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Adaptive immune system is one of the human body’s defense mechanisms developed to protect against repeated
infection by the same pathogen through immunologic memory. Vaccination uses this concept to design vaccines
to protect our bodies from infectious diseases. Some cells of the immune response cannot recognize antigen
fragments unless attached to Major Histocompatibility Complex (MHC) molecules. Therefore, predicting peptides
that are able to bind to MHC molecules is a key step when designing vaccines. MHC class II is one type of MHC
molecules that is characterized by its ability to bind peptides of different length. Machine learning techniques
can facilitate discrimination between peptides to classify them into binders or non-binders to MHC class II
molecules. However, building a classification model passes through several stages that may influence its final
decision. In this study, we design a robust MHC class II peptides classifier using neuro-fuzzy techniques. In
particular, we optimize each of the stages involved including construction of training and testing datasets to
eliminate bias, mapping variable length peptides into fixed feature vector, mining important features through
several feature selection techniques, and choice of neuro-fuzzy classifiers. The experimental results demonstrate
the importance of this optimization to obtain objective evaluation and show how bias in the results of such
techniques as cross-validation can cause wide variability of outcomes for the same data. This can explain
the fluctuations in performance of several techniques and suggests a more robust strategy to use for a more
objective comparison of different techniques.

Keywords: Balanced Data, Blind Testing, Filter Feature selection, Fuzzy Feature Selection, MHC Class II
molecules, Neuro-Fuzzy Classifiers, Similarity Reduced Data.

1. INTRODUCTION
Cell-mediated immunity is the immune response associated with
cells that does not involve antibodies. Major Histocompatibil-
ity Complex (MHC) molecules have the main rule to elicit the
T cell-mediated immune response. The two main classes of MHC
molecules (class I and class II) are cell surface glycoproteins
coded on chromosome 6 in humans and called Human Leukocyte
Antigen (HLA). T cell antigens cannot be recognized unless its
fragments are attached to MHC molecule to be present on the sur-
face of T-cells. After binding to a fragment of a pathogen, MHC
class II molecules activate the helper T cells and hence stim-
ulate cellular and humoral immunity. Not all antigenic peptide
fractions are able to bind MHC class II molecules.1 Therefore,
predicting which specific peptides are able to bind MHC class II
molecules is an important step in vaccine design. Computational
immunology is an emerging branch of bioinformatics (also called
immuno-informatics) that has potential to play a major rule in

∗Author to whom correspondence should be addressed.

this task by reducing time and cost by targeting more precise
binding peptide prediction.
Several epitope databases are available to serve the goal of pre-

dicting peptides that are able to bind MHC class II molecules.
Different allele-specific datasets (that is, a separate dataset for
each allele) consisting of binding and nonbinding peptides can be
extracted. Similarity between sequences in the resulting dataset
may cause biased evaluation measures due to the likely pres-
ence of similar peptides in both the training and testing dataset.
This is particularly even more problematic when measuring per-
formance using cross-validation, which is a common practice in
most previous work.2 To address this problem, several studies
performed similarity reduction on the dataset to remove redun-
dant sequences.3�4 However, this approach may result in removing
important information from the training dataset. A change in one
position between two sequences may be a good reason to cause a
change of its state from binder to non-binder or vice-versa. There-
fore, the results of each method will highly depend on the similar-
ity reduction technique used, which hinder objective evaluation of
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its performance. For example; according to the same database—
MHCBN5 –the sequence “AAFAAAKAAAAAA” is classified as
a binder while “AASAAAKAAAAAA” is classified as a non-
binder to MHC class II although the two sequences are exactly
the same for all the positions except for the third one.

To obtain realistic performance results without bias or loss of
information, similar sequences from those found in the training
data are removed from the testing data used in a blind testing
procedure instead of cross-validation. An optimal local alignment
approach is used to find the score of the best alignment between
each two sequences in the binders and non-binders datasets. Test-
ing data then will only contain a set of sequences that do not
show similarity, and all other sequences will form the training
data.

To accomplish the prediction goal using machine learning
techniques, peptides in the dataset must be represented by a set
of features of fixed length (unlike actual MHC class II molecules
lengths). MHC class II binding grooves at its end are open which
explains their ability to bind different length peptides.6 Conse-
quently, variable length peptides are to be converted to fixed
length ones using feature representation. To reach this goal, dif-
ferent features are extracted from a well-known physicochemical
amino acids data repository and averaged over the peptide length.
Increasing number of features along with thousands of peptides
results in a high dimensional data that are difficult to deal with
in addition to their prohibitive computation time and memory
requirements. To overcome this problem, feature selection tech-
niques are utilized to select only the most informative features
for our problem.

Feature selection techniques are classified into three types
namely; filter, wrapper and embedded. The former is character-
ized over the other two types by its easy and fast computing
procedure. In addition, they do not depend on the used classi-
fier so they are implemented once and then integrated with any
classifier. Their main duty is to calculate a score for each fea-
ture using data intrinsic properties. Features with highest scores
remain in the feature vector and the rest are discarded.7 Filter
techniques are either parametric or non-parametric tests. Para-
metric tests constrain the sample data to have a specific probabil-
ity distribution and a predefined value of distribution parameters.
On the other hand, nonparametric tests need more data to reach
the same conclusion using fewer assumptions.8 Classifying using
only the top ranked features offer lower computational and mem-
ory requirements while increasing performance due to the lower
data dimensionality.

Neuro-fuzzy classifier (NFC) is a type of machine learning
network based classifier that is able to build a fuzzy system
using neural network learning capabilities. The learning proce-
dure is data driven and operates on local information. A three
layer neuro-fuzzy classifier expresses its first layer as inputs, sec-
ond layer (hidden) corresponds the fuzzy rules (i.e., if-then rules)
and outputs form the third layer. Connection weights are the defi-
nition of the fuzzy sets. Fuzzy rules are considered as prototypes
of training data and so, neuro-fuzzy classifier has the advantage
of the possibility of its construction by using training data or
fuzzy rules. Neuro-fuzzy have a main characteristic of the ability
of being interpreted in linguistics rules.9

When using neuro-fuzzy classifiers (NFC) on large-scale data
sets, nonlinear network parameters often cause significantly
higher computation time, which may not be practical in many

cases. Scaled conjugate-gradient (SCG) algorithm is known to
consume less memory and presenting high convergence rate
when training type 1 fuzzy systems.10 Here, three different
implementations of the adaptive NFC based on the work of
Bayram11�12 are employed and compared in our study with a
proposed modification to maintain stable results.

Accordingly, one of the objectives of this study is to high-
light the role of some data mining techniques on the prediction
goal. Data mining algorithms used are represented in two main
categories; outlier detection and classification. Outlier detec-
tion is achieved through feature selection techniques which are
employed to discard features that have negative influence on the
model performance in addition to those having no influence at
all. In this context, six different feature selection techniques are
compared and their effect on the prediction accuracy is studied.
The machine learning technique involved in the classification
process is a hybridization between fuzzy inference systems and
neural network. Several parameters of the merged techniques
are tuned and modifications are proposed to overcome negative
issues appeared during implementation.

2. PREVIOUS WORK
A broad study of available web servers serving the function of
predicting peptides binding to MHC class II molecules reported
poor performance and recommended focusing on collecting ade-
quate data and enhancing predictive models.13 Although some
previous work showed somewhat accurate prediction, results
were still unsatisfactory. One related study aimed to increase
accuracy in addition to minimizing the time consumed in the pre-
diction phase when training using Fuzzy neural network (FNN).
FNN was recommended as a suitable predictor with a slow pro-
cessing problem. A proposed solution was to use boosted fuzzy
classifier with a SWEEP operator method (BFCS).14 Their model
was successful when trained on a dataset of 1050 peptides for
HLA-DRB1*0401 in the context of fast processing, easily obtain-
ing linguistic rules and a slight increase in accuracy. This study,
however, suffered from three main drawbacks. Data were down-
loaded from two databases only resulting in low number of
peptides. Features selected for discrimination were only three
without a rationale for the criteria of choice. Moreover, evalu-
ation of model involved cross-validation not blind testing.2 The
last drawback was solved later in another study by examining
its model using blind testing on a separate data.4 However, this
work did not remove similar peptides from the blind dataset and
hence is prone the risk of bias.

A study that adopted the idea of comparing results when
evaluating a model with full data against a similarity-reduced
data was reported.4 Three different databases were the source
of fifteen constructed datasets, five reduced datasets for each
specific-length allele downloaded from each database. Predic-
tion was carried out using three different techniques and results
are recorded on several MHC class II alleles. Unfortunately,
their datasets lacks collectivity as data downloaded from three
databases are not put together but rather used separately, which is
likely to decrease amount of information needed for training the
classifier. Furthermore, the study did not involve feature selec-
tion, which leads to the problem of higher data dimensionality
and its computation time and memory complications.

A study was carried out to demonstrate the effect of using
forty-two different combinations of six features extracted from
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the Chou’s PseAAC15 along with Multi-Layer Perceptron (MLP)
and Support Vector Machine (SVM). Datasets of allele HLA-
DRB1*0301 constructed in Ref. [4] are used for evaluation in a
5-fold cross-validation procedure. The importance of using bal-
anced data through Synthetic Minority Oversampling Technique
(SMOTE) was emphasized and reported to enhance prediction
performance.3 Unfortunately, same previously stated drawbacks
were observed with absence of blind testing, use of only one
database, and use of six features with no feature selection.
A review study concentrating on the tools available through the
Immune Epitope Database and analysis Resource16 was held out
to highlight the importance of the practical use of those tools.
Two case studies are investigated to figure out the immunogenic-
ity of erythropoietin and timothy grass pollen.17

Some tools were designed to serve both MHC class I and II
binding peptides prediction. These tools are mainly character-
ized by their independence on the peptide length where amino
acid sequences were treated as time series data. This method
overcame the drawback of peptides length-dependent machine
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Fig. 1. Datasets aggregation, filtration, processing and splitting workflow.

learning techniques and offered an opportunity to predict uncom-
mon length epitopes.18 A recent study proposed a new classifi-
cation algorithm using �1-minimization techniques operated on
a sparse representation of peptides. The research concluded that
physicochemical properties encoding of features is preferred over
binary encoding scheme. Prediction of peptides binding to five
different alleles were examined using 10-fold cross-validation.19

Analysis of previous work defines main prediction shortcom-
ings that will be addressed in this work by enhancing each step
of the process. First, the data collection is done using three most
recent updated epitope databases. Different datasets are then con-
structed to decide which is more appropriate for training a clas-
sifier, full data or similarity reduced data. The effect of data
resampling is monitored through the establishment of a balanced
dataset. Second, feature selection techniques are utilized to auto-
mate choosing features based on well-defined criteria. Third,
neuro-fuzzy classifier is used for classification given its excellent
performance in similar problems while incorporating a speed up
scaled conjugate-gradient algorithm to boost their speed. Finally,
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Sequence A      R M       S       A      A        A       A       A

Hydrophobicity index   0.61   0.6   0.05   1.18   0.61   0.61   0.61   0.61   0.61

Sum = 5.49

FPV = 5.49/9 = 0.61

Fig. 2. An illustration of a numerical example on calculating a feature value
of a peptide sequence.

the evaluation of the proposed model is performed using dif-
ferent measurement metrics. A comparison of the results from
cross-validation with blind testing is performed for the devel-
oped system. In contrast to previous work that carried out blind
testing on unpublished datasets that most probably contain simi-
lar peptides to the ones used in training, we ensure removing any
similar peptides in the testing set for blind testing. The new sys-
tem has the potential to provide more robust prediction results by
eliminating all sources of bias in the evaluation process, which
is important for objective evaluation.

3. METHODOLOGY
The objective of this paper is to propose a classification model
to predict which peptides within a group of sequences are able
to bind MHC class II molecules. An initial influential step
is to take a decision concerning which peptides participate in
the training phase of the classification algorithm. Since cho-
sen peptides significantly affect the classification model, this
stage is thoroughly studied by comparing the model performance
when trained with five mixed datasets formed from three down-
loaded datasets. Two datasets are subjected to similarity reduction
based on an optimal local alignment procedure. Figure 1 illus-
trates all the data aggregation, filtering, processing and splitting
steps.

Classifying peptides into binders and non-binders using a
machine learning technique needs informative features. There-
fore, features must be first collected and calculated to have a
global peptides representation. Then, feature selection techniques
must be implemented to choose the most informative features.
As a final step, a neuro fuzzy classifier with three distinct imple-
mentations classifies the peptides using datasets with the assigned
features.
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Fig. 3. The hybrid technique block diagram.
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Fig. 4. Block diagram of the NFC model.

3.1. Data Aggregation and Processing
The most common web available databases that contain
information about binding capabilities of peptides to MHC
class II molecules are; Immune Epitope DataBase (IEDB),16

MHCBN,5�20 SYFPEITHI,21 MHCPEP,22 and AntiJen.23 Last
update for AntiJen database was in 2003 and that for MHCPEP
was in 1998. Therefore, the data available through these two
databases are not included in the data collected for our study.
That is because correctness cannot be guaranteed and there is a
possibility that the state of any of the peptides is changed later.
Furthermore, MHCPEP is one of the data sources of the MHCBN
database (last updated 2009). On the other side, IEDB is char-
acterized by being the largest container for MHC molecules
data and is the most frequently updated (last updated 2015).
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Table I. Number of peptides for HLA-DRB1*0101 starting at down-
load from different databases passing by each separate step. Step 1
refers to removing peptides with no reported IC50 value and step 2
refers to omitting any peptide does not meet the database construction
conditions.

All downloaded data for binders and non-binders

IEDB MHCBN SYFPEITHI

All Step 1 Step 2 All Filtered All (binders only)

9834 8231 7299 588 575 21
Total after filtering and collecting in one dataset

7299+575+21 = 7895

Dataset Total Binders Non-binders

FUD 7571 5253 2318
SRD

Tot. clust. 6012 4067 1945
1 pep clust. 5022 3357 1665

TrFUD 6435 4465 1970
TrSRD 4876 3279 1597
TestD-C 1136 788 348
BSRD 4815 2497 2318

Also, SYFPEITHI database (last updated August 2012) con-
tains quite a bit good list of peptides binding to some MHC
alleles.

In accordance to the previous quick analysis, data used in this
study will be a collection of binding and non-binding peptides to
MHC class II alleles withdrawn from the three databases; IEDB,
MHCBN and SYFPEITHI. These data are filtered first according
to the specifications of its source database and then collected to
form one dataset. IEDB data are filtered by; first, removing pep-
tides with no reported IC50 value then omitting any peptide does
not meet the database construction conditions. MHCBN data are
filtered by removing peptides with no or uncertain qualitative
values. SYFPEITHI data are not in a need to any filtration since
it contains binding peptides only. This new collected dataset is
further filtered by removing any repeated sequence such that the
resulting dataset contains only unique peptides (FUD).

3.2. Similarity Reduction by Optimal Local Alignment
To obtain a similarity reduced dataset, FUD is then split into two
sub-datasets; namely, binders and non-binders datasets. Clusters
are formed for each sub-dataset such that each cluster contain
all sequences sharing a similarity of 80% or more. Similarity is
detected using optimal local alignment algorithm24 by calculat-
ing a similarity score between each two sequences in the same
sub-dataset. Optimal local alignment is a dynamic programming
algorithm developed from that of Smith and Waterman.25 Pair-
wise alignment is included along with a gap penalty value of 8
when executing this algorithm.

To guarantee a fair blind testing, 15% of each sub-dataset is set
aside then merged to form a testing dataset. This is done under
a constraint that clusters that contain only one peptide are the

Binders 

Non Binders 

60% similarity clustering Fetch the most similar

BSR-Binders BSRD

Fig. 5. Balanced similarity reduced dataset construction.

Table II. HLA-DRB1*0101 performance values recorded on different
testing procedure using the top 10 results of the t-test based feature
selection (50 epochs and 10 clusters for SCG-NFC).

Eval. Testing data AUC Accuracy Sensitivity Specificity

CV (K = 5) FUD 0.66 0.75 0.89 0.43
SRD 0.64 0.70 0.83 0.46

Blind test TestD-R 0.66 0.74 0.90 0.41
TestD-C (TrFUD-C) 0.64 0.73 0.87 0.41
TestD-C (TrSRD-C) 0.64 0.71 0.82 0.45

only allowed as a part of the testing dataset. This ensures that
the testing dataset can never contain a peptide similar to any of
the ones found in the training dataset. That is because a cluster
with only one peptide means that there is no similar peptide
in its sub-dataset (up to at least 80% similarity). A similarity
reduced training dataset is a one that contains no two peptides
share similarity in sequences more than 80%. This is achieved by
taking only one peptide from each cluster. The chosen peptide is
the one that share the maximum similarity with other peptides in
the same cluster.

3.3. Feature Representation
The variable length characteristic of the MHC class II molecules
raises the importance of expressing peptides by a fixed length
feature set. This ensures converting a variable length vector into a
fixed length one to be computationally convenient for the classi-
fication process. Features contributing to the fixed length feature
vector construction are extracted from the Amino Acid Index
(AAindex) database.26 AAindex is a huge repository of physic-
ochemical properties of all amino acids expressed in numeri-
cal indices. AAindex contains 545 properties reduced to 531
after removing those appearing in undefined values at specific
amino acids. The remaining properties are all used as fea-
tures in the feature vector representation to have a feature vec-
tor for each peptide of size 1× 531. Each peptide feature is
an averaged value of each physicochemical property calculated
by Eq. (1).

PFV=
∑L

1 AAPV
L

(1)

where PFV is the feature value of each peptide, AAPV is the
property value of each amino acid, and L is the peptide length.
Therefore, for every single peptide, the previous equation is
repeated 531 times to result in a 531 PFVs representing the pep-
tide feature vector of size 1×531.
For example to calculate the feature value of the property

named “Hydrophobicity index” for the 9-mer peptide sequence
“ARSMAAAAA,” the hydrophobicity index value of each amino
acid (AAPV) in the sequence is fetched from the AAindex
database, then the 9 values are summed up and divided by L (9)
to have one representative hydrophobicity index value of the
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Table III. HLA-DRB1*0101 performance values recorded on different
testing procedure using the top 10 results of the entropy based feature
selection.

Eval. Testing data AUC Accuracy Sensitivity Specificity

CV (K = 5) FUD 0.65 0.75 0.89 0.41
SRD 0.64 0.72 0.85 0.43

Blind test TestD-R 0.68 0.74 0.88 0.48
TestD-C (TrFUD-C) 0.62 0.71 0.84 0.41
TestD-C (TrSRD-C) 0.65 0.72 0.84 0.47

mentioned sequence. Figure 2 illustrates this numerical example.
This process is repeated 531 times for all the amino acid physic-
ochemical properties.

3.4. Feature Selection
Since each peptide has a feature vector of 531 values, this results
in a feature matrix of size n× 531 where n is the total number
of peptides in the dataset. This clearly poses a high dimensional
data problem, which is challenging for the classification problem
in addition to its computation time cost. Feature selection tech-
niques are used to extract the most informative features to address
this problem. Here, we use four filter-type feature selection tech-
niques with both parametric and non-parametric tests in addition
to a proposed hybrid technique. In particular, ranking features by
t-test and entropy represent parametric tests while using receiver
operating characteristics (ROC) and Wilcoxon calculations are
non-parametric. For parametric tests, data are normalized along
each feature around zero mean and unit variance. This is in addi-
tion to proposing the hybrid and the fuzzy filter feature selection
techniques.
• The four filter feature selection techniques are; t-Test,27 Rela-
tive Entropy (RE),28 ROC (Receiver Operating Characteristics)29

and Wilcoxon Mann Whitney test.30 For example, when cal-
culating the values of each of these four tests on the 531
physicochemical properties (using FUD data), the “polar require-
ment” property had the highest entropy value which is equal
to 0.65. Another property named “Knowledge-based membrane-
propensity scale from 3D_ Helix in MPtopo databases” had the
highest t-test and ROC values which are equal to 28.4 and 0.225
respectively. As for the Wilcoxon test, the “Averaged turn propen-
sities in a transmembrane helix” property had the highest rank
with a value equals to 0.5.
• Hybrid filter chooses the best informative highest scoring fea-
ture according to each of the four previous techniques to form
a feature vector of size 1× 4 for each peptide. Since four filter
techniques are applied, the hybrid filter chooses the first ranked
feature from each of these four. As a result, four features only are
used in the hybrid technique. If any feature is repeated among the

Table IV. HLA-DRB1*0101 performance values recorded on different
testing procedure using the top 10 results of the wilcoxon based feature
selection.

Eval. Testing data AUC Accuracy Sensitivity Specificity

CV (K = 5) FUD 0.65 0.75 0.90 0.40
SRD 0.65 0.73 0.87 0.43

Blind test TestD-R 0.66 0.73 0.88 0.44
TestD-C (TrFUD-C) 0.60 0.66 0.75 0.45
TestD-C (TrSRD-C) 0.61 0.65 0.71 0.51

Table V. HLA-DRB1*0101 performance values recorded on different
testing procedure using the top 10 results of the roc based feature
selection.

Eval. Testing data AUC Accuracy Sensitivity Specificity

CV (K = 5) FUD 0.67 0.75 0.89 0.44
SRD 0.66 0.74 0.87 0.46

Blind test TestD-R 0.66 0.73 0.87 0.46
TestD-C (TrFUD-C) 0.62 0.68 0.78 0.46
TestD-C (TrSRD-C) 0.63 0.72 0.85 0.42

chosen ones, the algorithm skips it to the next unrepeated feature
to ensure having four different ones. The hybrid filter technique
diagram is shown in Figure 3.
• Fuzzy ranking31 selects features using powers of fuzzy sets
expressed by their linguistic hedge values. Adaptive neuro fuzzy
classifiers are used to define classification fuzzy sets whose lin-
guistic hedge values describe the importance of features. A fea-
ture is considered informative if its corresponding linguistic
hedge value of classes is greater than 0.5 and more close to 1.
Otherwise, features are omitted from the informative features
list.

3.5. Neuro-Fuzzy Classifier (NFC)
A neuro-fuzzy classifier is a hybridization between fuzzy sys-
tems and neural networks. Such type of merged technique has the
ability to produce decisions across their built-up fuzzy rules with
their membership functions tuned by neural network. The NFC
algorithm defined in our employed implementations are based
on the zero-order Sugeno fuzzy model shown in Figure 4.32 The
model rule is stated as; if x is A and y is B then z= C, where;
x and y are the input variables, A and B are the antecedent fuzzy
sets, and C is the class to which z belongs. This model comprises
five layers where, layer 1 nodes always have outputs specifying
the degree of satisfaction (membership grade) between the node
and its linguistic label. Each node in Layer 2 (rule node) repre-
sents a rule with an output expressing the degree of fulfillment
of that rule (firing strength). Normalized firing strengths are the
output of Layer 3 which is known as the normalization layer.
Normalized firing strengths are multiplied by each individual rule
to give the output of layer 4. Finally, all incoming outputs of
layer 4 are summed up in layer 5 to give the model output.32�33

Three adaptive neuro-fuzzy classifiers are utilized based on
partial modification of Bayram’s classifiers.11�12 The original
implementations were shown to have good performance on
medium and large-scale data. However, they have not been
applied to our type of data before.34�35 All three algorithms ini-
tialize their fuzzy rules by clustering using K-means where num-
ber of clusters per class is user dependent. Also, they share the

Table VI. HLA-DRB1*0101 performance values recorded on different
testing procedure using the hybrid feature selection.

Eval. Testing data AUC Accuracy Sensitivity Specificity

CV (K = 5) FUD 0.65 0.73 0.87 0.43
SRD 0.64 0.72 0.86 0.42

Blind test TestD-R 0.66 0.74 0.89 0.44
TestD-C (TrFUD-C) 0.65 0.73 0.86 0.44
TestD-C (TrSRD-C) 0.65 0.73 0.86 0.44
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Table VII. HLA-DRB1*0101 performance values recorded on different
testing procedure using the fuzzy feature selection.

Eval. Testing data AUC Accuracy Sensitivity Specificity

CV (K = 5) FUD 0.67 0.74 0.85 0.49
SRD 0.66 0.72 0.84 0.48

Blind test TestD-R 0.67 0.74 0.89 0.44
TestD-C (TrFUD-C) 0.65 0.72 0.83 0.47
TestD-C (TrSRD-C) 0.67 0.71 0.78 0.55

same fuzzy sets description method which is based on Gaus-
sian membership function. Number of clusters are set to 10 for
a number of epochs of 50 when examining datasets and feature
selection techniques. Then, number of clusters and epochs are
changed to study their effect on the chosen dataset and feature
selection techniques. A description of the three adopted NFC
methods and the proposed modification is as follows:
• Scaled conjugate-gradient Neuro-Fuzzy Classifier (SCG-
NFC):11 SCG algorithm possess an acceptable convergence rate
and low memory usage when training neuro-fuzzy classifiers.
SCG stands on the second-order gradient supervised learning
procedure. A combined trust-region method eliminates the step
size calculation learning time problem of the line-search method.
SCG-NFC is executed when comparing the effect of different
datasets and feature selection techniques.
• Speedup SCG-NFC (SSCG-NFC):11 Gradients of the SCG are
calculated twice for each iteration to each training instance. A
method to further decrease time while preserving convergence
rate is to use gradients estimation instead of calculation. This
method allows decreasing computation time by 20 to 50% when
applied to different applications.
• Power of Fuzzy sets-SCG-NFC:12 PF-SCG-NFC is a modifi-
cation of the SCG-NFC that enhances the recognition rate and
positively contribute to resolving overlapped classes misleading
issue. Linguistic hedges of the power of fuzzy sets are proposed
to add one more layer of the underlying network and is trained
with other network parameters.
• Integrated K-means modification: K-means clustering coded
in Bayram classifiers initialize its centroids randomly. Conse-
quently, multiple processing classify instances differently accord-
ing to the final built-up clusters that always depend on the initial
cluster centroids. Alternatively, we propose uniform choice of
centroids based on sorting the summation of all features for each
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Fig. 6. AUC and accuracy values averaged over each two datasets contributing in cross-validation and blind testing comparison. Values are extracted from
Tables II–VII to simplify the results analysis. Cross-validation results always exceeds blind testing results by 0.5% to 4.5% for AUC and by 0.5% to 8.5% for
accuracy except for the hybrid feature selection technique.

instance. Then, sample points are chosen starting from the small-
est until the largest with a calculated step. The step is determined
from the data size and the number of clusters.

4. EXPERIMENTAL VERIFICATION
Here, the detailed evaluation of the proposed model is presented.
One of the main points under study is the effect of training a
classification model with different datasets and choosing a reli-
able evaluation strategy. Therefore, this work aims to answer two
important questions. The first is about the type of data to be
used to train a classifier. Data downloaded from a database can
be utilized in two different forms, either to consider removing
repeated peptide sequences as sufficient or opting to continue
to have similarity-reduced data. The second important issue is
about the evaluation strategy that is able to express results in
more realistic results and hence more robust assessment of the
methodology. Therefore, comparison of model evaluation using
cross-validation against blind testing is performed.

4.1. Evaluation Criteria
Four evaluation metrics are recorded to assess the model perfor-
mance on predicting binding peptides to human MCHII molecule
HLA-DRB1*0101; namely, area under receiver operating char-
acteristics curve (AUC), accuracy, sensitivity and specificity.
AUC differs from accuracy in that the result of the former
depends on all thresholds discriminating between the two classes.
Whereas, the later gives a result using one threshold value (cut-
off point) detected by the classifier. Sensitivity and specificity are
mainly used to figure out the model performance on the posi-
tive (binders) and negative (non-binders) instances separately. All
evaluation metrics are recorded for each of the six implemented
feature selection techniques on five datasets. Table I lists details
of datasets construction of the HLA under investigation.
• FUD: Filtered Unique Dataset is a filtered collection of binders
and non-binders extracted from the three previously chosen
databases.
• SRD: Similarity Reduced Dataset is constructed from FUD by
removing peptides sharing a similarity of 80% or more.
• TrFUD-R: Training FUD is the result of randomly dividing
FUD into 85% training data and 15% testing data constitutes the
Testing Dataset (TestD-R).
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Fig. 7. Accuracy values on the training and testing folds on a 10-fold cross-validation testing using entropy for feature selection and FUD as the dataset. The
horizontal axis is only an indication of the fold number.

• TrFUD-C: Training FUD by Clustering is a training dataset of
85% of FUD but without any similar peptide to the ones found
in the 15% forming the Testing Dataset (TestD-C).
• TrSRD-C: Training Similarity Reduced Dataset by Clustering
is derived from TrFUD-C by keeping only one peptide from a
set of peptides sharing 80% or more similarity. Its testing data
(TestD-C) is the same of TrFUD-C to compare the effect of
training a classifier with all available peptides against similarity
reduced peptides.
• BSRD: Balanced Similarity Reduced Dataset is constructed
to eliminate the unbalancing data property. Down sampling of
the majority class (binders) results in nearly equal number of
peptides to those of the minority class (non-binders). Similar-
ity clustering is the proposed resampling criteria where only one
peptide is captured from a set of peptides that share sequence
similarity of 60% or more. Figure 5 shows its construction
steps.

Table VIII. List of the first top ranked features according to all the
employed feature selection techniques. Features names and codes are
those used by AAindex database. The last column contains an abbrevi-
ation letter to be easily used in the next table. In addition to the number
of repetitions of each between brackets for all feature selection tech-
niques excluding the hybrid one.

Name Code Abbreviation

Polar requirement Woese (1973) WOEC730101 W (10)
Knowledge-based

membrane-propensity scale
from 3D_ Helix in MPtopo
databases

PUNT030102 P (8)

Averaged turn propensities in a
transmembrane helix Monne
et al., (1999)

MONM990201 M (4)

AA composition of MEM of
multi-spanning proteins
(Nakashima-Nishikawa, 1992)

NAKH920108 N (3)

Negative charge Fauchere et al.,
(1988)

FAUJ880112 F (3)

Membrane-buried preference
parameters Argos et al., (1982)

ARGP820103 A (1)

Principal component I Sneath
(1966)

SNEP660101 S (1)

The first two datasets are the used ones when evaluating the
proposed model using K-fold cross-validation that creates dis-
jointed evaluation sets with a K value of 5. Cross-validation with
K of 10 is only carried once on FUD to show the variability
in accuracy on different testing folds. The next three datasets
are the blind testing datasets used to differentiate between ran-
dom and planned choices of testing data. The last dataset evalu-
ates the three classifiers’ implementations change in performance
due to enrolling a balanced dataset on a 5-fold cross-validation
basis.

5. RESULTS AND DISCUSSION
Proposed work through this study involved several steps that
should be assessed separately to have a fair evaluation for each.
Section 5.1 aims to provide a comprehensive feedback on the
effect of using similarity-reduced data by its comparison with the
usage of unique peptides data. The preference of using blind test-
ing over cross-validation is explained in Section 5.2. Comparing
the performance of the employed feature selection techniques and
detecting the appropriate number of selected features is the objec-
tive of Section 5.3. Section 5.4 displays the results of the three
classifier implementations in addition to evaluating them on the
BSRD.

5.1. Comparison of Similarity-Reduced Data Against
Raw Data

The performance of the classification model when using sim-
ilarity reduced datasets was compared to full unique peptides

Table IX. The most significant feature as specified by each filter tech-
nique when ranking features using different datasets. In case the first
top ranked feature in a test is recognized by another test for the same
dataset, the next two top ranked are shown in order between brackets.

t-Test Entropy Wilcoxon ROC Hybrid Fuzzy

FUD P (W, N) W M P P, W, M, N W, F
SRD P (W, N) W A P P, W, F, A W, S
TrFUD-R P (W, N) W M P P, W, M, N W
TrFUD-C P W M F P, W, M, F W
TrSRD-C P W M F P, W, M, F W
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Fig. 8. Evaluation of the SCG-NFC (10 clusters and 50 epochs) when trained on TrSRD-C and tested over TestD-C assuming different number of top ranked
features of the fuzzy and hybrid feature selection techniques. For fuzzy selection, best AUC (66.9%) achieved when using top 10 ranked features (acc.= 71%).
Highest accuracy (73.4%) was at the choice of the top 50 features with AUC= 66�5%. For hybrid selection 4 and 16 features shared the highest accuracy and
AUC respectively. Using less features has the advantage of less processing time.

dataset to decide the choice of dataset construction criteria.
Tables II–VII record the values of all the evaluation metrics of the
five datasets for the six feature selection techniques at constant
classifier parameters. Random choice of testing data (TestD-R)
AUC values were the highest for five out of six feature selec-
tion techniques. The other three measurements were dependent
on the features ranking method choice as its highest value differs
from one to another. That observation meets the proposed idea
that training without similarity reduction gives overly optimistic
results. The reason behind is TestD-R (as it is randomly selected)
may contain peptides similar in sequences to any in TrFUD-R.
A situation which despite being more close to reality does not
give a reliable model assessment.

SRD is extracted from FUD after removing all similar pep-
tides. FUD showed higher three measurements (AUC, accu-
racy and sensitivity) than that of SRD for all feature selection
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Fig. 9. Different measurements recorded on TestD-C when training the SCG-NFC with TrSRD-C. Hybrid algorithm is the selected feature selection technique.
The left graph is the performance of 30 epochs using different clusters number while, the right one is for 10 epochs only. Best AUC and accuracy for both
happened at 4 and 10 clusters. Highest AUC for 10 epochs equals 64% (70% accurate) while that for 30 epochs equals 65% (73% accurate).

techniques. Specificity is always lower except that of hybrid filter
which was a little bit higher (1%). This cannot be interpreted as
FUD being better than SRD when evaluating classifiers because
of the similarity and the randomness choice of data problems.
Again, TrSRD-C is compared to TrFUD-C as the former con-
tains peptides of the later with similar ones removed. Specificity
of TrSRD-C showed a significant increase in four of the feature
selection techniques (reached 8%) on the account of decrease in
sensitivity (5%). The reason behind this is that reduction by 27%
in the binders dataset corresponds to only 19% in the non-binders
dataset. TrFUD-C and TrSRD-C AUC and accuracy results are
mostly comparable. TrSRD-C had the highest AUC in most cases
while TrFUD-C accuracy values were better. To make a deci-
sion about the dataset to use, we choose TrSRD-C to have a
sort of balanced results according to its specificity and AUC
values.
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5.2. Comparison of Cross-Validation Against
Blind Testing

To compare between cross-validation and blind testing results,
an average AUC value of SRD and FUD (cross-validation
datasets) is compared against that of TrFUD and TrSRD across
all feature selection techniques in Figure 6. TrFUD-R results
are excluded from the comparison to have an ultimate fair
blind testing. Results demonstrate that cross-validation results are
always higher due to random choice of data shared in its folds
causing bias. On the contrary, blind testing with clustering testing
dataset did not contain any similar peptides and hence provide
more robust, bias-free results.

To understand the effect of randomness, the results of apply-
ing 10 fold cross-validation on FUD are presented in Figure 7.
This figure shows the big variance in the model performance on
each testing fold of the specified 10 folds. Each fold is a ran-
dom choice contributing a 10% of the original dataset. Testing
accuracy values varies from 67% to 74% keeping all classifica-
tion model parameters fixed and only peptides forming training
and testing data are changed. This gives an indication of the
dependency of the model performance when evaluating using
cross-validation on random split of data. On the other hand,
blind testing gives more realistic results. This indicates that cross-
validation cannot serve as realistic model evaluation.

5.3. Feature Selection
The model proposed in this work is first trained by five different
combinations of the downloaded datasets. Each dataset is rep-
resented by a group of features chosen by six feature selection
techniques. The most repeated features names and code extracted
from the AAindex database with a letter given as abbreviation for
further listing simplification is listed in Table VIII. Table IX men-
tions the top significant feature picked up by each technique for
every dataset. The most repeated feature is the polar requirement
Woese (1973). This feature is chosen by the entropy and fuzzy
tests for all the datasets and so it is a basic part of the hybrid
selection. While t-test had the same selected feature, ROC and
Wilcoxon tests change selection two times for the five datasets.
Therefore, parametric tests (t-test and entropy) were not affected
by removing similar peptides from the datasets. Non-parametric
tests (ROC and Wilcoxon) ranking were subject to change when
data construction is varied.

By analyzing measurement values for each filter selection tech-
nique, we found that none of the six feature selection techniques
is considered the best due to varying results with data. But, rank-
ing by hybrid and fuzzy tests values is seen to be the best per-
forming on clustered datasets. Thus, their selected features values

Table X. Performance of the three NFC implementations trained with
TrSRD-C and tested over TestD-C. Top ten features selected by the
Fuzzy feature selection represents the feature vectors. The first column
indicate number of clusters and number of epochs of the classifier in
the form (clusters/epochs).

Classifier AUC Acc. Sens. Spec. Time

10/30 SCG-NFC 0.67 0.72 0.79 0.55 3�79
PF-SCG-NFC 0.64 0.70 0.79 0.49 5�94
SSCG-NFC 0.64 0.70 0.79 0.50 1�96

6/50 SCG-NFC 0.66 0.71 0.80 0.52 5�94
PF-SCG-NFC 0.66 0.71 0.80 0.52 19�23
SSCG-NFC 0.65 0.70 0.76 0.54 1�89

Table XI. Performance of the three NFC implementations trained and
tested over the balanced data BSRD on a 5-fold cross-validation basis.
Feature vectors representation used the most informative ten features
according to the Hybrid feature selection.

Classifier AUC Acc. Sens. Spec. Time

10/30 SCG-NFC 0.66 0.66 0.70 0.62 2�1
PF-SCG-NFC 0.66 0.65 0.69 0.63 6�97
SSCG-NFC 0.65 0.65 0.68 0.61 1�49

6/50 SCG-NFC 0.66 0.66 0.71 0.61 2�27
PF-SCG-NFC 0.67 0.67 0.71 0.62 6�09
SSCG-NFC 0.67 0.67 0.72 0.62 1�36

will assemble the features vectors for the rest of evaluation. What
is really was interesting that the four hybrid filter chosen fea-
tures are enclosed within the some of the other feature selection
tests chosen ones. Accordingly, effect of changing the number of
top ranked features constituting feature vectors is visualized in
Figure 8. The results showed that the number of features is not
directly proportional to the performance values. Thus, different
features number ought to be under trial first to detect the best
suitable composition for a specific classifier.

5.4. Classifier Performance
A first step was to show the effect of changing number of clus-
ters and epochs on the classifier assessment. Figure 9 displays
the values of the evaluation metrics assuming different numbers
of clusters in the SCG-NFC design one time by trying 30 epochs
and another time by 10. Number of epochs have no big influence
while, increasing number of clusters above a certain limit mostly
reduces AUC values. Best AUC value happened at 10 clusters
and 30 epochs (10/30) and so these are parameter values when
evaluating the difference in performance of the three classifiers
shown in Table X. To ensure the comparison output, we changed
the number of clusters to be 6 and number of epochs to be
50 (6/50) and documented the results in the same table. SCG-
NFC had the highest AUC, accuracy and sensitivity for both
cases. SSCG-NFC showed comparable results with characteris-
tic of reducing time to the third. PF-SCG-NFC always had the
smallest AUC for these two cases.

The effect of the three classifiers is further examined on the
balanced dataset (BSRD) which was constructed specifically for
this purpose after noticing the specificity low values in differ-
ent stages. Results when using the same previous two cases of
epochs and clusters numbers are present in Table XI. Balanced
data had a great effect on the specificity values for the three clas-
sifier implementations (8% increase from the highest achieved
before). Sensitivity was negatively affected by down-sampling
of data which in turn affects accuracy values. Then, SCG-NFC
outperforms PF-SCG-NFC in most cases which contradicts its
proposed idea of increasing performance for our type of data.

6. CONCLUSIONS
In this study, we constructed a robust MHC class II peptides
neuro-fuzzy classification system. We outlined the effect of
different parameters on the performance of a model designed to
classify various peptides into MHC class II binders and non-
binders. Datasets of HLA-DRB1*0101 were used to compare
and evaluate different model stages including dataset construc-
tion, feature selection and representation, classifier modeling, and
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evaluation criteria. Similarity reduced datasets were found to be
the most appropriate for classification due to treatment of the
over-fitting and overly optimistic issues. Variable length peptides
were mapped into fixed length feature vectors where features are
automatically selected according to their ranking scores. Fuzzy
selection and integrating the top ranked by different tests into
a hybrid one were shown to be the best feature selection tech-
niques. Comparing results from cross-validation and blind testing
methods was performed and indicated that blind testing elimi-
nates the bias in the results that result from similarity of data in
cross-validation. Three implementations of adaptive NFC were
developed. Among these methods, SSCG-NFC reduced compu-
tation time by 30% with comparable classification performance.
The developed system outlines the importance of eliminating
similarity in data sets and bias in evaluation measures in order to
maintain robustness and objective assessment of methodology.
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