 mm 87�5 4
Choi et al.10 3–30 mm 97�5 6.76
Tater et al.11 2–20 mm 90�5 6
Proposed method ≥5 mm 99�83 2

utility of such 3D features are natural future extensions of the
present work.

4. CONCLUSIONS
A simple yet effective system for lung nodule detection is devel-
oped. The system implementation of feature extraction, normal-
ization, selection, and classification stages were described. The
system was verified on real data from a reference dataset and
compared to previous systems. The results obtained show a bet-
ter performance in both the sensitivity and false positive rate.
This indicates its potential for clinical use as a second reviewer
to boost the diagnostic process.

APPENDIX I: STATISTICAL TEXTURAL
FEATURE DEFINITIONS
A. First-Order Features
These features are computed from the pixel values (intensities)
of the ROI and are independent of spatial distribution of pixels.
That is, they can be completely defined in terms of the gray level
histogram function P�xi� of the ROI. The definitions for these
histogram-based features used are as follows:10�14

Feature Definition

Mean �=
MN∑
i=1

xiP�xi�

Standard deviation � =
√

MN∑
i=1

P�xi��xi−��2

Third moment
MN∑
i=1

�xi −��3

Smoothness 1− 1
1+�2

Skewness
∑MN

i=1 P�xi��xi −��3

�
∑MN

i=1 P�xi��xi −��2�1	5

Kurtosis
∑MN

i=1 P�xi��xi −��4

�
∑MN

i=1 P�xi��xi−��2�2

Harmonic mean
MN∑MN
i=1 1/xi

Variance �2

Percentiles Pn � Cardinality 
xi � xi ≤ Pn�

= n

10
MN n= 1�2� 	 	 	 �9

B. Gray Level Co-Occurrence Matrix (GLCM) Features
These features are computed from the GLCM, which takes into
account the pixel values as well as their spatial interrelationships
and hence can better describe texture variations. The GLCM
entry (i, j) is computed as count of pairs of pixels with intensities
i and j and separated by a given fixed spatial vector. The resul-
tant GLCM is of dimensions Ng ×Ng , where Ng is the number
of gray levels in the ROI. The GLCM-based features are defined
as follows:15–18

Feature Definition

Energy
∑
i

∑
j

GLCM�i� j�2

Entropy −∑
i

∑
j

GLCM�i� j� logGLCM�i� j�

Contrast
∑
i

∑
j

�i− j�2GLCM�i� j�

Correlation

∑
i

∑
j

ijGLCM�i� j�−�x�y

�x�y

Autocorrelation
∑
i

∑
j

ijGLCM�i� j�

Sum of squares
∑
i

∑
j

�i−��2GLCM�i� j�

Homogeneity
∑
i

∑
j

GLCM�i� j�

1+ �i− j�2

Cluster prominence
∑
i

∑
j

�i+ j −�x −�y�
4GLCM�i� j�

Cluster shade
∑
i

∑
j

�i+ j −�x −�y�
3GLCM�i� j�

Dissimilarity
∑
i

∑
j

�i− j�GLCM�i� j�

Maximum probability GLCM�i� j�

Sum average
2Ng∑
i=2

ipx+y�i�

Sum entropy −
2Ng∑
i=2

px+y�i� logpx+y�i�

Sum variance
2Ng∑
i=2

�i−Sum Entropy�2px+y�i�

Difference variance Variance 
px−y�

Difference entropy −
Ng−1∑
i=0

px−y�i� logpx−y�i�

Inverse difference
moment normalized

∑
i

∑
j

GLCM�i� j�

1+ �i− j/Ng�
2

Inverse difference
normalized

∑
i

∑
j

GLCM�i� j�

1+ ��i− j�/Ng �

Information of
correlation 1

HXY −HXY 1

max�HX�HY �

Information of
correlation 2

√
�1−exp�−2�HXY 2 −HXY ���

Notes: px�i� = ∑Ng
j=1 GLCM�i� j�, �x = ∑Ng

i=1 ipx�i�, �x =√∑Ng
i=1�px�i�−�x�i��

2. py�j� =
∑Ng

i=1 GLCM�i� j�, �y = ∑G−1
i=0 jpy�j�,

�y =
√∑Ng

i=1�py�j��y�j��
2, px+y�k� = ∑Ng

i=1

∑Ng
j=1 GLCM�i� j�,

px−y�k� = ∑Ng
i=1

∑Ng
j=1 GLCM�i� j�, HX = −∑

i px�i� logpx�i�, Hy =∑
j py�j� logpy�j�, HXY = −∑

i

∑
j GLCM�i� j� logGLCM�i� j�,
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HXY1 = −∑
i

∑
j GLCM�i� j� log2 px�i�py�j�, HXY 2 = −∑

i

∑
j px�i� ×

py�j� logpx�i�py�j�.

C. Gray Level Runlength Matrix (GLRM) Features
GLRM is a way of describing the image in terms of lengths of
consecutive pixels having the same gray level value in a given
direction. GLRM element (i, j) represents the count of occur-
rences of a string of pixels of length j of value i in a specified
direction within the ROI. The GLRM-based features are defined
as follows:19

Feature Definition

Short run emphasis
1
nr

N∑
j=1

pr�j�

j2

Long run emphasis
1
nr

N∑
j=1

pr�j�∗j2

Gray-level nonuniformity
1
nr

M∑
i=1

pg�i�
2

Run length nonuniformity
1
nr

N∑
j=1

pr�j�
2

Run percentage nr/np

Low gray-level run emphasis
1

nr

M∑
i=1

pg�i�

i2

High gray-level run emphasis
1
nr

M∑
i=1

pg�i�∗ i2

Short run low gray-level emphasis
1
nr

M∑
i=1

N∑
j=1

p�i� j�

i2 ∗ j2

Short run high gray-level emphasis
1
nr

M∑
i=1

N∑
j=1

p�i� j�∗ i2
j2

Long run low gray-level emphasis
1
nr

M∑
i=1

N∑
j=1

p�i� j�∗ j2
i2

Long run high gray-level emphasis
1
nr

M∑
i=1

N∑
j=1

p�i� j�∗ j2 ∗ i2

Notes: pr �j� = ∑M
i=1 GLRM�i� j�, pg�i� = ∑N

j=1 GLRM�i� j�, nr is total
number of runs, and np is the number of pixels in ROI.
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