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Abstract—Due to the required computational effort of 4D 
ultrasound imaging, such systems depend on low complexity 
techniques like nearest neighbor interpolation, which affects 
volume quality. Moreover, more accurate techniques like 
normalized convolution, backward trilinear interpolation, and 
forward spherical and ellipsoidal Gaussian kernel, are avoided in 
real-time imaging because of the tight reconstruction time. The 
goal of this work is to utilize recent commercial graphics 
hardware technology of graphics processing unit (GPU) to speed 
up the reconstruction time while increasing the quality of 
displayed volume. 
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I.  INTRODUCTION  
Four-dimensional (4D) or real-time three-dimensional 

ultrasound imaging has become an important diagnostic tool 
for many clinical applications. Its implementation includes 
three consecutive steps for acquisition, volume reconstruction 
and visualization. Limitations of its implementation arise from 
its demanding computational requirements for the latter two 
steps that traditionally involved expensive custom processing 
hardware. As a result, 4D option is not currently available for 
most low-end and medium range ultrasound imaging systems. 

Several approaches have been developed to lower the cost 
of 4D ultrasound systems. For example, the required 
computational effort of 4D ultrasound imaging can be lowered 
using low complexity volume reconstruction techniques such 
as nearest neighbor interpolation. Nevertheless, such methods 
affect reconstructed volume quality to a great extent. 
Moreover, more accurate techniques like normalized 
convolution, backward trilinear interpolation, and forward 
spherical and ellipsoidal Gaussian kernel, were not practical for 
real-time imaging because of the tight reconstruction time 
available [1].  

Direct volume rendering methods compute images of a 
volumetric data set without explicit extraction of geometric 
surfaces from the data. Optical model is used to map data 
values to optical properties; namely, color and opacity. Then, 
the optical properties are projected using a suitable projection 
function along each viewing ray to render the data. In practical 
systems, volume data are stored either as a stack of 2D texture 
slices or as a single 3D texture object. Such data represent 
samples on a given sampling grid. Values in between grid 

elements can be computed by interpolating data at neighboring 
such elements. This process is known as volume reconstruction 
and has usually demanding computational requirements. 

During the rendering process, the optical model describes 
how points in the volume interact with light. Optical 
parameters are usually taken as the data values directly, or they 
are derived from applying one or more transfer functions to the 
data values. The choice of a transfer function emphasizes 
desired features within the data and can be implemented as 
lookup tables. Output images are generated by sampling the 
volume along all viewing rays and accumulating the resulting 
optical properties to compute a pixel for each ray. Texture-
based techniques perform the sampling step by rendering a set 
of 2D geometric primitives inside the volume.   

Many real-time volume visualization techniques use texture 
mapping, which has several disadvantages. For example, 3D 
texture depends mainly on regularly sampled data on texture 
coordinates such as 3D rectilinear grid. Other techniques 
depend on regular proxy geometry to map texture. While 
texture mapping exploits hardware acceleration in graphics 
processing units (GPU), they introduce approximation artifacts 
in ultrasound imaging applications with polar sampling. 
Alternatively, ray casting visualization does not depend on 
proxy geometry to map data on. This alleviates approximation 
artifacts introduced by texture mapping. The problem with ray 
casting is its prohibitively high computational complexity 
especially in real-time applications such as 4D ultrasound. 
Recent GPUs support programmable pipelines and 
multiprocessing streaming units, which make it possible to 
implement ray casting in real-time using GPUs [2]. 

At the present, most medical volume rendering 
implementations are based on slice-based methods where axis- 
or viewport-aligned textured slices are blended together to 
approximate the volume rendering integral. However, slice-
based implementations are rasterization-limited and difficult to 
optimize. Moreover, when applying such transfer functions as 
perspective projection, the integration step size will vary along 
viewing rays when using planar proxy geometries, leading to 
visible artifacts. As a result, slice-based techniques cannot 
present an optimal volume visualization framework [1].  

The advent of DirectX Shader Model 3 and comparable 
OpenGL extensions has led to graphics processors providing an 
ideal platform for efficiently mapping ray casting-based 
volume rendering to hardware. This fragment-program based 
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ray casting does not suffer from any flexibility issues and, 
therefore, offers an optimal volume visualizing tool. Moreover, 
new graphics hardware designs encourage the use of novel 
fragment program features with much faster current and 
planned generations of graphics hardware. Hence, our goal in 
this work is to take advantage of this new direction and utilize 
recent commercial graphics hardware technology of GPUs to 
speed up the volume reconstruction time while increasing the 
quality of visualization. The target is to achieve high-quality 
volume rendering using ray casting at frame rates suitable for 
present 4D ultrasound imaging applications. 

II. GPU BASICS 
Over the past decade, GPUs have become widely available 

in PCs. GPUs feature powerful computing resources and high 
memory bandwidth, which enable high performance on 3D 
graphics applications. 3D graphics computations are organized 
into a graphics pipeline that outlines the series of computation 
stages between the scene input and the image output. The 
input to the graphics pipeline is a scene consisting of a list of 
geometry (defined as connected vertices) and a set of graphics 
instructions to compute the scene from the geometry. The 
GPU then processes and maps those vertices into screen-space 
geometry, which in turn is divided into pixel-sized fragments, 
in a process called rasterization. Each fragment is then 
associated with a pixel position on the screen. Finally, the 
fragments are processed and assembled into an image made of 
pixels [3]. 

The pipeline contains on the order of a dozen stages, 
each of which is implemented a separate processor per stage. 
The typical input to the pipeline is tens to hundreds of 
thousands of vertices, each of which can be processed in 

parallel on the GPU. The complex graphics pipeline is thus 
divided in space, with separate processors on the GPU running 
each stage in parallel. This is different from that of a CPU, 
which only features a single processor [3].  

From a programming perspective, GPUs feature two 
programmable stages; namely vertex and fragment processors. 
The vertex stage runs a user-defined program on each input 
vertex input, while the fragment stage runs a different program 
on every fragment. Both stages have a similar programming 
model and are most efficient when run on long lists of inputs 
independently. That is, many vertices or fragments can be 
processed in parallel under SIMD (single-instruction, 
multiple-data) control, meaning that each vertex or fragment is 
computed in parallel with the same sequence of instructions 
controlling each computation. Moreover, that such programs 
can read from any location in global memory but cannot write 
to arbitrary global memory. Instead, the output from a vertex 
program is a single vertex, and the output from a fragment 
program is just one fragment at the fragment's pixel position. 
The aggregate arithmetic rate of the fragment programs in 
Nvidia's GeForce GPUs for example is more than 100 billion 
floating-point operations per second. while simple applications 
can be expressed in a single pass of the graphics pipeline, 
complex ones may use multiple passes through the graphics 
pipeline by using the global image output of one pass in the 
computation of subsequent passes. Multiple GPU cards can be 
installed in parallel to handle larger sizes of data as well. With 
its superior computation rat and low cost, the GPU has the 
potential to be the computational powerhouse piece in medical 
imaging application such as 4D ultrasound imaging [3].   

III. METHODS 
Fig. 1 shows the overall block diagram of the system where the 
data are acquired under and fed into the graphics card to handle 
the reconstruction and visualization of the volume. The basic 
steps of the software are shown in Fig. 2 and will be described 
in detail as follows. 

A. Volume Data Representation  
At the start, volume data have to be stored in memory in a 

suitable format after either coming from the digital backend of 
the ultrasound machine or streamed from a stored sample on 
the hard disk drive. This is considered as a preparation step to 
make the data ready in a suitable form to be downloaded to the 
graphics hardware as textures. Depending on the kind of proxy 
geometry used, the volume can be either stored in a single 
block, when view-aligned slices together with a single 3D 
texture are used, or split up into three stacks of 2D slices, when 
object-aligned slices together with multiple 2D textures are 
used. Usually, it is more convenient to store the volume only in 
a single 3D array, which can be downloaded as a single 3D 
texture, and extract data for 2D textures on-the-fly, just as 
needed. This requires having a graphics hardware that supports 
3D texture mapping. Depending on the complexity of the 
rendering mode, classification and illumination, there may 
even be several volumes containing all the information needed. 
Likewise, the actual storage format of voxels depends on the 
rendering mode and the type of volume, e.g., densities, 

Fig. 1: Overall block diagram of the system 
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gradients, gradient magnitudes, etc. Conceptually different 
volumes may also be combined into the same actual volume 
such as combining gradient data and density data in RGBA 
voxels. Although data representation is usually a part of 
preprocessing, it is not necessarily so. New data may have to 
be generated on-the-fly when the rendering mode or specific 
parameters are changed. This component is usually executed 
only once at startup or only executed when the rendering mode 
changes. 

B. Transfer Function Initialization 
Transfer functions are usually represented by color lookup 

tables and can have multiple dimensions stored as simple 
multidimensional arrays. This component is usually designed 
to be user-selectable, to provide the flexibility to change the 
transfer function from the user interface depending on the 
application.   

C. Color Map Initialization  
The color map is prepared from the four transfer functions 

that represent the color components red, green, blue, and the 
opacity transfer function. After setting these transfer functions, 
color maps must be packed to be then invoked into the GPU as 
a 1D texture map to be fetched and used in the fragment 
program in order to add the color values to the scene being 
rendered.   

D. Fragment Shader configuration 
There are two ways to terminate a viewing ray. The regular 

termination takes place once the ray leaves the volume, and is 
calculated by comparing the travelled distance to the length of 
the original viewing vector stored in the direction texture. 
However, to do this in one pass, the GPU has to be able to 
execute conditional breaks inside the loop, which requires a 
Shader Model 3 capable graphics card. The introduced early 
ray termination can also only be efficiently implemented on 
such a GPU, since it requires one additional condition after 
every single sample, checking whether the accumulated alpha 
values have exceeded a certain threshold. By using the 
conditional registers introduced with the newest generation of 
graphics cards, these two checks can be carried out together, 
resulting in only one conditional break statement. 
Implementing this with Shader Model 2 would require a 
separate ray termination pass, where we face a trade-off 
between two techniques. The first has a termination pass after 
every sample and hence requires 2 passes per sample, but 
provides the ability to exactly terminate the ray where 
necessary thus only calculating samples that are part of the 
final image. On the other hand, the second executes the 
termination pass only after a number of ray-casting passes, 
which could themselves again calculate a number of samples, 
and hence has a lower impact on performance. It however 
introduces a problem whereby the ray may be sampled outside 
the bounding box. For a simple bounding box setup, this may 
not be a major disadvantage because the volume outside the 
bounding box is empty anyway, leading only to a small 
performance hit. Alternatively, when introducing advanced 
techniques like cache textures or geometry intersection, it often 
has to be ensured that rays are terminated correctly, because 

samples after the termination position may already be invalid 
or at least should not be part of the final image. Thus, it makes 
sense to restrict the system requirements to Shader Model 3 
enabled graphics cards to account for all future enhancements 
of the algorithm and keep the pipeline as flexible as possible.   

E. Volume textures 
In order for the graphics hardware to be able to access all 

the required volume information, the volume data must be 
downloaded and stored in textures. At this stage, a translation 
from data format (external texture format) to texture format 
(internal texture format) might take place, if the two are not 
identical. Usually and in many datasets we have working with 
this is the case, so the conversion or translation from data 
format to texture format must take place. This component is 
usually executed at startup, when the rendering mode changes, 
or when a new 3D data set is ready to be rendered. How and 
what textures containing the actual volume data have to be 
downloaded to the graphics hardware depends on a number of 
factors, most of all the rendering mode and type of 
classification. Proxy Geometry Rendering The last component 
of the execution sequence outlined in this section is getting the 

 
 

Fig. 2: Block diagram of the software 
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graphics hardware to render geometry. This is what actually 
causes the generation of fragments to be shaded and blended 
into the frame buffer, after resampling the volume data 
accordingly.  

IV. RESULTS AND DISCUSSION 
Test data were acquired using 3D mechanical transducer 

(Prosonic, inc.) interfaced to IBE Tech Sonata ultrasound 
imaging system using a special research console designed for 
this project. Volume size was 256×256×225, fan angle of 86 
deg, and scan depth of 160 mm. The implementation of the 
proposed method was done using Visual Studio C++, OpenGL 
and Cg (NVIDIA, inc.). A personal computer with Intel Core 
2 Quad CPU with 8 GB RAM, and an NVIDIA GeForce 9600 
graphics card with GPU was used under Windows XP 
operating system. The system was used to scan the CIRS 36-
week Fetal Ultrasound Training Phantom Model 065-36 
(CIRS, inc.). Sample output from the developed system are 
shown in Fig. 3 where three perpendicular sections are 
displayed in addition to the rendered volume in real-time.  

Due to the limitations in data acquisition imposed by the 
scanner, it was not directly possible to measure the maximum 
frame rate of the volume rendering part. In order to do that, 
the system was allowed to update volume data and perform 
volume rendering without having to wait for a complete 
volume to be acquired. This means that the acquisition and 
reconstruction parts are made independent. In this case, the 
volume rendering frame rate was found to vary between 24 
frames/s and 85 frames/s with an average of about 60 
frames/s. The frame rate was found to depend on the view 
whereby the frame rate is at minimum when the probe fanning 
is in the front direction of the view. This is due to the fact that 
the required interpolation calculations depend on the view and 
in this particular view the interpolation required is at 
maximum. In all cases, the frame rates obtained are sufficient 
for practical 4D ultrasound and it appears that the bottleneck 
in this technology is on the acquisition side not the volume 
rendering side. 

V. CONCLUSIONS 
A new low-cost 4D ultrasound reconstruction and display 
system is introduced. The new system takes advantage of the 
recent advances in computer graphics hardware and in 
particular the GPU technology to reconstruct high quality 
volumes at high frame rates. The system has potential to make 
4D ultrasound more affordable for low to medium range 
ultrasound imaging systems. 
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Fig. 3: Sample results for fetus phantom 
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