
GPU-Based Reconstruction and Display
for 4D Ultrasound Data

Ahmed F. Elnokrashy, Ahmed A. Elmalky, Tamer M. Hosny, Marwan Abd Ellah, Alaa Megawer, Abobakr Elsebai,
 Abou-Bakr M. Youssef, and Yasser M. Kadah

Biomedical Engineering Department, Cairo University and IBE Tech, Giza, Egypt
E-mail: nokrashy@ibetech.com

Abstract—Due to the required computational effort of 4D
ultrasound imaging, such systems depend on low complexity
techniques like nearest neighbor interpolation, which affects
volume quality. Moreover, more accurate techniques like
normalized convolution, backward trilinear interpolation, and
forward spherical and ellipsoidal Gaussian kernel, are avoided in
real-time imaging because of the tight reconstruction time. The
goal of this work is to utilize recent commercial graphics
hardware technology of graphics processing unit (GPU) to speed
up the reconstruction time while increasing the quality of
displayed volume.

Keywords-4D ultrasound; volume rendering; GPU; texture
mapping; ray casting.

I. INTRODUCTION
Four-dimensional (4D) or real-time three-dimensional

ultrasound imaging has become an important diagnostic tool
for many clinical applications. Its implementation includes
three consecutive steps for acquisition, volume reconstruction
and visualization. Limitations of its implementation arise from
its demanding computational requirements for the latter two
steps that traditionally involved expensive custom processing
hardware. As a result, 4D option is not currently available for
most low-end and medium range ultrasound imaging systems.

Several approaches have been developed to lower the cost
of 4D ultrasound systems. For example, the required
computational effort of 4D ultrasound imaging can be lowered
using low complexity volume reconstruction techniques such
as nearest neighbor interpolation. Nevertheless, such methods
affect reconstructed volume quality to a great extent.
Moreover, more accurate techniques like normalized
convolution, backward trilinear interpolation, and forward
spherical and ellipsoidal Gaussian kernel, were not practical for
real-time imaging because of the tight reconstruction time
available [1].

Direct volume rendering methods compute images of a
volumetric data set without explicit extraction of geometric
surfaces from the data. Optical model is used to map data
values to optical properties; namely, color and opacity. Then,
the optical properties are projected using a suitable projection
function along each viewing ray to render the data. In practical
systems, volume data are stored either as a stack of 2D texture
slices or as a single 3D texture object. Such data represent
samples on a given sampling grid. Values in between grid

elements can be computed by interpolating data at neighboring
such elements. This process is known as volume reconstruction
and has usually demanding computational requirements.

During the rendering process, the optical model describes
how points in the volume interact with light. Optical
parameters are usually taken as the data values directly, or they
are derived from applying one or more transfer functions to the
data values. The choice of a transfer function emphasizes
desired features within the data and can be implemented as
lookup tables. Output images are generated by sampling the
volume along all viewing rays and accumulating the resulting
optical properties to compute a pixel for each ray. Texture-
based techniques perform the sampling step by rendering a set
of 2D geometric primitives inside the volume.

Many real-time volume visualization techniques use texture
mapping, which has several disadvantages. For example, 3D
texture depends mainly on regularly sampled data on texture
coordinates such as 3D rectilinear grid. Other techniques
depend on regular proxy geometry to map texture. While
texture mapping exploits hardware acceleration in graphics
processing units (GPU), they introduce approximation artifacts
in ultrasound imaging applications with polar sampling.
Alternatively, ray casting visualization does not depend on
proxy geometry to map data on. This alleviates approximation
artifacts introduced by texture mapping. The problem with ray
casting is its prohibitively high computational complexity
especially in real-time applications such as 4D ultrasound.
Recent GPUs support programmable pipelines and
multiprocessing streaming units, which make it possible to
implement ray casting in real-time using GPUs [2].

At the present, most medical volume rendering
implementations are based on slice-based methods where axis-
or viewport-aligned textured slices are blended together to
approximate the volume rendering integral. However, slice-
based implementations are rasterization-limited and difficult to
optimize. Moreover, when applying such transfer functions as
perspective projection, the integration step size will vary along
viewing rays when using planar proxy geometries, leading to
visible artifacts. As a result, slice-based techniques cannot
present an optimal volume visualization framework [1].

The advent of DirectX Shader Model 3 and comparable
OpenGL extensions has led to graphics processors providing an
ideal platform for efficiently mapping ray casting-based
volume rendering to hardware. This fragment-program based

189978-1-4244-4390-1/09/$25.00 ©2009 IEEE 2009 IEEE International Ultrasonics Symposium Proceedings

10.1109/ULTSYM.2009.0046

ray casting does not suffer from any flexibility issues and,
therefore, offers an optimal volume visualizing tool. Moreover,
new graphics hardware designs encourage the use of novel
fragment program features with much faster current and
planned generations of graphics hardware. Hence, our goal in
this work is to take advantage of this new direction and utilize
recent commercial graphics hardware technology of GPUs to
speed up the volume reconstruction time while increasing the
quality of visualization. The target is to achieve high-quality
volume rendering using ray casting at frame rates suitable for
present 4D ultrasound imaging applications.

II. GPU BASICS
Over the past decade, GPUs have become widely available

in PCs. GPUs feature powerful computing resources and high
memory bandwidth, which enable high performance on 3D
graphics applications. 3D graphics computations are organized
into a graphics pipeline that outlines the series of computation
stages between the scene input and the image output. The
input to the graphics pipeline is a scene consisting of a list of
geometry (defined as connected vertices) and a set of graphics
instructions to compute the scene from the geometry. The
GPU then processes and maps those vertices into screen-space
geometry, which in turn is divided into pixel-sized fragments,
in a process called rasterization. Each fragment is then
associated with a pixel position on the screen. Finally, the
fragments are processed and assembled into an image made of
pixels [3].

The pipeline contains on the order of a dozen stages,
each of which is implemented a separate processor per stage.
The typical input to the pipeline is tens to hundreds of
thousands of vertices, each of which can be processed in

parallel on the GPU. The complex graphics pipeline is thus
divided in space, with separate processors on the GPU running
each stage in parallel. This is different from that of a CPU,
which only features a single processor [3].

From a programming perspective, GPUs feature two
programmable stages; namely vertex and fragment processors.
The vertex stage runs a user-defined program on each input
vertex input, while the fragment stage runs a different program
on every fragment. Both stages have a similar programming
model and are most efficient when run on long lists of inputs
independently. That is, many vertices or fragments can be
processed in parallel under SIMD (single-instruction,
multiple-data) control, meaning that each vertex or fragment is
computed in parallel with the same sequence of instructions
controlling each computation. Moreover, that such programs
can read from any location in global memory but cannot write
to arbitrary global memory. Instead, the output from a vertex
program is a single vertex, and the output from a fragment
program is just one fragment at the fragment's pixel position.
The aggregate arithmetic rate of the fragment programs in
Nvidia's GeForce GPUs for example is more than 100 billion
floating-point operations per second. while simple applications
can be expressed in a single pass of the graphics pipeline,
complex ones may use multiple passes through the graphics
pipeline by using the global image output of one pass in the
computation of subsequent passes. Multiple GPU cards can be
installed in parallel to handle larger sizes of data as well. With
its superior computation rat and low cost, the GPU has the
potential to be the computational powerhouse piece in medical
imaging application such as 4D ultrasound imaging [3].

III. METHODS
Fig. 1 shows the overall block diagram of the system where the
data are acquired under and fed into the graphics card to handle
the reconstruction and visualization of the volume. The basic
steps of the software are shown in Fig. 2 and will be described
in detail as follows.

A. Volume Data Representation
At the start, volume data have to be stored in memory in a

suitable format after either coming from the digital backend of
the ultrasound machine or streamed from a stored sample on
the hard disk drive. This is considered as a preparation step to
make the data ready in a suitable form to be downloaded to the
graphics hardware as textures. Depending on the kind of proxy
geometry used, the volume can be either stored in a single
block, when view-aligned slices together with a single 3D
texture are used, or split up into three stacks of 2D slices, when
object-aligned slices together with multiple 2D textures are
used. Usually, it is more convenient to store the volume only in
a single 3D array, which can be downloaded as a single 3D
texture, and extract data for 2D textures on-the-fly, just as
needed. This requires having a graphics hardware that supports
3D texture mapping. Depending on the complexity of the
rendering mode, classification and illumination, there may
even be several volumes containing all the information needed.
Likewise, the actual storage format of voxels depends on the
rendering mode and the type of volume, e.g., densities,

Fig. 1: Overall block diagram of the system

190 2009 IEEE International Ultrasonics Symposium Proceedings

gradients, gradient magnitudes, etc. Conceptually different
volumes may also be combined into the same actual volume
such as combining gradient data and density data in RGBA
voxels. Although data representation is usually a part of
preprocessing, it is not necessarily so. New data may have to
be generated on-the-fly when the rendering mode or specific
parameters are changed. This component is usually executed
only once at startup or only executed when the rendering mode
changes.

B. Transfer Function Initialization
Transfer functions are usually represented by color lookup

tables and can have multiple dimensions stored as simple
multidimensional arrays. This component is usually designed
to be user-selectable, to provide the flexibility to change the
transfer function from the user interface depending on the
application.

C. Color Map Initialization
The color map is prepared from the four transfer functions

that represent the color components red, green, blue, and the
opacity transfer function. After setting these transfer functions,
color maps must be packed to be then invoked into the GPU as
a 1D texture map to be fetched and used in the fragment
program in order to add the color values to the scene being
rendered.

D. Fragment Shader configuration
There are two ways to terminate a viewing ray. The regular

termination takes place once the ray leaves the volume, and is
calculated by comparing the travelled distance to the length of
the original viewing vector stored in the direction texture.
However, to do this in one pass, the GPU has to be able to
execute conditional breaks inside the loop, which requires a
Shader Model 3 capable graphics card. The introduced early
ray termination can also only be efficiently implemented on
such a GPU, since it requires one additional condition after
every single sample, checking whether the accumulated alpha
values have exceeded a certain threshold. By using the
conditional registers introduced with the newest generation of
graphics cards, these two checks can be carried out together,
resulting in only one conditional break statement.
Implementing this with Shader Model 2 would require a
separate ray termination pass, where we face a trade-off
between two techniques. The first has a termination pass after
every sample and hence requires 2 passes per sample, but
provides the ability to exactly terminate the ray where
necessary thus only calculating samples that are part of the
final image. On the other hand, the second executes the
termination pass only after a number of ray-casting passes,
which could themselves again calculate a number of samples,
and hence has a lower impact on performance. It however
introduces a problem whereby the ray may be sampled outside
the bounding box. For a simple bounding box setup, this may
not be a major disadvantage because the volume outside the
bounding box is empty anyway, leading only to a small
performance hit. Alternatively, when introducing advanced
techniques like cache textures or geometry intersection, it often
has to be ensured that rays are terminated correctly, because

samples after the termination position may already be invalid
or at least should not be part of the final image. Thus, it makes
sense to restrict the system requirements to Shader Model 3
enabled graphics cards to account for all future enhancements
of the algorithm and keep the pipeline as flexible as possible.

E. Volume textures
In order for the graphics hardware to be able to access all

the required volume information, the volume data must be
downloaded and stored in textures. At this stage, a translation
from data format (external texture format) to texture format
(internal texture format) might take place, if the two are not
identical. Usually and in many datasets we have working with
this is the case, so the conversion or translation from data
format to texture format must take place. This component is
usually executed at startup, when the rendering mode changes,
or when a new 3D data set is ready to be rendered. How and
what textures containing the actual volume data have to be
downloaded to the graphics hardware depends on a number of
factors, most of all the rendering mode and type of
classification. Proxy Geometry Rendering The last component
of the execution sequence outlined in this section is getting the

Fig. 2: Block diagram of the software

191 2009 IEEE International Ultrasonics Symposium Proceedings

graphics hardware to render geometry. This is what actually
causes the generation of fragments to be shaded and blended
into the frame buffer, after resampling the volume data
accordingly.

IV. RESULTS AND DISCUSSION
Test data were acquired using 3D mechanical transducer

(Prosonic, inc.) interfaced to IBE Tech Sonata ultrasound
imaging system using a special research console designed for
this project. Volume size was 256×256×225, fan angle of 86
deg, and scan depth of 160 mm. The implementation of the
proposed method was done using Visual Studio C++, OpenGL
and Cg (NVIDIA, inc.). A personal computer with Intel Core
2 Quad CPU with 8 GB RAM, and an NVIDIA GeForce 9600
graphics card with GPU was used under Windows XP
operating system. The system was used to scan the CIRS 36-
week Fetal Ultrasound Training Phantom Model 065-36
(CIRS, inc.). Sample output from the developed system are
shown in Fig. 3 where three perpendicular sections are
displayed in addition to the rendered volume in real-time.

Due to the limitations in data acquisition imposed by the
scanner, it was not directly possible to measure the maximum
frame rate of the volume rendering part. In order to do that,
the system was allowed to update volume data and perform
volume rendering without having to wait for a complete
volume to be acquired. This means that the acquisition and
reconstruction parts are made independent. In this case, the
volume rendering frame rate was found to vary between 24
frames/s and 85 frames/s with an average of about 60
frames/s. The frame rate was found to depend on the view
whereby the frame rate is at minimum when the probe fanning
is in the front direction of the view. This is due to the fact that
the required interpolation calculations depend on the view and
in this particular view the interpolation required is at
maximum. In all cases, the frame rates obtained are sufficient
for practical 4D ultrasound and it appears that the bottleneck
in this technology is on the acquisition side not the volume
rendering side.

V. CONCLUSIONS
A new low-cost 4D ultrasound reconstruction and display
system is introduced. The new system takes advantage of the
recent advances in computer graphics hardware and in
particular the GPU technology to reconstruct high quality
volumes at high frame rates. The system has potential to make
4D ultrasound more affordable for low to medium range
ultrasound imaging systems.

REFERENCES
[1] S. Stegmaier, M. Strengert. T. Klein, and T. Ertl, “A simple and flexible

volume rendering framework for graphics-hardware-based raycasting,”
Proc. Fourth International Workshop on Volume Graphics, June 2005.

[2] T. Sumanaweera, “Applying real-time shading to 3D ultrasound
visualization,” in GPU Gems, R. Fernando, Ed., Addison-Wesley, New
York, pp. 693-707, 2004.

[3] J.D. Owens, “GPUs tapped for general computing,” EETimes.com,
article ID: 55300884, 2004.

Fig. 3: Sample results for fetus phantom

192 2009 IEEE International Ultrasonics Symposium Proceedings

