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Abstract The measured electroencephalographic (EEG)

signals used in brain–computer interface (BCI) are usually

contaminated with several additive random and physio-

logical noise components. Even though several prepro-

cessing strategies were proposed in the literature to extract

useful EEG signal components for further processing and

analysis, their performance is yet to meet practical needs to

boost BCI applications performance. Of particular interest

among those methods are the ones addressing random noise

suppression that could help enhance the performance of

low-cost BCI systems/headsets. A preprocessing block for

signal denoising of slow cortical potential (SCP) that pro-

vides efficient noise removal and better classification

accuracy is presented. This method is a variant of the

spectral subtraction signal denoising whereby the noise

power spectrum is estimated and removed adaptively. This

method is applied to each EEG channel separately thus

providing a preprocessing block that could be integrated

with the existing spatial/temporal preprocessing methods.

The impact of this method on classification accuracy is

studied and compared to the conventional wavelet shrink-

age method. The proposed method is verified using

experimental data from the BCI competition II data set

whereby a performance boost was obtained with the new

preprocessing block. The improvement was quantitatively

assessed using mean square error and mean absolute error

measures and was also shown to be statistically significant.

Moreover, spectral subtraction denoising is shown to have

less computational complexity than wavelet shrinkage

based methods. The new preprocessing block for SCP-

based BCI signals based on spectral subtraction provides

significant improvement in performance when added and

offers an adaptive yet less computationally expensive

alternative to existing methods such as wavelet shrinkage

based denoising method. Also, given its independent

channel processing, it shows potential for seamless inte-

gration into conventional processing chain for different

BCI applications.

Keywords Brain–computer interface � Slow cortical

potential � Signal denoising � Wavelet shrinkage � Spectral

subtraction

1 Introduction

The brain–computer interface (BCI) technique offers

alternative method of communication for patients with

impaired motor abilities such as in amyotrophic lateral

sclerosis (ALS) [1]. BCI collects and interprets multi-

channel brain activity data of the patient to directly map

brain activity into specific tasks for assistive devices.

Different techniques such as magnetoencephalography

(MEG), electroencephalography (EEG), and functional

magnetic resonance imaging (fMRI) can be utilized to

capture the brain functional activity information at differ-

ent spatial regions of the brain. These methods provide

time course signals of brain activity from different loca-

tions at inherently different temporal and spatial resolu-

tions. For example, EEG measures only a few electrical
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signals from the surface of the scalp to represent the

activity of the whole brain and hence offers poor spatial

localization and high temporal resolution. On the other

hand, fMRI offers much higher spatial resolution of the

order of a few millimeters while suffering from a much

poorer temporal resolution of its time course signals [2].

Even for BCI systems based on the same technology such

as EEG, systems also range from simple devices with rel-

atively inexpensive measuring electrodes connected to

small processing unit that offer poor quality of signals

while allowing mobility such as EEG headsets, to larger,

expensive clinical EEG systems that provide higher quality

of signals but would require a special setup that does not

allow mobility. This demonstrates a clear trade-off between

cost and mobility on one side and the acquired signal

quality on the other.

EEG-based BCI systems offer a good choice with

respect to cost and simplicity but the quality of collected

signals is its major limitation. Presently, there are two

broad types of BCI systems in terms of the type of EEG

signals involved. The first is based on evoked EEG signals

produced by external or internal neural stimulation of task-

related brain areas such as steady-state visual evoked

potential (SSVEP) and P300 [3–5]. The second type of

systems is based on spontaneous EEG signals which are

produced by human specific thoughts such as event-related

desynchronization/event-related synchronization (ERD/

ERS), EEG rhythmic waves (e.g., a, b, and c waves), and

slow cortical potentials (SCP) [6–8]. For example, SCP

signals are voluntarily generated slow non-movement

potential changes. They represent the cortical polarization

changes lasting from 300 ms up to a few seconds of the

subject’s EEG signal [9]. SCP-based BCI usually targets to

provide a binary decision that depends on the ability of the

participant to voluntarily shift his/her SCP [10]. More

recently, research studies indicate the possibility to dif-

ferentiate several mental tasks using EEG signals [11]. So,

the second type of BCI systems offers a simpler hardware

implementation that does not include an integrated source

of stimulation, its data processing is more challenging due

to the difficulty to determine the start of the relevant brain

activity given its spontaneous nature. So, any improvement

in the signal quality for such type of systems would directly

help improve their performance.

The problem of improving EEG signal quality has been

addressed by many research studies aiming to suppress the

additive random noise to improve the overall signal-to-

noise ratio (SNR). This denoising procedure can be

achieved using techniques in either spatial or temporal

domains. Spatial domain methods include simple tech-

niques such as local spatial averaging and extend to more

elaborate forms of blind source separation (BSS) tech-

niques as independent component analysis (ICA). In such

methods, data from different channels are utilized to sep-

arate the true response signal from superimposed inde-

pendent noise components [12–16]. For example, a study

proposed an automatic technique based on BSS for EEG

noise elimination and artifact removal (including ocular,

high frequency muscle and ECG artifacts) [16]. In another

study, a spectral signal space projection technique was

proposed in which noise spatial patterns at particular fre-

quencies are removed by applying time–frequency specific

spatial projectors to the noisy time–frequency transformed

data [12]. Alternatively, temporal domain methods utilize

similarities within a single channel signal to identify then

suppress the noise components in that signal. Such methods

include simple averaging of consecutive epochs or linear

filters such as band-pass filters [17, 18] and extend to more

sophisticated time–frequency techniques based on wavelet

shrinkage [19–23]. Hybrid techniques between temporal

and spatial domain methods were also introduced to take

advantage of both available channels and redundant signal

epochs [24]. Even though present EEG denoising tech-

niques offer promising results, there is still a need to fur-

ther address their limitations. For instance, the need for

large number of channels in spatial domain techniques that

would increase the cost of the system. Furthermore, more

expensive digital processing would be required for inte-

grating computationally-demanding denoising methods

into the BCI preprocessing chain. Such examples also lead

to undesirable increase in power consumption that severely

limit the practicality of mobile BCI system implementa-

tions. Therefore, it would be beneficial to propose a

denoising method that would work with any number of

electrodes and improve the BCI system performance

beyond the existing methods at a reasonable computational

complexity.

The aim of this study is to propose an EEG signal

denoising strategy that improves BCI performance at a

modest computational cost. The proposed approach is

based on the spectral subtraction technique, which is an

effective preprocessing framework originally developed for

speech signals and later adopted to functional magnetic

resonance imaging (fMRI) signal denoising [25], and

P300-based BCI [2]. This method does not impose any

constraints on the model for the true signal component

while adaptively estimates the additive white Gaussian

noise model parameters. This method is applied to exper-

imental data from BCI competition II [26]. We follow the

same steps of signal processing, feature vector formation

and classification steps of the study in [27] since it offers

the best achieved classification accuracy for this data set,

and study the impact of adding the new method. The

amount of removed noise, as well as the classification

accuracy were quantitatively compared with conventional

wavelet shrinkage denoising. The computational
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complexity of the proposed spectral subtraction technique

is also discussed and compared with the complexity of

wavelet denoising method.

2 Methodology

Here, the mathematical basis of spectral subtraction

denoising method and the applied modifications to meet the

requirements of SCP BCI application are presented. Con-

sidering the conventional model of additive noise, temporal

EEG signal can be given as the summation form of three

components; namely: the true brain activity signal compo-

nent, a baseline fluctuation component caused by physio-

logical noise or instrumentation drift, and a random white

Gaussian noise component [25]. The true response signal

component from brain activity is the signal of interest in this

mixture. On the other hand, the baseline fluctuation com-

ponent will be assumed to be deterministic yet unknown

component that is out of scope of this study (i.e., assumed to

be effectively removed by existing preprocessing procedures

[27, 28]). The random noise component consists of two

portions: signals generated by neighboring brain areas that

are not related to the true signal of the target BCI sought and

thermal noise signal due to the data acquisition system

electronics. While the latter is widely recognized as Gaus-

sian white noise, the former can also be assumed to be so

using central limit theorem applied to the summation of

many signals known to have random patterns of activation.

Taken together, we construct a model of additive noise in

which the acquired EEG data is modeled as the summation of

a deterministic component d tð Þ (consisting of both true

response EEG signal plus residual baseline/low frequency

wander) and a random noise component nðtÞ assumed to

come from independent white Gaussian noise model. In a

mathematical form, this model can be formulated as:

s tð Þ ¼ d tð Þ þ n tð Þ: ð1Þ

Given the independence of both components of the

model, the power spectrum of the signal can be obtained

as:

Pss xð Þ ¼ Pdd xð Þ þ Pnn xð Þ: ð2Þ

Hence, given an estimate of the noise power spectrum,

the deterministic component power spectrum can be cal-

culated by subtracting the power spectrum of acquired

signal and the power spectrum of an estimated random

noise [25] such that:

Pdd xð Þ ¼ Pss xð Þ � Pnn xð Þ: ð3Þ

Subsequently, the frequency domain magnitude of the

deterministic signal can be given by taking its power

spectrum square root. In order to fully estimate the time

domain of the deterministic signal by inverse-transform of

the frequency domain form, the phase part must be

restored. Several methods can be followed to do that. One

way is to calculate an estimate from the Fourier transform

phase of the measure signal S xð Þ such that the estimated

deterministic signal spectrum Sd xð Þ takes the form [25]:

Sd xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PddðxÞ
p

� e�ðjPhase S xð Þð ÞÞ: ð4Þ

By taking the real part of the inverse Fourier transform

for Sd xð Þ, we can compute the denoised deterministic

signal sd tð Þ. Figure 1 illustrates a block diagram of the

original spectral subtraction technique. Although, this

method provided effective denoising for event-related

fMRI time courses, there are two problems that exist for

EEG signals in SCP-based BCI applications. The first

problem is the method of estimating the phase component

for the denoised signal from its original version. Because

the phase component has important information just as the

magnitude component, ignoring noise in this component is

bound to limit the effectiveness of the denoising procedure.

This issue was reported as a concern when applying this

method to the fMRI time courses. The other problem is the

noted discontinuity artifacts that come about when apply-

ing the discrete Fourier transform (DFT) that assumes

periodic extensions of the limited record length used.

Differences of EEG signal values between the initial and

final time points induce a step in the time domain signal

causing ringing at both ends of the signal. This is critical

difference between EEG data and fMRI data since that

artifact is much less severe in case of fMRI time courses

due to their much higher baseline. Such jumps between the

first and last time points in the processed EEG signals

produce wrong high frequency components while com-

puting the power spectrum. This results in artifacts that

vary randomly depending on the amount of such jumps. To

provide artifact-free denoising and to solve the above

mentioned problem we proposed a modified formula of the

previously developed spectral subtraction technique [2] in

which we construct an even-symmetric signal from the

original EEG signal (by obtaining its time inversed one and

concatenating it with the original) before estimating the

power spectrum by DFT. This offers two modifications to

solve the above two problems in the previous denoising

method. First, the even-symmetric EEG signal will have a

real-valued spectrum with either zero phase (for the posi-

tive frequency amplitudes) or phase equal to
Q

(for neg-

ative frequency amplitudes) and hence eliminates the

problematic process of phase estimation altogether. Sec-

ond, it eliminates the edge artifacts by ensuring that the

continuity is preserved at both boundaries of the EEG

signal. Figure 2 shows the modified block diagram of the

proposed spectral subtraction denoising.
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3 Power Spectrum Estimation of EEG Signal
Noise

To implement the above denoising method as a prepro-

cessing step for SCP signals, it is required to adaptively

estimate the noise power spectrum. Given that the noise

model was assumed as Gaussian white noise, it has a

constant power spectrum over all frequency that is directly

proportional to the variance of the noise. Therefore, the

estimation of a single parameter would be sufficient to

obtain the noise power spectrum. For adaptive denoising,

the variance estimation of the noise is done from the raw

EEG signals noting that such signals are usually acquired

using a much higher sampling frequency than the known

Fig. 1 Block Diagram of the

original spectral subtraction

denoising technique. Block

diagram of the original spectral

subtraction denoising method

that uses the original data to

extract the noise model to

calculate its power spectrum

and eliminate it from the

spectrum of the original data

Fig. 2 Improved spectral subtraction denoising block diagram. Improved spectral subtraction denoising block diagram where a symmetric signal

is constructed by concatenating the signal and its mirror (time-inversed version). This symmetric signal is the input instead of the original data in

the conventional spectral subtraction technique. This helps to avoid artifacts coming from the discrepancy of signal levels at the ends by setting

the phase of the signal to be zero
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frequency range of EEG signals. In particular, it can be

assumed that the raw signal power spectra contain only

noise components in their high frequency segments above

the EEG frequency range. Consequently, taking the aver-

age of such parts of the raw signal power spectrum can

provide a reliable estimate of the noise power spectrum as

illustrated in Fig. 3. It should be noted that the use of

average to estimate the noise power spectrum level from

many points in the power spectrum is valid because at each

point the power spectrum itself can be shown to be unbi-

ased (i.e. with mean equals to the true value) and consistent

(as the number of points goes to infinity, the variance

decrease uniformly to zero) random variable. The average

of these points is used to improve the estimation of the

parameters of their underlying random processes because

the magnitudes of these points are known to be indepen-

dent and identically distributed. This noise level estimation

and denoising procedure is performed for each EEG

channel data separately to account for variability among

different analog front-ends for different channels.

4 Implementation Steps

The detailed implementation steps of the modified spectral

subtraction denoising are given as follows:

1. Reading the SCP EEG channel data sðtÞ one at a time

and constructing its symmetric form by simply

concatenating the signal with its time-reflected version

sð�tÞ.
2. Computing the discrete Fourier transform (DFT) of

this symmetric raw SCP channel data.

3. Obtaining the periodogram estimate of the power

spectrum by squaring the magnitude of this obtained

DFT.

4. Estimating the noise level by calculating the average of

the power spectrum values in the 20% upper frequency

segments of the frequency range that contain no true

signal components as shown in Fig. 3.

5. Calculating the denoised signal power spectrum using

Eq. (3) and clipping any negative value results from

this subtraction to zero.

6. Estimating the denoised signal discrete Fourier spec-

trum as the square root of the estimated denoised signal

power spectrum multiplied by the sign of the original

discrete Fourier transform to recover the phase.

7. Estimating the denoised signal as the causal part of the

inverse discrete Fourier transform of the estimated

denoised signal discrete Fourier spectrum.

5 Experimental Verification

5.1 Description of the Data Set

The experimental verification of the proposed framework

was performed using the data set from BCI competition II.

This data set was collected from six healthy subjects (three

males and three females; 22–35 years of age). Participants

were instructed to perform two mental tasks to move a

cursor up and down while their SCP signals were recorded.

Each trial lasted for a total of 6 s divided into 1 s rest

period, 1.5 s cue presentation period, and 3.5 s feedback

period. The cue was a visual stimulus/target that appeared

at the bottom or the top of a screen. Data were collected in

the feedback period (3.5 s) at a sampling rate of 256

sample/s to give 896 samples for every trial per channel.

The feedback was presented as a cursor and the SCP level

(Cz-Mastoids) was indicated by its vertical position in the

screen. Each participant completed 300 trials. Data were

acquired using PsyLab EEG8 amplifier, analog to digital

converter (PCIM-DAS1602/16 bit, Computer Boards), the

range of amplitude was ± 1000 lV and at a sampling rate

of 256 Samples/s. The positions of the electrodes followed

the 10/20 system: CH01: A1-Cz (A1 at left mastoid),

CH02: A2-Cz (A2 at right mastoid), CH03: 2 cm frontal of

C3, CH04: 2 cm parietal of C3, CH05: 2 cm frontal of C4,

CH06: 2 cm parietal of C4. The trials were divided into a

training data set (consisting of 268 trials) and testing data

set (consisting of 293 trials). Cue ‘‘0’’ and Cue ‘‘1’’ were

used to label the two mental states in the training set for

setting the classification algorithm parameters whose

classification accuracy was evaluated on the testing data

set.

Fig. 3 Noise power spectrum estimation. Noise model estimation by

calculating its power spectrum from the side parts of the original

signal power spectrum on both frequency ends which is free of true

components of the signal when averaging these areas
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5.2 Formation of the Feature Vector

In this work, we follow the same steps of processing, for-

mation of feature vector, and classification as reported in

[27], which presented the best achieved accuracy for this

data set, in order to allow direct comparison and assess-

ment of the impact of adding the spectral subtraction

denoising block. The feature vector was computed based

on the results of a wavelet package decomposition (WPD)

step, which is a procedure derived from the conventional

wavelet decomposition (WD) whereby samples of a dis-

crete-time signal are passed through quadrature mirror fil-

ters that include multiple bases [29]. WD decomposes the

input signal into two complementary and orthonormal

subspaces, say V and W (containing low and high fre-

quency information, respectively). Then, WPD continues

splitting these two resultant subspaces into subsequent low

and high frequency information forming a tree of wavelet

packets. As illustrated in Fig. 4, Uj;n is the nth subspace of

wavelet decomposition at jth level, and its orthonormal

complementary basis is Un
j;k tð Þ ¼ 2

�j
2 un 2�jt � kð Þ; where k

is a shift. This could be satisfied by following equations:

un
j;0 tð Þ ¼

X

k

h0ðkÞu j
j�1;k; when n is even: ð5Þ

un
j;0 tð Þ ¼

X

k

h1ðkÞu j
j�1;k; when n is odd: ð6Þ

where the quadruple mirror filters are h0 kð Þ; h1 kð Þ and

related by:

h1 kð Þ ¼ �11�kh0ð1 � kÞ: ð7Þ

Finally, the WPD coefficients at jth level and kth sample

could be calculated as:

dn
j ¼

X

m

h0 m � 2kð Þd
n
2

j�1 mð Þ;when n is even: ð8Þ

dn
j ¼

X

m

h1 m � 2kð Þd
n�1

2

j�1 mð Þ;when n is odd: ð9Þ

The feature vector was formed from two parts: the sub-

band average and sub-band energy coefficients which are

described as follows:

A. Sub-band mean coefficients

The first part of the feature vector is the sub-band

means calculated from wavelet packet decomposition.

The vector of sub-band means at the jth level can be

calculated from [27]:

Meanj;n ¼ lj;n ¼ 2N

2 j

X

k

dn
j kð Þ: ð10Þ

The frequency ranges of WPD of the signal in the jth

level can be obtained from:

0;
fs

2 jþ1ð Þ

� �

;
fs

2 jþ1ð Þ ;
2fs

2 jþ1ð Þ

� �

; . . .. . .;
2 j � 1ð Þfs

2 jþ1ð Þ ;
fs

2

� �� �

:

ð11Þ

After performing WPD to the 6th level, as recommended

by [27], and given that the sampling frequency for this

data set is fs ¼ 256, then the frequency ranges of sub-

bands at this level will be f 0 � 2½ �; 2 � 4½ �; . . .;
½126 � 128�g. Given that the useful frequency range of

EEG signals is between 0 and 50 Hz, which will be

within the first 25 sub-bands, 25 features of the mean

vector from each channel can be concatenated to form a

total feature vector of 150 values (25 feature times 6

channels), l ¼ ½l1; l2; . . .; l150�.

B. Sub-band energy coefficients

The second part of the final feature vector is the energy

of sub-bands. WPD decomposes the energy of the

signal into several time–frequency subdivisions. The

integration of WPD sub-band squared amplitude is

equivalent to the sub-band energy. That is,

Fig. 4 The WPD tree

structures. The WPD

decomposes the input signal

into two complementary and

orthonormal subspaces, say V

and W (containing low and high

frequency information,

respectively). Then, it continues

splitting these two resulting

subspaces into subsequent low

and high frequency information

forming wavelet packet tree
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Energyj;n ¼ Ej;n ¼
X

k

dn
j kð Þ

� �2

: ð12Þ

Similar to the mean vector, at the 6th level and within

the useful frequency range 0–50 Hz we compute 25

values for each of the available six channel. Thus, the

total sub-band energy vector for all channels is

E ¼ ½E1;E2;E3; . . .;E150�.

The significance of these features is because they

provide information about the true response signal as

extracted from different frequency sub-bands resulted from

wavelet packet decomposition. The logic for choosing the

mean and energy of wavelet decomposition sub-bands as

recommended in [27] was to combine information from

both frequency and time domains of the EEG signal in

attempt to provide a more complete feature set.

Then, Fisher criterion was used for dimensionality

reduction of the initial feature vector of sub-band means

and energies. Among the energy and mean vectors, the

most appropriate features were chosen based on fisher

distance selection. FðwÞ, the Fisher criterion function

[27, 30], satisfies the following equation:

F wð Þ ¼ wT SBw

wT SIw
; ð13Þ

where SI is the within-class scatter matrix, SB is between-

class scatter matrix, and w is the fisher weight vector that

maximize F wð Þ. One way to assess the separability of two

classes using the value of F wð Þ whereby the greater F wð Þ
value, the higher separability is achieved for the training

data set. To assess the separability of the initial feature

vector, we used Fisher distance criterion (J) [27, 30]:

J ¼ ðS�1
w SbÞT ; ð14Þ

where Sw is the within-classes dispersion matrix, and Sb is

the between-classes dispersion matrix. For each feature, the

greater the value of separability J, the more promising this

feature is in separating the data. After computing the sep-

arability distance J for every element in the vector of mean

(l) features, we chose the most relevant features with

highest values of J (for example, the fist ‘‘d’’ features) for

separating the data. Then, the final mean features vector is

l0 ¼ ½l01; l02; . . .; l0d�. Similarly, for the energy vector E

features, by choosing the first ‘‘l’’ elements with highest J

values, the final energy features vector is

E
0 ¼ ½E0

1;E0
2;E0

3; . . .;E0
l�. The final features, which will be

fed to the classifier, is F ¼ ½l0
;E0]. The procedure of cre-

ating the final feature vector is shown in Fig. 5. As to the

classifier, we used Probabilistic Neural Network (PNN)

with four layers, as suggested by [27], which can poten-

tially fit the nonlinear characteristic of EEG signal and

assuming the feature vectors to be non-linearly separable

[31, 32].

We compared the proposed method results with wave-

let-shrinkage denoising results when added as a prepro-

cessing block to the above processing chain. The overall

BCI performance and the amount of removed noise from

the original signal in each case were quantitatively asses-

sed. For wavelet denoising, we applied standard wavelet

shrinkage denoising using MATLAB (MATLAB, The

MathWorks, MA, USA) with choosing ‘‘Coiflet-3’’ as the

basic wavelet as recommended by [33].

Fig. 5 Feature vector formation flow chart after adding new prepro-

cessing block of denoising. Flow chart of feature vector creation after

adding our proposed adaptive denoising block. The procedure starts

with performing WPD to the 6th level and then sub-band means and

energies were calculated in the range 0–50 Hz. Fisher distance was

applied for dimensionality reduction and choosing the appropriate

features. The final feature vector by concatenating the mean and

energy final vectors, then fed to the PNN classifier
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5.3 Statistical Comparison between Spectral

Subtraction and Wavelet Shrinkage Denoising

The performance of wavelet and spectral subtraction

denoising was measured by comparing the original channel

signal s tð Þ and the denoised signal dðtÞ from each method

in time and frequency domains as recommended by [34]. In

time domain, mean square error (MSE) is defined as [34]:

MSE ¼
X

T

t¼1

½s tð Þ � dðtÞ�2=T; ð15Þ

where T is the number of time samples in each channel.

While in the frequency domain, mean absolute error

(MAE) is defined as [34]:

MAE ¼
X

W

x¼1

PssðxÞ � PddðxÞj j=W ; ð16Þ

where Pss and Pdd are the power spectrum of s tð Þ and dðtÞ
respectively, and W is the number of frequency samples. In

order to show that the difference between the two methods

is statistically significant, we performed paired t test (SPSS

v. 10.0.7, Chicago, IL, USA) to compare MSE and MAE

from both methods against a significance level of p = 0.01.

6 Results and Discussion

Figure 6 shows a comparison of signal denoising using

spectral subtraction and conventional wavelet shrinkage

denoising and the raw SCP signal to qualitatively illustrate

signal denoising and the amount of removed noise. The left

column shows the original signal at the top, the denoised

signal using spectral subtraction in the middle, while the

denoised signal using wavelet shrinkage method at the

bottom. The right column shows the difference between the

original signal and the denoised signal illustrating their

random nature and showing the relative eliminated noise

content of the signal between spectral denoising (top) and

wavelet shrinkage (bottom). The eliminated noise content

looks higher in spectral subtraction as compared to wavelet

shrinkage for the same EEG signal.

Also, the statistical comparison between spectral sub-

traction and wavelet shrinkage using paired t-test revealed

statistically significant difference when comparing MSE

(Spectral Subtraction: 4.6 ± 8.06, mean ± STD; Wavelet

Shrinkage: 0.88 ± 0.37, p = 1.57e-36) and MAE (Spec-

tral Subtraction: 7.86 9 103 ± 1.17 9 103, Wavelet

Shrinkage: 1.68 9 103 ± 1.23 9 103, p = 1.36e-52). This

shows that the difference in estimating the amount of noise

Fig. 6 Comparison between spectral subtraction denoising results and the widely used wavelet shrinkage denoising. Illustration of comparison

results between spectral subtraction and wavelet shrinkage denoising as contrasted with the original signal. The left column shows the original

signal in the top, the spectral subtraction denoised signal in the middle and the wavelet shrinkage denoised signal in the bottom. The right column

shows the difference between the original signal and the denoised signal illustrating their random nature and showing the relative removed

content of the signal between spectral subtraction (top) and wavelet shrinkage (bottom). The removed content looks higher in spectral subtraction

as compared to wavelet shrinkage for the same EEG signal
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removed using each denoising method cannot be attributed

to chance and reflects real increase in eliminating random

noise component by the spectral subtraction method over

the wavelet shrinkage method.

After forming the initial feature vector of sub-band

means l ¼ ½l1; l2; . . .; l150�, and sub-band energies

E ¼ ½E1;E2;E3; . . .;E150�, we applied Fisher distance cri-

terion for dimensionality reduction. The Fisher separability

(J) for each element of the sub-band mean l and sub-band

energy E vectors is shown in Fig. 7(a) and Fig. 8(a) re-

spectively, without adding spectral subtraction as a pre-

processing block. As shown in Fig. 7(a), the mean vector

have only two peak points which correspond to the most

promising feature for separating the training data set, i.e.

l0 ¼ ½l0
1; l

0
2�. Similarly, the energy vector as shown in

Fig. 8(a) contains several peak points indicating the ability

of this feature to separate the training data set. To repro-

duce the exact results as [27], we chose the first 15 features

(correspond to greater values of J), i.e.

E
0 ¼ ½E0

1;E0
2;E0

3; . . .;E0
15�. By concatenating the final mean

and energy vectors, the final feature vector will be

F ¼ ½l0
;E0] with 17 features. Note that the classifier

accuracy will not be increased if more features are used in

this case. Using the training data set of 268 trials to train

the PNN with F, the resulted accuracy of the test data set

was 90.8% which is higher than the best achieved results

(88.7%) in BCI competition II by 2.1%. Interestingly, after

Fig. 7 Fisher distance separability for each element in the sub-band

mean feature vector ‘‘l’’ before and after adding spectral subtraction

signal denoising block. a Each feature’s Fisher distance separability

in the sub-band mean vector without adding the spectral subtraction

preprocessing block. b Each feature’s Fisher distance separability in

the sub-band mean vector after adding the spectral subtraction

preprocessing block. With adding the spectral subtraction denoising

block, the amplitude of fisher distance increases and more features

appeared which could be new candidates for the final feature vector

Fig. 8 Fisher distance separability for each element in the sub-band

energy feature vector ‘‘E’’ before and after adding spectral subtraction

signal denoising block. a Each feature’s Fisher distance separability

in the sub-band energy vector without adding the spectral subtraction

preprocessing block. b Each feature’s Fisher distance separability in

the sub-band energy vector after adding the spectral subtraction

preprocessing block. With adding the spectral subtraction denoising

block, the amplitude of fisher distance increases and more features

appeared which could be new candidates for the final feature vector.

The red line shows the features after sequencing by the higher J

values
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adding the spectral subtraction denoising to all channels for

both training and testing data sets and repeat the exact

same steps as mentioned previously, the separability dis-

tance J of the mean and energy vectors as well as the

classification accuracy changed. As shown in

Figs. 7(b) and 8(b), after adding the denoising prepro-

cessing block, the amplitude of Fisher distance separability

J for both mean and energy vectors relatively increased in

value and new peak points appeared which could be new

candidates for the final feature vector. Using the same

feature vector with 17 features, the classification accuracy

increased to 91.4% by the effect of spectral subtraction

denoising only. Moreover, with increasing the feature

vector by adding 6 more features from the features that

became significant because of the denoising step, the

classification accuracy increased to 94.1% with insignifi-

cant increase in the processing time. Adding more features

did not affect the classification results also in this case. In

comparison, the conventional wavelet shrinkage denoising

increased the classification accuracy to 91.1% with the

effect of denoising. After adding two more features from

the energy vector that became significant after wavelet

shrinkage denoising, the classification accuracy increased

to 91.8%. Comparison of all results is presented in the first

column of Table 1. The second column of Table 1 shows

the percentage of improvement over the best achieved

results of this dataset as follows:

% Improvement

¼ Resulted Accuracy�Best Acheived Accuracy

Best Acheived Accuracy
� 100%

ð17Þ

These results suggest the potential of denoising as useful

preprocessing step for BCI applications and indicate the

performance improvement with the proposed spectral

subtraction denoising over the conventional wavelet

shrinkage method.

As for the computational complexity of spectral sub-

traction, assuming a data set of L channels and each

channel have N time points, then the spectral subtraction

denoising method will have a computational complexity of

OðLNlog2NÞ. On the other hand, signal denoising by

wavelet shrinkage method has a computational complexity

that varies depending on the implementation method with

minimum complexity of OðLN2Þ which is significantly

higher by a factor of N=log2ðNÞ than denoising by spectral

subtraction. Therefore, spectral subtraction is well-suited

for real time processing required for BCI applications.

It should be noted that the existing frequency selective

filters that amount to time domain convolution cause

remaining noise in the output filtered EEG signal at dif-

ferent time points to be correlated. Therefore, one theo-

retical advantage of the proposed method is that it

preserves the independence among the processed time

points random components since no mixing of points via

convolution is performed. Consequently, it is compatible

with existing statistical analysis procedures where samples

are required to be statistically independent. So, this shows

the potential of seamless integration of spectral subtraction

denoising as a standard step in the processing chain of BCI

experiments to improve the SNR and hence increase the

classification accuracy.

7 Conclusion

In this study, a denoising preprocessing block based on

spectral subtraction for slow cortical potential signals was

presented to improve the classification accuracy. Our

denoising method was verified using BCI competition II

experimental data and better performance was demon-

strated. The performance and amount of removed noise

were shown to be better than the wavelet shrinkage

method. Moreover, the proposed method requires modest

computational complexity that is suitable for real-time

performance. The results of this study indicate the potential

of adding the proposed method to the conventional pre-

processing chain for different BCI applications.

Table 1 Comparison of PNN classification accuracy with and without adding adaptive denoising preprocessing block

Method Classification accuracy (%) % Improvement

Best achieved result of BCI competition II 88.7 –

Tung et al. [27] results (without denoising block) 90.8 2.37

Results after signal denoising by wavelet shrinkage 91.1 2.71

Results after signal denoising by wavelet shrinkage and adding 2 more features 91.8 3.49

Results after signal denoising by spectral subtraction 91.4 3.04

Results after signal denoising by spectral subtraction block and adding 6 more features 94.1 6.09
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