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ABSTRACT Insomnia is a common sleep disorder in which patients cannot sleep properly. Accurate detection of insomnia 

disorder is a crucial step for disease analysis in the early stages. The disruption in getting quality sleep is one of the big sources 

of cardiovascular syndromes such as blood pressure and stroke. The traditional insomnia detection methods are time-

consuming, cumbersome, and more expensive because they demand a long time from a trained neurophysiologist, and they are 

prone to human error, hence, the accuracy of diagnosis gets compromised. Therefore, the automatic insomnia diagnosis from the 

electrocardiogram (ECG) records is vital for timely detection and cure. In this paper, a novel hybrid approach based on the 

power spectral density (PSD) of the heart rate variability (HRV) is proposed to detect insomnia in three classification scenarios: 

(1) subject-based classification scenario (normal Vs. insomnia), (2) sleep stage-based classification (REM Vs. W. stage), and (3) 

the combined classification scenario using both subject-based and sleep stage-based features. The ensemble learning of random 

forest (RF) and decision tree (DT) classifiers are used to perform the first and second classification scenarios, while the linear 

discriminant analysis (LDA) classifier is used to perform the third combined scenario. The proposed framework includes data 

collection, investigation of the ECG signals, extraction of the signal HRV, estimation of the PSD, and AI-based classification 

via hybrid machine learning classifiers. The proposed framework is fine-tuned and evaluated using the free public Physio Net 

dataset over fivefold trails cross-validation. For the subject-based classification scenario, the detection performance in terms of 

sensitivity, specificity, and accuracy is recorded to be 96.0%, 94.0%, and 96.0%, respectively. For the sleep stage-based 

classification scenario, the detection evaluation results are recorded equally with 96.0% for ceiling level accuracy, sensitivity, 

and specificity. For the combined classification scenario, the LDA classifier have achieved the best insomnia detection accuracy 

of 99.0% of the three cases as discussed. In future, the proposed approach could be applicable for mobile observation schemes 

to automatically detect insomnia disorder.  

INDEX TERMS Sleep Disorder; Cardiovascular Syndromes; ECG Sleep Signals; AI-based Insomnia 

Detection; Hybrid Classification Scenarios.  
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I. INTRODUCTION 

Sleep is a natural phenomenon categorized due to  

changed awareness, reserved sensual drive, besides 

decreased strength drive [1]. Sleep has a vital part in the 

lifespan of natural creature’s viz. such as toad, frogs, snakes, 

human beings, small creatures. Few types of creatures  have 

their sleep with eyes open and mostly, the creatures have 

their sleep with eyes closed [2]. Sleeps remain classified into 

two stages, Fast Eye Drive (FED) and Slow Eye Drive 

(SED). The eye movement of a creature defines the 

classification of the sleep that is NREM, S1, S2, S3 and S4. 

According to the guideline of NREM classification in 2007, 

according to AASM [3], NREM are divided into three stages 

such as N1, N2, and N3. These two manuals (R&K and 

AASM) are included REM, Wake (W), and Movement Time 

(MT) stages[4] with NREM. Lack of sleep affects the human 

life such as remembrance problems, temper variations, 

attention problems, danger of diabetes, low sex drives, poor 

balance on the leg, danger of heart problems, heaviness of 

body, high B.P., and danger of the accident [5], [6]. Lack of 

sleep also do the negative impact on his calories to effort, 

fitness and expressive equilibrium [7], [8]. Sound sleep is an 

indication that a person is healthy. It is a very general 

procedure that decreased sleep could reduce the efficacy of a 

person, energy of a body, capability to withstand stress and 

variability in mood [9]–[12]. If this disorder will be ignored 

further can cause huge problems viz. pressure, reduction in 

efficiency, obstruction, pursuance reduction. Globally, 

insomnia is a highly predominant health issue. It is defined as 

complaint of glitches ongoing commencement sleep 

convoyed by concentrated day functioning ongoing aimed at 

small stone month [13], [14]. The human being which is 

suffering from sleep disorder get up in nighttime very often 

and feels dizziness and not feel fresh, lack of concentration 

and memory loss [14].Sleep disorder is a very general 

delinquent in common people in the current time [15], [16]. 

The main symptoms of insomnia are tension, headaches, 

sleepiness, etc. Additionally, the main causes of insomnia are 

depression, heartbroken in love, sleep sickness, job loss, 

environmental factors, etc.[17]. It also comes with 

discomfort and tiredness [18]. Though, sleep disorder is a 

very general circumstance in entire people, although doctors 

and the affected person are absent in the information over it. 

There are no common acknowledged parameters for treating. 

The consequences of sleep disorder are mood swings and an 

enhanced prospect of some miss happening while handling 

vehicles or doing some daily activities. Sleep disorder is not 

an indication of additional illnesses, nonetheless it is 

subordinate to additional medicinal circumstances[19]. 

Insomnia is classified into three basic categories including 

etiology, duration, and sleep pattern. According to etiology, 

insomnia can be categorized in two kinds viz. primary and 

secondary. Additionally, based on duration, insomnia can be 

classified into three types such as transient, chronic, and 

acute. Accordingly, based on sleep pattern, sleep disorder can 

be separated into two kinds such as sleep maintenance and 

sleep onset.  
II. MOTIVATION BEHIND THE STUDY  

The Quality of sleep is one of the most important factors in 

our daily lives. It is crucial for balanced functioning of the 

body. There are many disorders arise due to lack of quality 

sleep viz. brain fog in which person cannot respond to 

questions as well as difficulty in focusing, depression, 

anxiety, deprived social skills and many other cardiovascular 

problems. These problems motivated us to work in this area. 

Early-stage detection is the most crucial step towards any 

disorder. Classical methods are time consuming and 

expensive. So, by the applied approach in our manuscript, we 

can automatically detect sleep disorder the stages and 

subjects.  

III. LITERATURE SURVEY  

In the previous studies, Ohayon et al. [20] suggested that 

an important quantity of the people with sleep grievances do 

not appropriate into the International Classification of Sleep 

Disorders (ICSD) and DSM-IV classifications. Additionally, 

efforts are desirable to classify diagnostic standards that will 

lead to insomnia detection. Morin et al.[21] proposed that the 

Insomnia Severity Index (ISI) is a valid instrument to 

diagnose insomnia in the population. Aydin et al.[22] 

Reported that Singular Spectrum Analysis (SSA) detected 

the oscillatory differences in sleep EEG. The EEG taste to 

support the medical findings for mental disorders. Israel et 

al.[23] calculated the temporary constancy of many 

directories of sleep in attired sleeper panels and primary 

sleep disorder. Presently, Polysomnography (PSG) is the 

gilded typical technique for the detection of insomnia. PSG 

includes recording & monitoring many signals viz. EEG, 

Electrocardiogram (ECG), Electrooculogram (EOG), 

Electromyogram (EMG), oxygen saturation, thoracic, and 

intestinal drive and additional indications. Consequently, it is 

expensive, as it needs immediate estimation in sleep 

laboratory with apparatus and experts. Insomnia detection 

developed a most important apprehension in current ages. 

Many scientists used the EEG signal for the analysis of the 

different diseases [24]–[26].   

Siddiqui et al.[27] used power spectral density for the 

recognition of insomnia sleep disorder on 10/20 sleep EEG 

recording. Gemignani et al. [28] represented that thalamic 

role in the cortical expression of the Sleep Slow Oscillation 

(SSO) in humans through SSO features in a case of Fatal 

Familial Insomnia (FFI). Kaplan et al. [29] studied that A1-

A2 channel are used in the automatic detection of sleep-wake. 

Penzel’s assembly stated that Insomnia could be identified 

through Hjorth parameters and classifies the system using the 

deep learning classifiers [30], [31]. The ECG signal is a non-

invasive and low-cost method; it can be easily applied in 

screening of insomnia. Therefore, automated insomnia 

detection based on a single-lead ECG is obtaining the 

consideration of sleep research community. Bahrami et 

al.[32]designed a machine learning model for the prediction 
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of sleep apnea based on the ECG signals. Some other 

researchers used a machine learning models based on the 

long short-term memory neural networks (LSTM) for the 

recognition of the heart diseases and sleep apnea using the 

ECG signals [33], [34]. Demir et al. [35] used ECG signals 

for the detection of person based on the ECG signals.  

We proposed a novel recognition scheme of insomnia 

aimed at the withdrawal of Heart Rate Variability (HRV) 

[36] on sleep ECG recording. Initially, the ECG channel is 

extracted from the sleep database of normal and insomnia. 

This data is record by the 10/20 normal snooze collecting 

scheme. This is applicable for the approach used in snooze 

diseases viz. bruxism [37] [38], insomnia, narcolepsy, sleep 

apnea, nocturnal frontal lobe epilepsy, rapid eye movement 

behavioral disorder. The ECG signal of the normal and 

insomnia with Sleep Stage was preprocessed using Low pass 

filter as a noise removal. After filtration of the signal, we 

detected the R-R interval of the ECG signal and estimation of 

the power spectral density.   

The Choice of an appropriate classifier to have the best 

possible result is compulsory. There is no rule and proof to 

select the best classifiers for the research work. We had to 

goals by the evaluation of the classifiers such as indicating 

the best classifier for the same feature and clarifying the 

condition in which they provide high performance. For this 

work, we achieved the subject-based and the sleep stage-

based using decision tree (DT) and Random Forest 

(RF)classifiers. Whereas, the combined scenario (i.e., 

subjects-based and sleep stage-based) is classified using 

Linear Discriminant Analysis (LDA). In the proposed work, 

the following techniques have been designed for the 

detection of insomnia sleep disorder such as extraction of the 

data set from sleep database, analysis of the work. We had to 

aim by the evaluation of the classifiers such as indicating the 

best classifier for the same features and clarifying the 

condition in which they provide high performance.  

Bahrami et al. [32] designed a machine learning model for 

the prediction of sleep apnea based on the ECG signals. 

Some other researchers used a machine learning models 

based on the long short-term memory neural networks 

(LSTM) for the recognition of the heart diseases and sleep 

apnea using the ECG signals [33], [34]. Demir et al. [35] 

used ECG signals for the detection of person based on the 

ECG signals.  

Salari et.al [56] illustrate about the sleep apnea disorder in 

which different machine and deep learning approaches have 

been used to detect the disorder. The RNN approach found to 

be more efficient as compared to SA and CNN. Different 

types of machine learning algorithms and their constituent 

accuracies for automatic detection for patients with sleep 

apnea.  The different types of databases have been discussed 

viz. IEEE database, Pub med database. The highest accuracy 

among machine learning algorithms was obtained to be 

100%. Among all the deep learning algorithm the highest 

accuracy was experienced in case of RNN.  

Widasri et. al [58] has illustrated an efficient approach for 

quality sleep classification and sleep stage classification for 

30 seconds frequency. The epochs which are to be taken are 

30 seconds. The algorithm used here is decision tree 

classifier.  

Stephansen et. al [59] here also the sleep stages have been 

determined by applying the suitable algorithm T1N marker 

based on unusual sleep stage overlaps achieved a specificity 

of 96% and a sensitivity of 91%, validated in independent 

datasets.  
 
IV. METHODS  

Insomnia is a common sleep disorder in which patients 

cannot sleep properly. Accurate detection of insomnia 

disorder is a crucial step for disease analysis in the early 

stages. The disruption in getting quality sleep is one of the 

big sources of cardiovascular syndromes such as blood 

pressure and stroke. The traditional insomnia detection 

methods are time-consuming, cumbersome, and more 

expensive because they demand a long time from a trained 

neurophysiologist, and they are prone to human error hence 

the accuracy of diagnosis gets compromised. Therefore, the 

automatic insomnia diagnosis from the electrocardiogram 

(ECG) records is vital for timely detection and cure. The 

insomnia problem has been solved by applying novel 

approach that is LDA and gives the precision of 99% for 

combined sleep stages and subjects. The proposed method 

consists of five-stages, as shown in the first stage is the pre-

processing of the ECG signal. Afterward, we extract the 

spectral features from the ECG signal in the second stage. 

The assessment of sleep quality performs in the fourth stage. 

In the final stages, sleep disorder classifies using an ensemble 

of Linear Discriminant Analysis. We use MATLAB software 

for all computations in the proposed method. The proposed 

method consists of five-stages shown in Figure 1. The first 

stage is to collect the sleep stage ECG signals from the 

Physio Net database. Second, the signal pre-processing step 

of the ECG signals is performed to segment the signals and 

noise removal. Third, we extract and normalize the spectral 

HRV features from the ECG signals. Fourth, the sleep 

quality assessment is performed. In the final stages, sleep 

disorder is classified in three different scenarios:(1) subject-

based classification scenario (normal Vs. insomnia), (2) 

sleep stage-based classification (REM Vs. W. stage), and (3) 

the combined classification scenario using both subject-

based and sleep stage-based features. The ensemble 

learning of random forest (RF) and decision tree (DT) 

classifiers are used to perform the first and second 

classification scenarios, while the linear discriminant 

analysis (LDA) classifier is used for the third scenario. 

Previously, the most of the sleep disorder investigation had 

concentrated on sleep stage regardless the subject-based 

status. The MATLAB software is used to execute the 

experimental study in this work. 
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A. DATASET  

For this work, the sleep electrocardiogram (ECG) signals 

are extracted from the freely public Physio Net dataset [39] 

and they are used to build the proposed insomnia-based 

framework. The Physio Net dataset has different waveform 

TABLE I. DATASET DESCRIPTION 

signals such as electroencephalogram (EEG), 

Electrocardiogram (ECG), Electrooculogram (EOG), 

Electromyogram (EMG), and the respiration signals [40]. 

As it is proven that the insomnia detection system based on 

the features of REM and W stages of sleep is more accurate 

than others [41], [42] we choose to build our framework 

based on those insomnia features as well. In this work, the 

total number of 2,752 ECG data recordings including 14 

normal and insomnia subjects (i.e., six males and eight 

females) are collected and used as described in Table 1 

where a single ECG recording is collected in a one minute. 

Additionally, two sleep stages of REM and W stage are used. 

The sleep dataset from the PhysioNet has 1,600 ECG 

recordings of the REM stage, and 1,600 ECG recordings of 

W stage. 

B. HRV Extraction from the ECG Signal 

ECG signal have six types of waves such as P, Q, R, S. T, 

and U for the measurement of the cardiac signal. The P wave 

represents the atrial depolarization, QRS represented the 

ventricular depolarization, T wave represented the ventricular 

re-polarization, and U wave represented the muscle re-

polarization [43]. The HRV measurements are captured non-

invasively from the ECG signal. The results from HRV data 

are capable of portraying physiological condition of the 

patient and indicator of the heart diseases [44]–[46]. We 

estimated the HRV signal per subject using the Pan-

Tompking method [36]. The HRV is the beat-to-beat variant 

of the ECG recording. It is also called the variation of peak-

to-peak samples. We used the R peak for finding the HRV 

 

signals. We detected the R peak and then R-R distance from  

the sleep ECG signal of normal and insomnia cases. The R-R 

intervals are described in equation (1), 

𝑅𝑅(𝑛) = 𝑅(𝑛 + 1) − 𝑅(𝑛), (1) 

where, RR(n) is the R-R interval and R(n) is the position of 

nth order of the R wave. 

 

C. Estimation of the Power Spectral Density (PSD) 

The power spectral density (PSD) has been estimated and 

evaluated via the P.D. Welch approach that was found in 

1967[47]. This approach could change the period sequence 

into the section information, and evaluate the changeable 

periodic signal representation of the entire information. 

Some sections could be overlaid in the section’s 

samples[48], [49]. The approaches are described in 

equations (2) to (4), 

                                               (2) 

 (3) 

                                   (4) 
where, U is equivalent to the reimburse for the harm of 

signal and D information of section in which whm (n) is the 

segment range, is the parametric value which is non-

changeable, and  be the actual and invented stage of nth 

section, and Pw(f) is the Welch approach. 
 

D. Decision Tree (DT) Classifier  

Decision tree (DT) is a supervised machine-learning 

classifier where information is constantly separately 

applicable on the different constant values. It is separated 

into two stages: classification sapling and reversion sapling. 

Here in manuscript the classifier is dual few parameters of 

the random moment in saplings are dividing into small 

subparts which must be in range of five. The main benefits 

of this classifier are that computation time is lower, de-

noising is embedded in it. Pseudo code of the DT classifier 

is shown in Table II. The DT classifier described in 

equation (5) and (6), 
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Subjects Gender 
Age 

 (Years) 
No of Recordings/ Time of 

the Recording (Minutes) 

Normal 

cases 

(6 patients: 

2 Males and 

4 Females) 

 

Female 37 124 

Male 34 125 

Female 35 140 

Female 35 109 

Male 23 131 

Female 28 213 

Insomnia 

cases  

(8 patients: 

4 Males and 

4 Females) 

Male 54 130 

Male 82 177 

Female 58 90 

Female 59 507 

Female 54 278 

Female 47 454 

Male 64 144 

Male 72 130 

                 Mean 

                     ±SD 

48.714 

±16.807 

196.571 

±124.917 
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where, Ht is the regular indecision after execution test t, Pj 

is the chance that the examination has j outcome, and Rt is 

the regular lessening in doubt attained by examination t.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE II. THE DECISION TREE (DT) Pseudo Code (ALGORITHM) 

Input: Information 

1.  Loop: 1 to N // To get forecast period 

 1.1Compute the detachment Di 

 

(Euclidian/ Cosine/ Chebyshev) amid information 

example in exercise information and examination 

information 

2.  Progressively position the calculated detachments (Di) 

3.  
Inhabit the higher k consequences from the decided 

slope 

4.  Pick up the most frequent class from the list 

5.  
Repeat steps: 1 to 4 and build the forest by generating 

‘n’ number of decision trees 

6.  Pick up the most frequent class from the list 

7.  Create separate two stages by the classification sapling 

8.  Then divide the saplings into sub parts. 

9.  The range of the sub parts is in the range of 5 

Output: Subsequent lesson 

 

 
Figure 1. Organizational diagram of the proposed study based on DT and RF machine learning classifier.

E. Random Forest Classifier  

Random forest (RF) is an arrangement of the tree predictors 

such that every tree depends on the values of a random 

vector sampled individually and with the same circulation 

for all trees in the forest [50]. RF is an ensemble learning 

technique for regression, classification, and other works. It 

is constructed by a multitude of trees in training and output 

is based on singletree[51], [52]. It was designed by Tin 

Kam Ho using random subspace method [53], [54]. We 

used ten numbers of trees in this proposed work. Pseudo 

code of the RF classifier is mention in Table III.  
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TABLE III. THE RANDOM FOREST (RF) PSEUDO CODE (ALGORITHM) 

Input: Training set S with F features 

1.  Randomly pick ‘p’ features ‘F’ features, ∀ p< F 

2.  
Using ‘p’ features, determine the node ‘d’ by the finest 

fragmented 

3.  
Break the node into child bulges by smearing the best 

fragmented method 

4.  
Iterate steps: 1 to 3 until ‘1’ number of nodes has been 

touched 

5.  Till 3 number of nodes are obtained. 

6.  The circulation of the trees. 

7.  Create separate two stages by the classification sapling 

8.  Then divide the saplings into sub parts. 

9.  The range of the sub parts is in the range of 5 

Output: Random Forest Trees (RFTs) 

F. Linear Discriminant Analysis (LDA) Classifier  

The renowned scientist RA Fisher discovered the LDA in 

1936. It is based on the idea of incisive for a linear 

arrangement of predictors that discriminate two targets 

[55], [77]. The LDA are described in equations (7) to (12), 

 

                            (7) 

                                                                   (8) 

                                                               (9) 

                                                        (10) 

                                                             (11) 

                                                  (12) 

 

where, S(f) is a score function, Lmc is a linear model 

coefficient, C is the pooled covariance matrix, C1 and C2 are 

the covariance matrices, µ1 and µ2 are the mean vector, Mg 

is the Mahalanob is distance between two groups, and x is 

the coefficient vector. 

G. Evaluation of the Proposed Framework  

After selection the suitable collection of the features, robust 

machine learning classifiers such as DT and RF are used as 

an ensemble learning for better evaluation of the subject-

based and sleep stage-based classification scenarios. For the 

third classification scenario (i.e., combined features from 

both subject-based and sleep stage-based scenarios), the 

LDA classifier is used. The proposed framework is 

evaluated using 3,200 ECG signal recordings including 

1,600 REM stage and 1,600 W-stage of both normal and 

insomnia subjects. We designed the classification of subject 

and Sleep Stage based on models such as cross-validation 

(2 and 5-fold) with random sampling. The evaluation 

process is achieved using the F1-score, precision, 

sensitivity, specificity, and accuracy for the classification 

for all classification scenarios[56]–[60]. The definition of 

such metrics is described in equations (13)-(16) below: 

( )

TP
precision

TP FP

 
=  

+                                                          (13) 

( )
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FN TP

 
=  

+                                                          (14) 

( )

TN
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FP TN

 
=  

+                                                (15) 
( )

( )

TP TN
Accuracy

TP TN FP FN

 +
=  

+ + +                                              (16) 

 

F1 = 2*Precision * Recall/ Precision +Recall                             (17) 

 

where the TP, FP, TN, and FN indicate the true positives, 

false positives, true negatives, and false negatives cases, 

respectively. Such parameters are derived based on the 

confusion matrices at each fold test trail.  

 

V. RESULTS AND DISCUSSION  

A. Preprocessing and Feature Extraction 

The 70 percent of the cardiac arrests are found in the time 

of insomnia. We used 3,200 ECG recordings including 

1600 REM stage and 160 w stages. The duration of the 

experimental dataset is 3,200 minutes. We extracted the 

single ECG signal of the normal and insomnia in the sleep 

recording from Physionet for the detection of insomnia 

shown in Figure 2. Because single-channel recordings are 

easy and accurate to identify the diseases[61], [62], [63].We 

removed the noise of the subject using low pass filter. After 

filtration, we calculated the HRV of the signal from the 

subjects. The R peak to peak of the ECG signal from all 

subjects is shown in Figure 3. The variation of 

instantaneous both heart rate and RR intervals are called 

HRV. In the cardiac system, the heart rate varies due to age, 

disease, neuropathy, respiration, and heart load. After HRV, 

we calculated the power spectral density of the signal using 

the Welch method. This method converts the signal from 

the time domain into the frequency domain. However, 

Welch method is used in the estimation of power signals at 

different frequencies. The ECG feature extraction is one of 

the crucial plays in detecting the cardiovascular disorder. 

The span of ECG signal contains P-QRS-T waves. The 

extraction system takes out the amplitudes and time 

intervals between them which attain the proper operation of 

the heart.  

Nowadays, various manuscripts define about the 

approaches used in converting the planned literature for 

extracting the feature of ECG signal. The crucial 

information in cardiac signal dispensation and their 

executed replications are elaborated as follows. The 

denoising method is applicable in the time period of prior 

dispensation of the response signal. For getting better 
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results it is crucial that the signals are interrupted by noise 

and should be removed to get efficient outcomes. 

approaches used in these are base motion, frequency 

interruption, muscle movement and quick response. the 

limit of the frequency cannot affect the frequency limit for 

the ECG signal which can be removed by one of the 

efficient approaches that is simple band stop filter.  

 

 
Figure 1. ECG Signal representation from the (a) normal and (b) Insomnia subjects. 

 
Figure 2.Peak to peak R signal of the ECG signal from the (a) normal and (b) Insomnia subjects.

 

B. Subject-based Classification Scenario 

In this scenario, DT and RF classifiers are used achieving 

the classification based on the normal and insomnia binary 

classification scenario. To show an example evaluation 

result, we designed three models which are the results of 

the random sampling and two verifying techniques: 2nd and 

5th fold cross validation. The evaluation results of this 

scenario are recorded in Table IV. The average 

performance of the subject-based classification scenario is 

recoded to be F1-score of 85.55%, precision of 86.18%, 

recall of 85.41%, specificity of 81.30%, and overall 

accuracy of 85.41%. From Table IV, it is clearly shown that 

both DT and RF could achieve much similar results with 

slightly better performance in the RF classifier. The result 

varying is due to the DT and RF training algorithms that 

depends on the internal weights fine-tuning during the 

training process. 

 

 

 

Table IV. PERFORMANCE (%) OF THE SUBJECT-BASED 

CLASSIFICATION SCENARIO 

Models Method F1 Precision Sensitivity Specificity Accuracy 

Random 

Sampling 
 

DT 

83.70 85.20 83.20 82.80 83.20 

2-Fold 85.80 85.70 85.90 78.20 85.90 

5-Fold 86.10 86.10 86.20 78.70 86.20 

Random 

Sampling 

 

RF 

84.40 86.90 83.80 87.00 83.80 

2-Fold 86.40 86.40 86.50 80.20 86.50 

5-Fold 86.90 86.80 86.90 80.90 86.90 

Ensemble 

Result 

Mean 85.55 86.18 85.41 81.30 85.41 

±SD 1.12 0.59 1.39 2.95 1.39 
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C. Sleep Stage-based Classification Scenario 

Similarly, both DT and RF classifiers are used to classify 

the sleep stage-based into REM Vs. w stages. Also, the 

same evaluation strategy is designed to evaluate the 

performance of this scenario: random sampling and 

randomly two-fold tests are selected [78]. The Table V 

presented the individual and ensemble performance of the 

sleep stage-based classification scenario using DT and RF 

classifier. The highest performance of the DT classifier is 

recorded to 87% for all metrics except the specificity it is 

estimated by 85.0%. Using the RF classifier, the evaluation 

performance is much better achieved by 88.0% for F1 and 

precision, 87.90% for sensitivity and accuracy, and 86.80% 

for specificity.   

Table V. PERFORMANCE (%) OF THE SLEEP STAGE-BASED 

CLASSIFICATION SCENARIO 

Models Method F1 Precision Sensitivity Specificity Accuracy 

Random 

Sampling 
 

DT 

24.40 17.30 41.50 58.50 41.50 

2-Fold 86.50 86.50 86.60 84.40 86.60 

5-Fold 87.00 87.00 87.00 85.00 87.00 

Random 

Sampling 

 

RF 

75.90 84.60 76.20 83.00 76.20 

2-Fold 87.60 87.60 87.60 86.30 87.60 

5-Fold 88.00 88.00 87.90 86.80 87.90 

Ensemble 

Result 

Mean 74.90 75.16 77.80 80.66 77.80 

±SD 22.96 25.90 16.73 9.99 16.73 

 

The unsupervised learning architecture was applicable in 

the literature using the recognition of sleep stage[64]. Boe 

et al. [65] utilized a multimodal devices assessing hand 

hastening, ECG, and Acti Watch for the diagnostic sleep 

stage such as w, REM, and NREM.  Bajaj et al. [66] 

intended a programmed scheme for the diagnostic sleep 

stage by means of time occurrence pictures of the EEG 

indications. Mitsukura et al. [67] argued that ECG degree 

dimension are obliging and informal to sleep stage 

checking. 

D. Combined Classification Scenario 

In this scenario, the features of subject-based (i.e., normal 

Vs. insomnia) and sleep stage-based (REM Vs. W. stage) 

scenarios are combined together. Then, LDA classifier is 

used for the classification purpose. Figure 4 shows the 

average evaluation results in similar way of the first and 

second scenarios. The best classification performance is 

achieved in terms of F1, precision, sensitivity, specificity, 

accuracy to be99.0%, 99.0%, 98.0%, 100%, and 99.0%, 

respectively. This means the hybrid model via LDA could 

achieve the best accuracy compared with other scenarios.  

 
Figure 3. Ensemble evaluation performance comparison 
among the three proposed classification scenarios. 

E. Comparison Study with the Existing Works 

The earlier approaches used in the insomnia detection is not 

that efficient as some can detect sleep stages and some can 

diagnose subjects. The approach used in the manuscript 

give three types of classification i.e., sleep stages 

classification, subject classification and combined 

classification of sleep stages and subjects. The technique 

also gives the maximum accuracy by using LDA classifier 

as described above. The accuracy for LDA classifier for 

combined classification is 99% which is better than the 

approach used earlier. The unsupervised learning 

architecture (deep belief nets and concealed Markov 

prototypical) had applied for the identification of sleep 

stage [64]. Boe et al. [65] had applied the multi scheme 

sensor scheme estimating random eye movement, non-

random eye movement for sleep detection. Here, we 

considered a programmed scheme for the diagnostic Sleep 

Stage by means of period occurrence imageries of the EEG 

signals. Mitsukura et al. [67] argued that rate of heart are 

obliging & informal to sleep stage nursing. They calculated 

positively four stages with accuracy of 66% of the system. 

In the proposed work, the LDA classifier’s model random 

sampling is highest in performance to other models of RF 

classifier. 

TABLE VI. COMPARISON STUDY WITH THE EXISTING METHODS FOR 

INSOMNIA SLEEP DISORDER AND SLEEP STAGE CLASSIFICATION 

Reference Detection Classifier 
Accuracy 

(%) 

Abdullah et al. [68] Insomnia FNN 81.00 

Shahin et al. [69] Insomnia DNN 90.00 

Hassan et al. [70] Sleep Stage AB 94.00 

Zhang et al. [71] Sleep Stage OCNN 88.00 

Zhou et al. [72] Sleep Stage RF, LGB 91.00 

Proposed Work  

Insomnia 

and Sleep 

Stage 

Ensemble 

(Subject-based) 
86.90 

Ensemble (Sleep 

Stage-based) 
87.90 

LDA (Combined) 99.00 

FNN: Feed Forward Neural Network, DNN: Deep Neural Network, AB: Adaptive 

Boosting, OCNN: Orthogonal Convolutional Neural Network, RF: Random Forest, 

LGB: Light GBM, LDA: Linear Discriminator Analysis, DT: Decision Tree 
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We also compare our method with some insomnia and sleep 

stage detection methods. The data from those methods 

include EEG and ECG with different classifiers such as 

Feed Forward Neural Network (FNN), K-means, Deep 

Neural Network (DNN), Adaptive Boosting (AB), 

Orthogonal Convolutional Neural Network (OCNN), RF, 

and Light GBM (LGB). The Table VI revealed that our 

model has better performance than other selected models of 

insomnia and sleep stage classifications. Besides, our 

method can reach higher sensitivity, specificity and 

accuracy. The advantages of the proposed approach are that 

it can automatically accurately detect the insomnia disorder 

in the very early stage so as to prevent the patient from any 

cardiovascular disorder and also brain stroke. The 

automatic detection approach is less time consuming and 

gives the accurate precision by giving the classification for 

combined subjects as well as sleep stages. Accurate 

detection of insomnia disorder is a crucial step for disease 

analysis in the early stages.  

F. Applications of the Proposed Work 

The planned effort presented a submission for the 

identification of insomnia using ECG recording. This 

manuscript will deliver additional accurate and effective 

detection systems of insomnia for therapeutic applications. 

The maximum significant submission of the proposed work 

is to identify cerebral patients fast and accurately. It also 

detects the patients with sleep stage to help doctors for the 

treatment. The current effort has approximately limited that 

the planned information from the Physio Net web was 

ancient and minor for the estimation. Furthermore, would 

be obligatory for a great amount of actual information to 

examine the current effort for greater precision.  In the 

future, we will use diverse sleep disorders like bruxism, 

narcolepsy, etc. to design a common detective system for 

all sleep disorders using other physiological signal. 

VI. CONCLUSION  
We conclude that it is possible to determine sleep disorders 

based on sleep quality features from 30-seconds epoch of 

the ECG signal. This approach is proven reliable in 

modeling sleep disorders without preoccupied with a 

multichannel signal of PSG. Moreover, it also easy to be 

implemented in an embedded hardware device. On the 

other hand, atrial fibrillation and other heart rhythm 

disorders are prevalent in the elderly population. It might 

have an impact on the HRV analysis. However, HRV able 

to assess sympathetic and parasympathetic influences on 

disease states. Hence, in further analysis, HRV can be 

improved following the intervention, and thus it has the 

ability to assess autonomic dysfunction in the elderly’s 

heart rhythm disorders, such as atrial fibrillation, 

arrhythmias, and ventricular arrhythmias. In future, we 

intend to observe the autonomic dysfunction in the elderly 

via HRV intervention. Insomnia is a highly predominant 

health issue in globally. In this present work, we have 

developed a machine learning classification method to 

detect insomnia with sleep stages using a single sleep ECG 

recording (with 72 male and 28 female samples). The 

results show that the RF classification is best in the subject 

classification (Kindly refer Table IV, pg.no.5 in the main 

manuscript). The Decision Tree (DT), Random Forest (RF) 

and Linear Discriminant Analysis (LDA) classification 

approaches have been incorporated to enhance the accuracy 

(kindly refer Table IV, V and VI on page no. 5, 6 in the 

main manuscript).  In addition, the DT classifier accuracy is 

found to be 94%, RF to be 96% and LDA classifier is 

highest in combine accuracy (99 %) with the subject 

(normal and insomnia) and its sleep stage (wake up and 

random eye movement). Therefore, we summarize that the 

LDA classifier can be utilized in the detection of insomnia 

due to its maximum accuracy (99%). Therefore, it will be 

easy and more effective the detection of insomnia sleep 

disorder with its sleep stages as discussed above. So, we 

can say that the proposed method (LDA) is better than other 

insomnia detection methods. Furthermore, the future 

research from this work can be extended to detect 

narcolepsy, bruxism and nocturnal frontal lobe epilepsy 

using single channel/multichannel of the sleep recordings. 
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