
Abstract-Methods of classification of cardiac arrhythmias have 

decisive influence on performance of all electrocardiography 

(ECG) signal processing systems. This work presents a new 

framework for nonlinear pattern recognition /classification of 

ECG based on the n-dimensional moment invariants recordings 

of patients suffering from ventricular arrhythmias. A novel 

approach of applying the theory of moment invariants to 

analyze ECG used to improve the accuracy and reliability of the 

outcome predictions. The performance measures of the 

sensitivity and specificity of these algorithms will also be 

presented using data sets from the MIT-BIH Arrhythmia 

database. 
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I. INTRODUCTION 

 

Application of nonlinear methods (fractal analysis, order 

statistics based methods) was used in detecting of various 

diseases and abnormal patient states from physiological 

signals like ECG. The main interest is focused on detecting 

states leading to sudden cardiac death from the ECG signals. 

In the last two decades, there has been an increasing interest 

in applying techniques from the chaotic dynamical system 

theory in studying ECG signals, several features can be used 

to describe system dynamics including correlation dimension, 

Lyapunov exponents, approximate entropy, etc. These 

features have been used to explain ECG signal behavior by 

several studies. Nevertheless, these studies applied such 

techniques only to a few sample ECG signals. Due to the 

stochastic of such signals, such studies did not allow the 

extraction of a general statistical description of the dynamics 

of different arrhythmia types. 

A nonlinear, state space based method to quickly and 

accurately identify   Life-threatening arrhythmia was 

proposed. By means of state space reconstruction, a time 

series of interest can be embedded to a high-dimensional 

space, namely state space. The trajectory constructed from 

the time series using state space reconstruction reveals more 

straightforwardly the dynamical behaviors of the system that 

governs the generation of the time series. The high-

dimensional trajectory contains useful information for 

nonlinear signal classification. So far, most nonlinear features 

in the current literature are global measurements of the 

trajectories in the sense of dynamics and geometry [1], 

among which Lyapunov exponent and fractal dimension are 

the dominant means [2]. The global measurements are limited 

in that shape details of trajectories do not reflect in the 

measurements at all. In case that the global measurements are 

not distinct enough among different classes, shape details of 

trajectories becomes the only clues to separate them. 

However, we have been suffering from the lack of available 

tools to characterize shape details of the trajectories. To fill 

this gape, a new framework based on moment invariants has 

been shown to be effective for classification of ECG signals. 

The ECG recordings were transformed into phase space, and 

some features based on the n-dimensional moment invariants 

were computed. A significant test was applied on the 

computed features to be used in the classification process. 

Finally, statistical classification techniques were used to 

assess the possibility of detecting and classifying arrhythmia 

using such features. 

The ECG signals were obtained from the MIT-BIH 

arrhythmia database; the data set used in the classification 

experiments contains the signals from five different types 

including normal ECG, ventricular couplet (VC), ventricular 

bigeminy (VB), ventricular tachycardia (VT), and ventricular 

fibrillation (VF). The data set was divided into learning and 

testing data set, 64 independent signals for the learning set of 

each type and 32 independent signals for the test set of each 

type. All the signals were sampled at 360 samples/s except 

VF signals that were sampled at 250 sample/sec. 
 

II. METHODOLOGY 

 
The implementation of the proposed scheme is outlined as 

follows. 

1) State space reconstruction: State space reconstruction 

is the fundamental for analyzing nonlinear signals, by which 

a time series can be embedded to n-dimensional space. The 

state space reconstruction performed on a given time series 

[Si]:i=1,2,…,NT is as follows. First, two parameters, the delay 

time J and embedding dimension N, should be computed. 

Then, a N-dimensional vector sequence [Xj]:j=1,2,…,M can 

be constructed from the time series by letting 

Xj=(Sj,Sj+J,Sj+2J,…,Sj+(N-1)J)
T
, where M=NT-(N-1)J. The 

determination of J and N are open problems yet. Here, the 

computation of J follows [3]. Let A(k) represent the 

autocorrelation function of the time series, where k denotes 

the discrete-time step. Once A(k) drops below A(0)/e, let J=k. 

The n-dimensional phase space trajectory of the ECG 

signals was reconstructed using the delay time embedding 

method, where the embedding dimension n was calculated 

using the false nearest neighborhood (FNN) algorithm (n = 

8), using the TSTOOL package[4]. 

Examples of reconstructed state spaces of the arrhythmias 

under study are shown in figure1. 

  2) High-dimensional moment invariants: Moment invariants 

are properties of trajectories in ECG signal. They are useful 

because they define a simply calculated set of region 

properties that can be used for classification and they 

describe signal independent of translation, scale and rotation.  

The history of moment invariants begun many years before 

the appearance of first computers, in the 19th century under 

the framework of the theory of algebraic invariants. The 

theory of algebraic invariants probably originates from 

famous German mathematician David Hilbert [5]. Moment 
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invariants were firstly introduced to the pattern recognition 

community in 1962 by Hu [6], who employed the results of 

the theory of algebraic invariants and derived his seven 

famous invariants to rotation of 2-D objects. Since that time, 

numerous works have been devoted to various improvements 

and generalizations of Hu’s invariants and also to its use in 

many application areas. Dudani [7] and Belkasim [8] 

described their application to aircraft silhouette recognition, 

Wong and Hall [9], Goshtasby [10] and Flusser and Suk [11] 

employed moment invariants in template matching and 

registration of satellite images, and many other authors used 

moment invariants for character recognition. Moreover, no 

one of them paid attention to use moment invariants in signal 

analysis. 

The n-dimensional moments of order p of a function of 

intensity ρ(x1, ..., xn) = ρ(x) are defined in terms of Rieman 

integral as: 
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n
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From this, we get µ0…0 = m0…0 = µ . 

Where µ  represents the zeroth order moment, the central first 

moment is zero, and the second central moment is the 

variance. In this work the moment invariants were 

reconstructed with P=2, and n = 8. 

We select from the following absolute moment invariants 

[12] seven features for the ECG classification. 
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3) Features due to transform every trajectory to a new 

coordinates: The three features used to control the 

transformation have been selected to be the θ, α are angular 

displacements in radians measured from the x-y plane, and 

the x-z plane, respectively, and R is the distance from the 

center of gravity to points in trajectory. All features for five 

different ECG types serve as input to a set of statistical 

classifiers. 

 

III. RESULTS AND DISCUSSION 

 

The seven features (φ1, φ2, φ3, φ4, φ5, φ7, φ8), and the three 

features (R, θ, α) were extracted to form the features vectors. 

In this work, the T-test was used to test the significance of 

each feature to be used in classifying different arrhythmia 

types. Results of significance test for each feature was shown 

in tables I-XI. 
 

TABLE I 

P-values of t-test for φ1 

TABLE II 

P-values of t-test for φ2 

 VC VT VB VF 

Normal 5.8459e-13 1.426e-4 6.9459e-8 0.0135 

VC  0.0149 4.5932e-5 0.0441 

VT   0.1119 0.0575 

VB    0.2859 

TABLE III 

P-values of t-test for φ3 

 VC VT VB VF 

Normal 0.0192 0.1505 3.0668e-4 0.1506 

VC  0.5259 0.0015 0.2121 

VT   1.256e-4 0.1340 

VB    5.328e-4 

TABLE IV 

P-values of t-test for φ4 

 VC VT VB VF 

Normal 3.4168e-5 4.3813e-4 1.0644e-5 0.0182 

VC  0.0285 2.765e-4 0.0574 

VT   1.7405e-4 0.0668 

VB    0.1636 

TABLE V 

P-values of t-test for φ5 

 VC VT VB VF 

Normal 7.8312e-6 0.2607 0.0026 0.0377 

VC  0.3718 0.0165 0.0967 

VT   0.7309 0.4369 

VB    0.6860 

 VC VT VB VF 

Normal 6.6829e-5 0.0344 0.0881 0.3413 

VC  0.0708 0.1438 0.4132 

VT   0.1300 0.3840 

VB    0.5245 
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TABLE VI 

P-values of t-test for φ7 

 VC VT VB VF 

Normal 2.5071e-10 1.9405e-5 1.2443e-4 0.1994 

VC  0.0083 0.0043 0.3185 

VT   0.0130 0.2752 

VB    0.4572 

 

TABLE VII 

P-values of t-test for φ8 

 VC VT VB VF 

Normal 1.1110e-4 2.3489e-4 1.7371e-8 0.0184 

VC  0.0160 1.4495e-6 0.0412 

VT   2.367e-5 0.0387 

VB    0.3582 

 

TABLE VIII 

P-values of t-test for R 

 VC VT VB VF 

Normal 1.410e-12 3.534e-4 3.9276e-3 0 

VC  0.0593 4.237e-3 0 

VT   1.1176e-4 1.560e-4 

VB    3.1814e-4 

 

TABLE IX 

P-values of t-test for θ 

 VC VT VB VF 

Normal 0.5455 0.0610 0.1213 0.0040 

VC  0.2217 0.0283 9.233e-4 

VT   3.2251e-4 1.2225e-5 

VB    0.0400 

. 

TABLE X 

P-values of t-test for α 

 VC VT VB VF 

Normal 0.1919 0.3001 0.4849 6.3963e-4 

VC  0.8002 0.0272 6.034e-6 

VT   0.0499 2.1702e-5 

VB    4.825e-4 
 

The results confirm that the normal ECG signals can be 

statistically differentiated from VC by the features (φ1, φ2, φ3, 

φ4, φ5, φ7, φ8, θ, α), from VT by the features (φ1, φ2, φ4, φ7, φ8, 

R), from VB by the features (φ1, φ2, φ3, φ4, φ5, φ7, φ8, R), and 

from VF by the features (φ2, φ4, φ5, φ8, R, θ, α). We can also 

deduce that features (R, θ, α) can discriminate between VF 

and other abnormal signals, and features (φ3, R) can 

discriminate between VB and other abnormal signals. 

Moreover, features (φ1, φ2, φ4, φ7, φ8) can discriminate 

between VC and VT. 

The features were fed into classification process based on 

minimum distance classifier; K-NN classifier. Results showed 

that the features in one vector were applicable to 

classification of different classes. Classification results are 

listed in tables XI-XII.  

The K-NN classifier provides better results in both the 

detection and classification process, especially at k=1. But 

Min.distance classifier shows the lowest sensitivity. 

 
 

IV. CONCLUSION 
 

This paper advocates that moment invariants can be used in 

signal analysis as features for description and recognition of 

ECG signal. Moreover, this new framework strategy can be 

used for enhancing the detection purpose. Invariant-based 

approach is a significant step towards robust and reliable 

recognition methods. It has a deep practical impact because it 

provides very useful information for cardiac arrhythmias. 

Based on the high levels of accuracy obtained by the 

proposed method, future work should extend to the analysis 

and classification of other types of signal by other statistical 

classification techniques. 
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Sensitivity Specificity Classifier 

60.156% 84.375% Min.Dis. 

86.718% 87.50% KNN(k=1) 

81.615% 85.906% KNN(k=2) 

81.615% 85.781% KNN(k=3) 

81% 81.093% KNN(k=4) 

81% 81.093% KNN(k=5) 

75.15% 81.875% KNN(k=6) 

Sensitivity 

for VF 

Sensitivity 

for VB 

Sensitivity 

for VT 

Sensitivity 

for VC 

specificity classifier 

96.875% 43.750% 53.125% 46.875% 84.375% Min.Dis. 

87.50% 84.375% 81.25% 93.75% 87.50% KNN(k=1) 

78.125% 75.00% 78.125% 84.375% 84.375% KNN(k=2) 

78.125% 68.75% 78.125% 78.125% 84.375% KNN(k=3) 

78.125% 62.50% 68.75% 75.00% 81.25% KNN(k=4) 

78.125% 62.50% 71.875% 71.875% 81.25% KNN(k=5) 

78.125% 62.50% 78.125% 68.75% 78.125% KNN(k=6) 

TABLE XII 

Results for classification process using different classifiers 

Fig.1. The 3-D plots of the first 3 vectors of the reconstructed phase space of 

(a) normal, (b) VC, (c) VT, (d) VB, (e) VF 

TABLE XI 

Results for detection process using different classifiers 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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