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Abstract In conventional diffusion tensor imaging (DTI) based on magnetic resonance data, each

voxel is assumed to contain a single component having diffusion properties that can be fully repre-

sented by a single tensor. Even though this assumption can be valid in some cases, the general case

involves the mixing of components, resulting in significant deviation from the single tensor model.

Hence, a strategy that allows the decomposition of data based on a mixture model has the potential

of enhancing the diagnostic value of DTI. This project aims to work towards the development and

experimental verification of a robust method for solving the problem of multi-component modelling

of diffusion tensor imaging data. The new method demonstrates significant error reduction from the

single-component model while maintaining practicality for clinical applications, obtaining more

accurate Fiber tracking results.
ª 2009 University of Cairo. All rights reserved.

Introduction

Among the unique features of magnetic resonance imaging

(MRI) is its ability to characterise microscopic phenomena
(such as diffusion) in vivo noninvasively [1]. In its most basic
form, diffusion imaging attempts to characterise the manner

by which water molecules within a particular location move

within a given amount of time. Using a simple imaging se-
quence, it is possible to obtain a change of the MRI signal that

is related to the diffusivity of water in a certain direction [2].
Given that such diffusivity varies with the geometry of the cel-
lular space, it has an important value in discriminating be-
tween different tissue types as well as identifying abnormal

variations in pathological states.
In order to avoid variations in diffusivity parameters with

the positioning of the subject, a general characterisation of

the diffusion process was introduced based on diffusion ten-
sors. The basic techniques in diffusion tensor imaging (DTI)
characterise the 3D diffusion in terms of a 3D Gaussian prob-

ability distribution [3]. Therefore, such representation is suffi-
cient in terms of a 3 · 3 symmetric tensor, or the so-called
‘‘cigar-shaped’’ diffusion tensor representation. This tensor is

usually computed using a 3D sampling of the b-space, or the
space of the diffusion experiment b-values [4]. Recent studies
have revealed several deviations from this simplified scenario.
In this, a non-mono-exponential behaviour for the diffusion-
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induced attenuation in brain tissue has been reported, whereby
bi- or tri-exponential functions were found to better fit the data
under high b-values [3]. Also, a two-compartment model for

the diffusion in Fibers of the myocardium has been reported,
with two fast and slow components assuming a slow-exchange
process between the two [5]. Bi-exponential diffusion model

has also been hypothesised to represent the intra- and extra-
cellular components in tissues [6]. Variations of the apparent
diffusion coefficient with diffusion time have also been re-

ported and hypothesised to indicate restricted flow [7]. A
two-tensor model for diffusion in the human brain has been re-
ported in which the parameters of a mixture model composed
of two weighted tensors representing fast and slow compo-

nents are measured under high b-values [8]. Tuch et al. have
noted that DTI measurements could only resolve imaging sit-
uations in which the white matter Fibers are strongly aligned

[9]. They presented evidence from high angular resolution dif-
fusion measurements to show that the diffusion process can be
modelled as an independent mixture of ideal diffusion pro-

cesses. They presented results for the case of a mixture of
two diffusion tensors. The methodology used to obtain the
mixture parameters was based on minimising an error function

using gradient-descent technique. Beaulieu has discussed the
sources causing anisotropic diffusion, including geometric,
structural and pathological conditions [10]. This study con-
cluded that the presence of such processes restricting diffusion

in certain directions could be used to account for the measured
anisotropy in DTI measurements. Frank has reported a meth-
od for identifying the anisotropy in high angular resolution

diffusion-weighted (HARD) imaging data without computing
the actual tensor [11]. Another study by the same author devel-
oped a methodology for characterising HARD data by decom-

position into spherical harmonics [12]. This approach allowed
several modes of diffusion to be decomposed into separate
channels that are different from those for eddy current arte-

facts. He studied the case of two Fibers under different condi-
tions and proposed an extension of his method to characterise
multiple Fiber scenarios. Given the complexity of such situa-
tions and the limitations of defining spherical harmonics in

terms of rotations only, this might not be practical in many
cases. Basser and Jones have discussed the possibility of mix-
ture modelling of diffusion [3]. Even though they indicated

that this would present a more complete representation of
the process, they argued that there are too many issues to be
resolved before such modelling can be performed in practice.

Their hypothetical discussion indicated that such modelling
would require a large amount of data to enable the estimation
of model parameters and would involve the computation of
too many parameters.

Observing that the diffusion along nerve Fibers tends to be
significantly larger than in other directions [13], Fiber direc-
tions were computed from diffusion tensor data. The basic

idea was to eigen-decompose the diffusion tensor and use the
eigenvector corresponding to the largest eigenvalue as the
Fiber direction in a given pixel. This simplistic representation

of the problem is often unsuitable for real data, where Fiber
direction heterogeneity is common. Ambiguity arises in situa-
tions where the direction of the Fiber cannot be determined

[14]. For example, in voxels where the estimated diffusion ellip-
soid takes a disc shaped rather than a cigar shaped form, the
tracking algorithms terminate, resulting in undesired discon-
nections in the resulting Fiber tracks. Poupon et al. have

reported problems with the tracking results when crossing
Fibers are encountered and suggested a regularisation strategy
to solve this problem [15]. Other regularisation methods have

also been reported [16,17]. The performance of such methods
is still bound by the original single-tensor model limitations.

The goal of this work is to derive a methodology for multi-

component Fiber tracking based on high angular resolution
diffusion-weighted acquisitions. A compartmental model rep-
resenting the physical make-up of imaging pixels is considered.

Based on an analytical expression of apparent diffusion tensor,
the mixture model parameters are calculated. Heterogeneity of
components is allowed in the model by proposing a pixel mod-
el with multiple tensors instead of one under normal b-values.

Hence, this model is different from the reported fast/slow com-
ponent modelling, while alleviating the limitations of the pre-
vious single-tensor modelling.

Methodology

Problem formulation

The true diffusion-weighted signal from a single diffusion com-

partment is given by:

EðqkÞ ¼ expð�qTkDqksÞ; ð1Þ
where E(qk) is the normalised diffusion signal magnitude for
the diffusion gradient wave-vector qk = cdgk, c is the gyro-
magnetic ratio, d is the diffusion gradient duration, gk is the
kth diffusion gradient, s is the effective diffusion time, and D

is the apparent diffusion tensor. To model multiple compart-
ments, we assume that the inhomogeneity consists of a discrete
number of homogeneous regions, the regions are in slow ex-

change, and the diffusion within each region is Gaussian.
Then, we can express the true diffusion-weighted signal as a fi-
nite mixture of Gaussian functions given as,

EðqkÞ ¼
XM
i¼1

fi expð�qTkDqksÞ: ð2Þ

Here, fi is the volume fraction of component i,M is the number
of components, and

PM
i¼1fi ¼ 1. We can consider the problem

of a voxel with two distinct components (without loss of gen-

erality). In this case, the number of unknowns to fully describe
the model is 13 (two symmetric tensors and one partial volume
ratio). In this case, the model takes the form,

EðqkÞ ¼ f1 expð�qTkD1qksÞ þ ð1� f1Þ expð�qTkD2qksÞ: ð3Þ
Unlike the problem of estimating a single tensor, the equa-

tions here are nonlinear but cannot be linearised by taking the

natural logarithm of both sides. The attenuation equation for
each tensor resembles a sample of a 3D Gaussian function with
a covariance matrix equal to the diffusion tensor evaluated at a

point determined by the diffusion gradient direction at a radius
equal to the square root of the b-value. Hence, the problem of
estimating multiple tensors becomes one of 3D Gaussian mix-
ture modelling from samples determined by the diffusion gra-

dient vector sampling. This estimation problem is nonlinear
and therefore only iterative estimation methods have been pro-
posed in the literature. Given the convergence issues associated

with such methods and their generally high computational bur-
den, a new practical strategy is needed to solve this problem.
Note that for any given parameter estimation accuracy, there

exists a finite number of possible solutions that are determined
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by the a priori information about parameter ranges and the
desired accuracy. Hence the problem of finding the solution
to this problem amounts to a combinatorial optimisation

problem. This means that a globally optimal solution can be
found by exhaustive search or one of the more efficient ran-
dom search strategies such as simulated annealing or genetic

algorithms. Nevertheless, the computational effort involved
in such techniques is prohibitive.

In this work, two new methods for estimating the tensors

are developed and compared to the most widely cited method
of using gradient descent, as proposed by Tuch et al. [9]. The
effect of noise in the data (conventionally assumed to be due
to the thermal noise in the MRI system electronics) on the

solution is also studied. The diffusion time is assumed to be
the same for different gradient vector orientations having the
same b-value. Unlike previous work in this field, no assump-

tions will be made about the diffusion tensor to maintain gen-
erality and practicality of the solution.

The gradient-descent method

The traditional method for solving Gaussian mixture problems
of this type is the expectation maximisation (EM) algorithm.

However, given the need to solve the mixture problem with
physiological constraints on the eigenvalues, the EM algorithm
is no suitable for handling such hard constraints. Therefore, a
gradient-descent scheme is employed with multiple random

starting points to solve the mixture model by solving the eigen-
vectors and volume fractions that give the lowest error be-
tween the predicted and observed diffusion. The eigenvalues

of the individual tensors are either specified a priori or re-
stricted to a particular range in order to prevent the algorithm
from over-fitting with physiologically-meaningless eigenvalues.

Multiple random starting points were utilised to avoid getting
trapped in local minima given the non-convex search space of
the problem. Approximately half of the iterations found the

global minimum. In Tuch et al. [9], the problem is assumed
to be that of resolving white matter crossing Fibers. Hence
the eigenvalues for white matter were specified a priori to be
(k1, k2, k3) = (1.5, 0.4, 0.4) lm2/ms based on the reported nor-

mal values. This is a clear limitation of this technique given the
variability of such values within normal subjects, in addition to
the failure to model situations where grey matter or cerebrospi-

nal fluid are involved. The eigenvalues were preset in order to
prevent the individual tensor fits from assuming oblate forms.
The error function to be minimised is given as

x ¼
X
k

ðÊðqkÞ � EðqkÞÞ2 ¼
X
k

X
j

fjÊjðqkÞ � EðqkÞ
 !2

: ð4Þ

Here Ê is the predicted diffusion signal based on the multi ten-
sor model, ÊjðqkÞ is the predicted diffusion signal from com-
partment j (Eq. (1)) with volume fraction fj, and E is the

observed diffusion signal. To ensure that the volume fractions
are properly bounded (fi 2 [0, 1]) and normalised such that
their sum is equal to unity, the volume fractions are calculated
through the soft-max transform [9].

fj ¼
exp gjP
i

exp gi
: ð5Þ

The tensors Dj are parameterised in terms of the Euler angles
aij. The derivative with respect to the Euler angles is given by,

@x

@aij
¼ �

X
k

ðÊðqkÞ � EðqkÞÞfiÊjðqkÞqTk
@Rj

@aij
KjR

T
j þ RjKj

@RT
j

@aij

 !
qTk ;

ð6Þ
where Rj is the column matrix of eigenvectors and Kj is the

diagonal matrix of eigenvalues for tensor Dj. The gradient with
respect to the volume fraction parameters is,

@x

@gi
¼ exp gi

ðP
i

exp giÞ2
X
k

"
ðÊðqkÞ � EðqkÞÞ

�
X
i

ð1� dijÞðÊðqkÞ � EðqkÞÞ exp gi
#
; ð7Þ

where dij = 1 when i = j, and 0 otherwise.

The differential equation modelling technique

In this new method, we observe that the measurements in dif-
fusion tensor imaging are usually obtained for uniformly dis-

tributed values of b. Recalling that the attenuation values are
direct functions of the square root of b, Eq. (3) can be simpli-
fied for this case such that [21]

EðbÞ ¼ f1 expð�b=s1Þ þ ð1� f1Þ expð�b=s2Þ; ð8Þ
where si ¼ 1=ðqTkDiqkÞ. As a result of this formulation, the
problem is now transformed into the parameter estimation
of exponentially decaying signals. Hence we can describe the

system using a homogeneous second-order differential equa-
tion in the form

E00ðbÞ þ a1E
0ðbÞ þ a2EðbÞ ¼ 0; ð9Þ

where

E0ðbÞ ¼ � f1
s1

expð�b=s1Þ � ð1� f1Þ
s2

expð�b=s2Þ; ð10Þ

and

E00ðbÞ ¼ f1
s21

expð�b=s1Þ þ ð1� f1Þ
s22

expð�b=s2Þ: ð11Þ

Since the values of E(b) are available for several values of b,

its first- and second-order derivatives can be obtained numer-
ically from these values using the forward or central numerical
differentiation formulas or using the frequency domain meth-

od using the differentiation property of the Fourier transform.
In our simulations, using the central numerical differentiation
we can formulate a linear system to estimate the coefficients of
the differential equation as,

E0ðb1Þ Eðb1Þ
E0ðb2Þ Eðb2Þ

..

. ..
.

E0ðbnÞ EðbnÞ

2
66664

3
77775

a1

a2

� �
¼ �

E00ðb1Þ
E00ðb2Þ

..

.

E00ðbnÞ

2
66664

3
77775: ð12Þ

Once the coefficients of the equations are computed, the

second-degree polynomial characteristic equation is solved to
obtain the roots corresponding to the exponential factors.
Then it is straight forward to compute the magnitudes from

solving the linear equations obtained by substituting the esti-
mated variances.
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Projection pursuit based method

In this second new method, the problem of estimating the com-
position of a voxel with two distinct components is considered
(without loss of generality for multiple components). As dis-

cussed previously, the equations are nonlinear and therefore
only iterative techniques can be utilised. We observe that the
attenuation equation for each tensor resembles a sample of a
3D Gaussian function with a covariance matrix equal to the

diffusion tensor evaluated at a point determined by the diffu-
sion gradient direction at a radius equal to the square root
of the b-value. Hence the problem of estimating multiple ten-

sors becomes one of 3D Gaussian mixture modelling from
samples determined by the diffusion gradient vector sampling.

To overcome this difficult estimation, we propose the use of

projection pursuit regression (PPR), a robust statistical tool
that allows the estimation of such mixture models [18,19]. In-
stead of attempting the solution in the high dimensional space

of this problem, PPR projects the problem into a number of
1D problems and then synthesises the solution to the original
problem space [20]. Moreover, the problem can be simplified

further by utilising a sampling strategy that converts the prob-
lem into the sum of two exponentials. This problem is solved
using a robust strategy in which the exponential decay con-

stants are estimated using exhaustive search and the magnitude
functions are estimated using a linear system solution based on
the choice of the decay constants. Given that the range of de-

cay constants for human applications is rather limited, this
strategy has superior speed to nonlinear least-squares methods
while offering the global solution to the problem. Once the 1D

model is estimated, it can be used to provide an equation for
each diffusion tensor separately as identified by its partial vol-
ume ratio. For example, we identify the components with the
larger partial volume ratio as component 1 in all projections

and utilise such projections to reconstruct its tensor in the
same way the single-tensor method works. Following this,
the second tensor is computed based on projections with sec-

ond largest partial volume ratio and so on for other compo-
nents (if existing). The computed tensors are used to
compute a new estimate of the component partial volume ra-

tios based on the whole data set rather than each projection
separately. Given that these ratios are affected by noise, the

Figure 1 Estimated error in case of 12 gradient directions using the gradient-descent algorithm at different SNR values ((a) no noise, (b)

25 dB, (c) 35 dB, (d) 45 dB).
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estimation process is started again with this new estimate
plugged in for all projections and a new solution is estimated.
This process is repeated until the partial volume ratio stabilis-

es. In the general case of N-tensor model, the same procedure
is followed at a computational cost that varies linearly with N.

The NMR signal attenuation due to diffusion when apply-

ing a gradient defined by the direction ~x is given by

Eð~xÞ ¼ expð�p �~xT �D �~xÞ ð13Þ

Here D is the diffusion tensor and ~x � ffiffiffiffiffiffiffiffi
b=p

p �~u with a unit
vector ~u in the direction of the gradients at an applied b-value

of b. In order to proceed with the projection pursuit strategy,
we must to be able to relate the characteristics of the diffusion
tensor D to the one-dimensional projection of this function at

an arbitrary direction. To compute this projection, we start
with a 3D Gaussian function perfectly aligned with the coordi-
nate axes and apply the rotation transformation to obtain the

general formulation of the problem. Then, we utilise the pro-
jection-slice theorem to simplify the derivation of the projec-

tion integral. We start with the simplest form of the

diffusion attenuation, defined as

Eð~xÞ ¼ Eð½ x y z �Þ

¼ exp �p � x y z½ � �
k1 0 0

0 k2 0

0 0 k3

2
64

3
75 �

x

y

z

2
64
3
75

0
B@

1
CA

¼ expð�p �~xTK~xÞ ð14Þ
The Fourier transformation of this function is given by

IfEð~xÞg ¼ exp �p � fx fy fz½ � �
1=k1 0 0

0 1=k2 0

0 0 1=k3

2
64

3
75 �

fx

fy

fz

2
64

3
75

0
B@

1
CA

¼ expð�p �~f TK�1~f TÞ: ð15Þ

Here, we used the separability property to derive the 3D

Gaussian Fourier transformation given the 1D transformation
result. Consider now a diffusion tensor in a general direction
given by

Figure 2 Estimated error in case of 30 gradient directions using the gradient-descent algorithm at different SNR values ((a) no noise, (b)

25 dB, (c) 35 dB, (d) 45 dB).
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D ¼ RTKR; ð16Þ
where R is an orthogonal transformation. The Fourier trans-

formation of this general case is given by

IfEð~xÞg ¼ expð�p �~fTRTK�1R~fTÞ: ð17Þ
From the projection-slice theorem, the projection along a par-
ticular direction corresponds to a slice in the Fourier domain.

Suppose that we would like to obtain the projection along the
line that makes angles ðh;/;uÞ with the coordinate axes,
respectively. We first notice that two angles are only sufficient
to fully describe the required rotation given that the summa-

tion of the squares of the cosines of the three angles is equal
to unity. To simplify the computation of the slice line
(representing the Fourier transformation of the projection in

the spatial domain), we apply a rotational transformation cor-
responding to the reverse of the line angle to align this line
along the fx axis. This rotation is computed as

Aðh;/Þ ¼
cos h � sin h 0

sin h cos h 0

0 0 1

2
664

3
775 �

1 0 0

0 cos/ � sin/

0 sin/ cos/

2
664

3
775

¼
cos h � sin h cos/ sin h sin/

sin h cos h cos/ � cos h sin/

0 sin/ cos/

2
664

3
775: ð18Þ

Hence the line slice can be given as

Slice ¼ exp �pf2x½ cos h � sin h cos/ sin h cos/ �D�1

0
B@

�
cos h

� sin h cos/

sin h cos/

2
64

3
75
1
CA ¼ expð�p � f2x � r2Þ: ð19Þ

Figure 3 Estimated error in case of 12 gradient directions using the differential equation modelling technique at different SNR values

((a) no noise, (b) 25 dB, (c) 35 dB, (d) 45 dB).
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The projection in the spatial domain can be given as

projection ¼ expð�p � x2=r2Þ: ð20Þ
Hence if we measure the variance r2 of the projection func-

tion along at least six directions, we can directly compute the
inverse of the diffusion tensor and subsequently the diffusion
tensor. Assuming a two-component model without loss of gen-

erality, the projection along any given direction can be given as

pðxÞ ¼ a1 � expð�px2=r2
1Þ þ a2 � expð�px2=r2

2Þ: ð21Þ
Here the relative amplitudes are given by a1 and a2, and the

variances are generally different for both components and vary
with projection direction. The x value is known and can be

computed given the b-value and the direction of diffusion gra-
dients. The 1D component estimation problem amounts to the
estimation of a1, a2, r1 and r2 given p(x). Notice that the com-

ponent amplitudes are the same between projections. This
property will be used to aid in the labelling of components
among different projections. As discussed before, this estima-
tion problem is nonlinear and needs an iterative estimation

method to obtain the solution. Here, we combine exhaustive
search and least-squares estimation to obtain a faster imple-
mentation while maintaining the robustness and global opti-

mality. In particular, instead of attempting to find all
parameters by exhaustive search, we limit this strategy to those
parameters of more importance in terms of accuracy and com-

pute the remaining ones using least-squares estimation. This is
implemented as follows:

Step 1. Take the variances to be the parameters estimated by
exhaustive search while the partial volume ratios are
estimated from them by least squares.

Step 2. Generate a list of possible values for the variances

within the range from 0 to the maximum eigenvalue
of the diffusion tensors of interest with the desired
accuracy as the step.

Step 3. Plug in values for the variances in the equation from
the list and compute the least-squares solution to the
partial volume ratios for such values and compute the

value of the residual error with such values plugged
in.

Figure 4 Estimated error in case of 30 gradient directions using the differential equation modelling technique at different SNR values

((a) no noise, (b) 25 dB, (c) 35 dB, (d) 45 dB).
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Step 4. Loop all possible variance values in the list and repeat

step 3 and find the combination of values that gener-
ate the lowest error. Consider such combination to be
the solution.

This method allows an order of magnitude saving in com-
putation time while providing a solution with sufficient accu-
racy. Once the individual component estimates from

projections are computed, the projections of each component
can be used to estimate the component tensor as in the sin-
gle-tensor case. One problem arises because of component

labelling. The basic assumption of the model that the partial
volume ratios remain the same in projections may not be prac-
tical given the superimposed noise and other sources of error in

DTI. In other words, partial volume ratios from different pro-
jections are slightly different in practice. To solve this problem,
an initial labelling is obtained whereby the first component is
calculated from the projection components having the larger

partial volume ratio, while the second component is calculated

from the components with the smaller one. Once the two ten-
sors are computed using this strategy, a least-squares estimate
for the partial volume ratios is computed while imposing the

constraint of unit summation upon their values. Following
this, the calculated values are used in a second iteration of
the procedure above to update the projection variances while

imposing the same partial volume ratios obtained from the
first iteration. A second estimate of the partial volume ratios
is computed at the end of the second iteration and this process

is repeated until estimates from two successive iterations differ
by a predetermined tolerance. In this case, the estimates repre-
sent the global solution that is not biased by error within indi-
vidual projections.

It should be noted that the extension of this method to mul-
tiple exponentials is straightforward. The computational com-
plexity depends linearly on the number of components. We still

gain the separation between the problems of estimating the
variances and the magnitudes. Moreover, the same direct mag-
nitude estimation method can still be applied in this case once

Figure 5 Estimated error in case of 12 gradient directions using the projection pursuit based method at different SNR values ((a) no

noise, (b) 25 dB, (c) 35 dB, (d) 45 dB).
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the roots are calculated. This can reduce the complexity dra-
matically. It should be noted, however, that the problem of
two-component modelling will be addressed in the experimen-

tal verification phase since this is a problem of interest for

practical applications where the presence of more than two sig-
nificant components within a voxel is not likely [9,14].

Continuing to the simpler multi-exponential model, the

problem of determining the best directions for projecting the

Figure 6 Estimated error in case of 30 gradient directions using the projection pursuit based method at different SNR values ((a) no

noise, (b) 25 dB, (c) 35 dB, (d) 45 dB).
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Figure 7 Monte Carlo simulations for the effect of noise on the multi-component model estimation.
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multi-component model can be addressed similarly to the
above. Instead of seeking the directions representing the max-
imum non-Gaussianity as in the original formulation of the

PPR, we now see those directions representing the sharpest dif-
ference between the exponential decay constants. An excellent
direction index for this purpose is the quantity under the

square root in the second-degree characteristic polynomial
root formula. Observing that this quantity is zero for equal
roots and gets larger as the roots separate, the maximisation

of this index provides a more efficient alternative to the kurto-
sis or other higher order moment optimisation in the original
Gaussian mixture model.

Experimental verification

To evaluate the new methods and compare them to the previ-

ous method, two sets of experiments were conducted. The first
conducted computer simulations to assess the accuracy of
model estimation of the different methods under different sig-
nal-to-noise (SNR) values and voxel compositions. The second

set of experiments applied the methods to real data sets ob-
tained from a normal human volunteer.

The computer simulation was conducted on a DELL per-

sonal computer with a Pentium 4 processor with clock speed
of 2.4 GHz with 512 MB of memory running the IDL scientific
software package (Research Systems, Inc.). The developed

simulation programs generated simulated two-tensor data sets
based on the problem formulation above at different numbers
of diffusion gradients and directions and the methods were
implemented to estimate the tensors. The simulation parame-

ters used were as follows: the acquisition of a cubic volume
of size 8 · 8 · 8 voxels that fully covered the 3D extent of
the diffusion attenuation. The data were projected onto a num-

ber of directions that uniformly sampled the space where these
directions were taken to be the same as those used in real DTI
acquisition; namely as 12 or 30 directions.

Experimental results were also obtained from data sets col-
lected from a normal human volunteer on a 3T Siemens Trio
system (Siemens Medical Systems, Germany) using a double

spin-echo sequence with 8 b-values spanning the range
[0,1500] at 12 and 30 directions. Both scans were repeated 4
times to investigate the effect of SNR.

The total scan time for the 12-direction scan was 12 min

while it was approximately 30 min for the 30-direction scan.

Results and discussion

Figs. 1 and 2 show the estimation error using the gradient-des-
cent algorithm for different SNR values and numbers of gradi-
ent directions. The error in estimation is shown to be high and

appears to decrease slowly with higher SNR. It is also clear
that there is no deviation in estimates at low and high SNR.
Figs. 3 and 4 show the estimation error using the differential

equation modelling technique. The error in estimation and
the standard deviation decreases with the increase of the
SNR. It is also clear that instability in estimation occurs with

12 gradient directions, although they have better estimation
than 30 gradient directions when there is no noise. The estima-
tion error appears significantly less in this technique than the
gradient-descent method. Figs. 5 and 6 show the estimation er-

ror when using the projection pursuit based method. The 12

gradient directions results show the least mean square error.
The reason for this might be related to the fact that the condi-
tion number of the problem for the particular number of gra-

dient directions, which was 1.00 for 12 gradient directions, and
slightly higher (around 1.02) for 30 gradient directions. Com-
paring the three different techniques, the error in the projec-

tion pursuit based method was better than both
differentiation and gradient algorithms. Therefore, we elected
to focus on that method for further analysis.

Instead of selecting a few directions in the original PPR for-
mulation, all directions were taken into consideration with a
weighting corresponding to the model error. Also, within each
1D estimation procedure, a regularisation step was imple-

mented to verify that the partial volume ratio of all compo-
nents is above a certain threshold value. This is necessary
since it is likely that the component projections may have sim-

ilar decay at some directions resulting in an ill-conditioned
solution. The simulation results of a model composed of both
white matter (WM) and CSF are shown in Fig. 7. Notice that

Figure 8 Illustration of the solution convergence in two-tensor

modelling as represented by the FA of components for both 12-

direction and 30-direction data acquisition schemes.
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for SNR above 50 dB the estimation error of the tensors is be-
low 10%. The model estimation procedure for each voxel was
performed within an average of less than 1 sec (based on a

2.4 GHz P4 computer with 512 MB RAM), which is reason-
able for practical purposes.

The iterative estimation procedure is illustrated for a single
voxel in Fig. 8, where the fractional anisotropy [1] is computed
for both components of the two-tensor model to illustrate

the convergence in both the 12- and 30-direction acquisitions.
The convergence appears to occur within a few iterations. The

Figure 9 Detailed results from real data for 12-direction (left) and 30-direction (right) acquisitions with anatomical images (top), one-

tensor model (middle) and two-tensor model (bottom).
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tensor field results from experimental data with 30 diffusion
gradient directions and 4 averages are shown in Figs. 9 and
10, where the new method is compared to the one-tensor mod-
el visually and using an error measure of the fitting accuracy.

The tensors are drawn in such a way as to show CSF tensors
as points and white matter tensors as lines. As can be shown,
the areas that show partial voluming at the interfaces of the

CSF areas show significant improvement in model error when
the two-tensor model is used. The average reduction in model
error over the whole ROI was 30.1% for the 30-direction data

set and 8.9% for the 12-direction data set (individual voxels ex-
hibit error rates that are up to 80% lower in some cases).

It should be noted that the results of this work provide a
significant improvement over existing methodologies whereby

the assumptions about the tensors to be estimated are more
practical and the solution itself is robust under a practical
range of signal-to-noise ratios, while keeping the computation

time lower. With the encouraging results obtained, several
applications should be addressed to verify the clinical utility
of the new method. Examples include the removal of the effect

of CSF contamination in both white matter and gray matter
voxels and the ability to resolve crossing Fibers.

In spite of the visible improvement in residual error ob-
tained with the new model, it is important to address several
issues related to the regularisation of the model to avoid erro-
neous interpretation of the results. For example, a threshold

must be set for the partial volume ratio below which the com-
ponent is discarded as nuisance. This can be done through a
penalty term in the objective function that rewards lower order

models. Also, given that the component characteristics in neu-
rological applications are usually known a priori, it is advanta-
geous to take such information into account in estimating the

model whereby resulting tensors are penalised for their dis-
tance from the nearest component. This allows a clear segmen-
tation of the data set as well which can be an important tool in
subsequent Fiber tracking.

Conclusions

Two new methods to estimate a diffusion tensor mixture
model have been presented and compared to the previous
method. While the previous method suffers from restricting
assumptions and higher estimation errors, the proposed meth-

ods based on differential equation modelling and projection

Figure 10 Estimation error maps from real data for 12-direction (left) and 30-direction (right) acquisitions with one-tensor model error

map (top) and two-tensor model error map (bottom). A significant reduction in errors is visible in regions where partial voluming is likely

to occur such as near CSF.
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pursuit based search were found to offer significantly lower
estimation error and much faster performance. The differential
equation modelling method was found to be the fastest, but

suffers from occasional instability that unpredictably causes
severe errors in estimation. On the other hand, the method
based on projection pursuit was found to be sufficiently fast

while maintaining the lowest error rate among all methods.
The main advantage of this approach is the elimination of
dependence on a priori knowledge about the tensor composi-

tion, which allows more flexibility in practical applications.
The new solution strategy offers a stable method to compute
a multi-component model for diffusion tensor imaging data
that is optimal in the least-squares sense. Preliminary results

from computer simulations as well as experimental data ac-
quired from normal human volunteers seem encouraging and
suggest several uses of the new method, including resolving

partial volume problems of white matter/gray matter with
cerebrospinal fluid as well as sensitivity to detect multiple
white matter Fibers.
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