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Abstract Computer-aided diagnosis (CAD) offers assis-

tance to radiologists in the interpretation of medical ima-

ges. A CAD system learns the nature of different tissues

and uses this information to diagnose abnormalities. In this

paper, we propose a CAD system for breast cancer diag-

nosis via deep belief network (DBN) that automatically

detects breast mass regions and recognizes them as normal,

benign, or malignant. In this study, we utilize a standard

digital database of mammography to evaluate our proposed

DBN-based CAD system for breast cancer diagnosis. We

utilize two techniques of ROI extraction: multiple mass

regions of interest (ROIs) and whole mass ROIs. In the

former technique, we randomly extract four ROIs with a

size of 32 9 32 pixels from a detected mass. In the latter

technique, the whole detected breast mass is utilized. A

total of 347 statistical features are extracted for both

techniques to train and test our proposed CAD system. For

classification, we utilized linear discriminant analysis,

quadratic discriminant analysis, and neural network clas-

sifiers as the conventional techniques. Finally, we

employed DBN and compared the results. Our results

demonstrate that the proposed DBN outperforms the con-

ventional classifiers. The overall accuracies of a DBN are

92.86% and 90.84% for the two ROI techniques, respec-

tively. The presented work shows the feasibility of a DBN-

based CAD system for use as in the field of breast cancer

diagnosis.

Keywords Breast cancer classification � Digital
mammography � Computer-aided diagnosis (CAD) �
Automatic mass detection � Deep learning � Deep belief

network (DBN)

1 Introduction

Breast cancer is the second-ranked cause of death for

women, after lung cancer. It is generally caused by the

growth of uncontrolled abnormal cells that usually arise

from the inner milk ducts or lobules [1]. Microcalcifica-

tions and masses are two common types of breast cancer

and can be benign or malignant. Early detection of breast

cancer is critical for patient survival. In general, digital

X-ray mammography is most widely used for breast
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imaging and screening. The main purpose of mammogra-

phy is to detect early signs of cancer and to diagnose breast

masses [2]. The American Cancer Society (ACS), Ameri-

can College of Radiology (ACR), and American Congress

of Obstetricians and Gynecologists (ACOG) suggest that

women undergo annual mammograms starting at age 40

[3]. For women between 40 and 50 years of age, the

National Cancer Institute (NCI) encourages breast screen-

ing one or two times a year [4]. Screening with mam-

mography is performed in two steps. First, the breast is

compressed between two small flat plates. Then, a low

X-ray dose is applied directly through the breast and

acquired by a two-dimensional (2D) panel detector. After

that, mammographic images are assessed by radiologists.

However, due to a large number of breast images, abnor-

mal lesions can be missed. Computer-aided diagnosis

(CAD) could support radiologists by improving the visual

screening process and allowing better recognition of breast

abnormalities. It has been reported that CAD systems

improve the overall accuracy of detection of breast cancer

[5–8].

There have been several studies using CAD to detect

breast abnormalities in mammograms. Balanica et al.

developed a CAD system that utilized the spiculated lesion

features (i.e., the edge shapes of lesions) [9]. They adopted

a neural network (NN) technique to train their system on 96

cases and distinguished masses as either benign or malig-

nant. Al-Olfe et al. built a CAD system using unsupervised

clustering and biclustering classifier techniques [10]. They

extracted the first and second statistical and shape features

via wavelet transform to classify the masses as either

normal or abnormal. Kang et al. utilized two-dimensional

(2D) and fractal dimension entropies as texture features

[11]. They applied a support vector machine (SVM) clas-

sifier to recognize the mass abnormalities. Sharma and

Khanna, developed a CAD system based on the manual

collection of many regions of interest (ROIs) from two

public databases, digital database for screening mammog-

raphy (DDSM) and image retrieval in medical application

(IRMA). They extracted the Zernike features which are

rotation and shift invariant, and also relevant to the shape

[12]. They used an SVM classifier to evaluate their system

and diagnose lesions as malignant or nonmalignant.

Recently, a new brand of classifiers has been introduced

based on a new principle of deep learning, and it has been

extended to address the task of breast tissue classification.

Arevalo et al. utilized convolutional neural network (CNN)

to explain the content of breast images and recognized

masses as benign or malignant [13]. They evaluated their

CAD system, showing an area under the ROC curve (AUC)

of 82.10%. Jiao et al. designed a CAD system based on

CNN to recognize benign or malignant tissues in a total of

600 cases [14]. They extracted multiple hierarchical levels

of features to train CNN. Kooi et al. implemented a deep

model using CNN to identify malignant and suspicious

normal regions among 398 regions of mammograms [15].

As CNN has been recently adopted for CAD, active

investigations are underway to improve its performance to

a satisfactory level.

In this paper, we propose a CAD system utilizing deep

belief network (DBN), one of the deep learning algorithms

[16], to classify abnormalities on mammograms or breast

masses into normal, benign, or malignant. We evaluated its

performance against those of other conventional classifiers.

Our results show that our DBN-based CAD outperforms

the conventional CAD systems. The paper is organized as

follows. First, we present an overview of our proposed

CAD system. Second, we automatically extract ROIs and

generate the features for training and testing processes.

Third, we train our proposed DBN-based CAD system

using the DDSM database. Finally, we compare the per-

formance between the proposed DBN and other classifiers.

2 Materials and Methods

The schematic diagram of our DBN-based CAD system

processes is shown in Fig. 1. Our system involves auto-

matic mass detection, ROI extraction techniques, feature

extraction, and DBN classifier modules. Our presented

system is slightly different in the use of ROIs and involves

two techniques, Technique A (i.e., Mass ROIs), and Tech-

nique B (i.e., Whole Mass ROIs), to study the feasibility of

a DBN-based CAD system. These two different ROI

selection options are studied to investigate whether they

have a significant effect on the performance of the pro-

posed CAD system.

2.1 DDSM Dataset

In this study, we utilize the Digital Database for Screening

Mammography (DDSM) to evaluate the proposed system

[17]. This dataset is collected by South Florida University

and is available online for research purposes [17]. It is

collected to represent real breast data with an average size

of 3000 9 4800 pixels, resolution of 42 microns, and 16

bits. The DDSM database consists of 2620 cases that are

categorized into 43 volumes. Each case involves four

breast images, two of them are Mediolateral Oblique

(MLO) views and the others are Cranio-Caudal (CC) views

of each breast. Benign and malignant masses in all mam-

mograms are recognized and annotated by expert radiolo-

gists. In this paper, we utilize 150 mammograms divided

equally into normal, benign, and malignant classes.

M. A. Al-antari et al.

123



2.2 Preprocessing

Due to breast compression in the scanning process of

mammography, breast deformation occurs. The peripheral

area of the breast is affected by this compression, which

affects the grey level values of breast tissue in these regions

[18]. Thus, the intensity values of peripheral areas are

always lower than that of the central area. To diagnose

correctly, physicians must use certain settings of the win-

dow level during inspection of suspicious regions. How-

ever, this process can take a long time especially with a

huge number of patients, and it is inconvenient. To enhance

mammographic images for automatic detection of abnor-

mal masses, we apply a multi-threshold peripheral equal-

ization algorithm [19]. This algorithm enhances and

removes irrelevant information from mammograms. The

main purpose of this method is to enhance the peripheral

area of the mammogram by utilizing multiple thresholds to

create multiple images and then average them to produce

the smooth transitions between the central and peripheral

areas of the mammogram. Thus, physicians can view and

inspect the lesions through one window level setting. The

algorithm involves the following five sequential steps.

First, by utilizing adaptive Otsu thresholding, we segment

and separate the breast region from its background to

generate a segmented image (Iseg) as illustrated in Fig. 2b.

Second, a 2D Gaussian low pass filter (GLPF) is applied to

the original mammogram, shown in Fig. 2a, to produce a

blurred image (Iblur) shown in Fig. 2c. Third, the Iblur is

multiplied by the segmented image to eliminate the

unwanted information that exists outside the breast tissue,

as depicted in Fig. 2d. Then, a normalized thickness profile

(NTP) of the mammogram is estimated, as shown in

Fig. 2e. The NTP is obtained using five threshold values

ðTnÞ, as the mean value of the corresponding pixels of the

five thresholded images [19]. Each threshold value is

computed as follows:

Tn ¼ Iave � Fn; n ¼ 1; 2; . . .5; ð1Þ

where Iave is the average intensity value of Iblur, and Fn is

equal to 0.8, 0.9, 1.0, 1.1, and 1.2 and represents the scale

parameter used to adjust the threshold value to be around

Iave. In this study, we used these five thresholds to increase

the intensities of the peripheral regions and eliminate the

boundary effect produced if a single threshold is used [19].

To create NTP, we averaged all Îblur images, which are

estimated by rescaling the Iblur image according to each

threshold value as follows:

Digital Mammogram

Preprocessing 

Automatic Mass Detection 

Whole Mass ROI 

Feature Extraction

DBN

Normal Benign Malignan

Technique B

Mass ROIs 

Feature Extraction

DBN

Technique A 

Normal Benign Malignan

Fig. 1 Schematic diagram of

our proposed CAD system for

both techniques
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Îblurði,j) ¼
Iblurði; jÞ

Tn

; Iblurði,j) � Tn

1; otherwise

8
<

:
: ð2Þ

then,

NTP ¼ 1

5

X5

n¼1

ÎblurðnÞ; ð3Þ

where i ¼ 1; 2; 3; . . .;M; and j ¼ 1; 2; . . .;N, and M 9 N is

the size of the mammogram. Finally, the peripheral

equalized image (Ipeq) of the mammogram is achieved as

follows:

Ipeq ¼
Iatt

ðNTPÞr ; ð4Þ

where Iatt is an attenuation image (i.e., the original mam-

mogram, as shown in Fig. 2a). Peripheral equalization of a

mammogram is illustrated in Fig. 2f, and r is a constant

value in the range of [0.70–1.0] as in [19]. The ratio of

signal to noise (SNR) is computed for original and

preprocessed mammograms, which are shown in Fig. 2a, f

[20], as follows:

SNR dBð Þ ¼ 10 � log10

PM

i¼1

PN

j¼1

Iatt i; jð Þ½ �2

PM

i¼1

PN

j¼1

Iatt i,jð Þ � Ipeq i,jð Þ
� �2

2

6
6
6
4

3

7
7
7
5
: ð5Þ

Thus, SNR is estimated to be 17.01 and 17.35 dB when

r is equal to 0.7 and 1.0, respectively. So, to achieve our

CAD system, we set r ¼ 1:0 for all dataset.

2.3 Automatic Mass Detection

One of the important steps in CAD for breast cancer

classification is to detect specific masses or suspicious

regions on mammograms [21]. In this work, we imple-

mented our automatic mass detection algorithm as shown

in Fig. 3. Figure 4a shows a label-removed and extracted

breast only image. Figure 4b shows initial suspicious

regions identified via the adaptive threshold procedure. We

Fig. 2 Peripheral density

correction using multi-

thresholding algorithm.

a Original mammogram,

b segmented image (Iseg) with

adaptive Otsu thresholding,

c blurred image (Iblur), d blurred

image after multiply by Iseg,

e normalized thickness profile

(NTP) of mammogram, and

f peripheral equalized (Ipeq) of

mammogram
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computed the threshold value by aggregating all gray level

intensities inside the breast tissues and dividing them by

the total number of non-zero pixels (L), which is known as

the grayscale intensity of the local background, as follows:

Tthr ¼
P

i;j2I Iði; jÞ
L

; I(i,j)[ 0: ð6Þ

Then, we applied this threshold (Tthr) to the breast

image, converting the thresholded image of Fig. 4b to the

binary image as in Fig. 4c in order to apply morphological

operations. Consecutive binary morphological operations

were applied to determine proper shape and size of the

mass. These operations were accomplished using three

steps. First, we utilized a fill operation to complete the

whole expected suspicious region. Second, erosion with a

structuring element of disk type was applied. Finally, we

removed the remaining disconnected small areas remaining

around the mass after the erosion process. Figure 4d shows

the end result of the morphological processing. As it is

known that the pectoral muscle exists at the border of the

Preprocessed 
DDSM Labels Removal Adaptive 

Thresholding

Morphological 
Operations

Extracting the Mass 
Regions

Fig. 3 Block diagram of our

proposed technique for

automatic mass detection

Fig. 4 Proposed algorithm for

automatic mass detection.

a Labels removal, b after

applying adaptive thresholding,

c binary image, d after applying

morphological operations,

e mass region extraction, f mass

contour superimposed on the

corresponding mammogram
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mammograms in both MLO and CC views. After applying

our mass detection algorithm as shown in Fig. 4, the pec-

toral muscle was disconnected from the mass. Then, we

removed the part that is connected to the border which

represents the pectoral muscle. Figure 4f shows the whole

breast image with the superimposed contour around the

extracted mass. In this study, we verified our aforemen-

tioned approach on MLO and CC views of 150 mammo-

grams, which were equally divided for each class (i.e.,

normal, benign, and malignant). In this study, by compar-

ing the detected positions of the mass contour using our

method against the ground truth, we achieved an accuracy

of 86% as an average of correct mass detection for benign

and malignant cases. If the intersection over union

(IOUExtracted
Ground truth) between the extracted mass and its ground

truth exceeds 50%, we considered the result to be correct.

In this study, the next stages of mass classification

depended solely on the successfully detected masses. It

should be noted that extraction of masses from breast dense

regions remains a limitation of our method. Figure 5 shows

some sample results compared to the ground truth of the

original mammogram with the contours that drawn manu-

ally by expert radiologists during the mass inspection

procedure. Some mammograms involved two masses with

different sizes, as shown in Fig. 5d. Thus, we collect 56

benign and 56 malignant masses that were extracted cor-

rectly. In tumor classification, dense breast tissue remains

challenge. So, in order to reduce classification bias, we

extracted some normal regions randomly. In total, 56

regions from normal cases were collected.

2.4 ROI Extraction

Once breast masses were detected, we derived two kinds of

windows to train and test our proposed CAD system. In

Technique A (i.e., Mass ROIs), we utilized 168 regions

(i.e., 56 masses for each benign and malignant region and

56 normal regions). Then, we randomly extracted four non-

overlapping ROIs 32 9 32 pixels in size around the center

of each region, extracting 224 ROIs for each class, as

shown in Fig. 6a. Thus, a total of 672 ROIs were collected.

The size of each ROI was determined in order to obtain

Fig. 5 Examples of proposed automatic mass detection results. The top row shows the ground truth outlined by radiologists while the bottom

row illustrates automatically detected masses for the same mammograms

M. A. Al-antari et al.
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reliable statistical features [10, 21, 22] in which the

smallest sufficient ROI requires at least 800 pixels,

resulting in the ROI size of 32 9 32 pixels. However, one

could try more or less ROIs as long as sufficient number of

statistical features can be derived.

In Technique B (i.e., Whole Mass ROIs), a whole

detected mass was utilized as depicted in Fig. 6b. For

benign and malignant cases, after extracting the whole

ROIs, rectangular boxes were drawn around the irregular

shapes of the masses, which numbered 56 benign and 56

malignant. For normal cases, we utilized 56 regions that

were manually extracted from normal mammograms. Thus,

a total of 168 ROIs were collected.

2.5 Feature Extraction and Selection

The next step was to derive features representing the breast

tissue types. These attributes are quantitative measures of

breast tissues that are used to describe the salient charac-

teristics of the tissues [23, 24]. In this study, we used the

first and higher order statistical features to describe the

characteristics of the regions. These statistical features

involve both intensity and texture feature types. These

various features were utilized in previous studies and were

shown to be strong enough to distinguish different lesions

[13, 25–30]. A total of 347 statistical features were

extracted from the ROIs. After that, we applied some

feature selections techniques for the conventional classi-

fiers, but applied the entire features to DBN considering the

feature selection capability of deep learning.

2.5.1 First Order Statistical Feature

From the pixels in the ROI, the first order attributes were

computed by applying statistical analyses on both grays-

cale intensities and the histogram of each ROI. Nine fea-

tures are extracted from the histograms of the ROIs,

namely, entropy, modified entropy, standard deviation

(SD), modified standard deviation (MSD), energy, modi-

fied energy, asymmetry, modified skewness, and range

value of the histogram. Other features included mean, SD,

smoothness, third moment, entropy, skewness, kurtosis,

variance, mode, interquartile range, and percentiles or

quintiles at levels 0.1–0.9 [25, 29, 30]. A total of 28 first

order features were derived.

2.5.2 Higher Order Statistical Features

To take into consideration the spatial inter-relationships of

the pixels as well as their grayscale, the second order

attributes were computed on the grayscale co-occurrence

matrix (GLCM) as proposed by [31]. The 2D histogram of

grayscale intensity for a pair of pixels is called the GLCM.

We utilized quantization grayscale (i.e., L = 32), angle of

orientation (i.e., h = 0�, 45�, 90�, and 135�), and dis-

placement vector (i.e., d = 1, 3, 5, and 9) to create GLCMs

[26–28, 32]. The value of d is acceptable in the range of

1–10 [30]. From each value of d, we estimated four

GLCMs according to h, resulting in 16 different GLCMs.

Then, we extracted 19 different statistical features from

each one, for a total of 304 statistical features. These fea-

tures included energy, contrast, correlation, homogeneity,

entropy, maximum probability, inverse different moment

(IDM), variance, sum average, sum entropy, sum variance,

difference entropy, difference variance, autocorrelation,

dissimilarity, cluster shade, cluster prominence, correlation

information 1, and correlation information 2 [21, 24]. On

(a)

(b)

Fig. 6 ROI settings for proposed CAD system. a four non-over-

lapped ROIs from each mass (i.e., Mass ROIs), and b Whole Mass

ROIs
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the other hand, some previous studies have demonstrated

that d = 1 and d = 2 for GLCM provided good results of

overall accuracy [31, 32]. Thus, we estimated four GLCMs

at d = 2 with respect to h and then averaged them to cal-

culate the average GLCM. Then, we extracted 15 features

from this average GLCM. These features are seven

invariant moments, entropy, maximum probability, homo-

geneity, IDM, variance, uniformity, correlation information

1, and correlation information 2 [31]. Finally, a total of 319

higher order features were derived. All extracted features

were normalized in the range of [0, 1].

2.5.3 Feature Selection Techniques

To reduce the redundancy in the features and to select the

most prominent features, we utilized four feature selection

algorithms: sequential backward (SBS), sequential forward

(SFS), sequential floating forward (SFFS), and branch and

bound (BBS) as described in [33].

2.6 Classifier Designs

The selected features were used to train and test the con-

ventional classifiers of linear discriminant analysis (LDA),

quadratic discriminant analysis (QDA), and neural network

(NN). LDA is used to find the linear combination of fea-

tures that best separates two or more classes of objects

[34, 35]. QDA is a general discriminant function with a

quadratic decision boundary that can be used to classify

datasets with two or more classes [34, 35]. In this study, we

present a 3-class classification problem with multi-dimen-

sional features. Therefore, the task of LDA and QDA is to

classify 3 groups with an input of multi-dimensional fea-

tures. It is known that neural network (NN) is usually used

to indicate the feedforward neural networks, while deep

neural network (DNN) represents the feedforward NN with

many layers [16]. In comparison to the conventional arti-

ficial neural network (ANN), deep belief network (DBN)

has a slightly different structure. DBN utilizes restricted

Boltzmann machines (RBM) in which the layers can be

trained using the unsupervised learning algorithm con-

trastive divergence (CD). This work was devised by Hinton

et al. [16] and explained that classification could be

achieved in deeper architectures when each layer (RBM)

was pre-trained with an unsupervised learning algorithm

(i.e., CD algorithm). Then the Network can be trained in a

supervised way using backpropagation in order to ‘‘fine-

tune’’ the weights. Thus, a DBN-based CAD system can

deal with all extracted features without the need for

selected algorithms. Therefore, no feature selection method

was used, and all features were used for the training and

testing of DBN.

2.7 Deep Belief Network (DBN)

Deep belief network (DBN) based on RBM was recently

established by [16]. RBM is considered a model of a

generative stochastic neural network with connections only

between visible nodes (v) and hidden nodes (h). In RBM,

there are no connections between nodes or units in the

same layer; hence, Gibbs sampling is performed [36]. DBN

has a deep structure that generates a prominent model with

multiple layers of RBM, as shown in Fig. 7. To develop

our DBN for both techniques, we utilized R and Q hidden

nodes with first and second hidden layers, respectively. The

training of DBN was achieved through two consecutive

processes. First, a pre-training process for RBM was per-

formed via unsupervised learning. Then, we utilized a

supervised learning method to apply a back propagation

algorithm with known labels of breast cancer features to

adjust the weights and fine-tune the networks. In DBN,

with training data, pre-training assists the neural networks

to overcome any problems of over-fitting.

One of the benefits of using DBN is the ability to extract

and select the more prominent features from the input data.

Figure 7b shows three layers of RBM for both of our

techniques. Each layer of RBM is updated depending on

the previous one. Once the first layer is prepared by com-

puting the weight matrix, it is considered as an input for the

next layer. This process trains RBMs one after another and

utilizes their extracted features for learning in the next one.

So, the input data during this process is reduced layer by

layer. Thus, the selected features at the hidden nodes of the

last layer can be considered as a vector of features. In both

structures of our DBN, the algorithm of contrastive diver-

gence (CD) with block Gibbs sampling is utilized to update

the matrix of weights w layer by layer [35–37]. In fact,

there are five consecutive steps to train RBM. First, all

parameters of the network are initialized and set to zero.

These parameters are weight matrix w and two real values

of bias vectors (i.e., A and B) for hidden and visible layers,

respectively. Second, the logical state of the first hidden

layer is computed as follows:

h1 ¼ 1; f B + v1w
Tð Þ[u

0; otherwise

�

ð7Þ

where f zð Þ ¼ 1= 1 + e�zð Þ is a sigmoid activation function,

and u is an activation threshold. Third, after h1 is obtained,

the state of visible layer vrecon is reconstructed corre-

sponding to the following formula:

vrecon ¼
1; f(A + h1wÞ[u
0; otherwise

�

: ð8Þ

The fourth step is to compute the state of hidden layer

hrecon as follows using vrecon,

M. A. Al-antari et al.
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hrecon ¼ f Bþ vreconw
T

� �
: ð9Þ

Finally, the difference of weight Dw is estimated to

compute the current one as follows:

wkþ1 ¼ Dwþwk;

Dw ¼ h1v1

g

� �

� hreconvrecon

g

� �

; ð10Þ

where g is the batch size.

As shown in Fig. 8b–d, v1 represents the visible layer

for each RBM during the pre-training process. This means

that, after the first RBM is tuned, the hidden layer of this

RBM is considered as the visible layer for the next one and

so on. All of these steps are iterated until the number of

batches is converged. Figure 8 presents the pre-training

process of DBN utilizing the CD algorithm, where both red

boxes and arrows demonstrate the current network layers,

while blue ones indicate the derived weight and states.

Figure 8e shows the learning process of DBN via back

propagation, which includes pre-training and fine-tuning of

all parameters. For both techniques, all extracted features

(i.e., 347 features) were directly utilized as input for DBN

through m visible units (i.e., Vm ¼ V1; V2; . . .V347), as

illustrated in Fig. 7a. In Technique A (i.e., Mass ROIs),

Out1
Out

3Out2

VmV3V2V1
........

.....

.....

(a)

Output units

RBM
Q hidden units

R hidden units
RBM

Q hidden units

RBM
Input units

R hidden units

(b)

Input units

Output units

Fine-Tuning 

Q hidden units

R hidden units

(c)

Fig. 7 a Structure of our

proposed DBN based CAD

system for both techniques,

b pre-training process, and

c back projection algorithms
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two hidden layers were used with R ¼ 15 and Q ¼ 8 hid-

den nodes for RBM and the batch size g of 10. In Tech-

nique B (i.e., Whole Mass ROIs), we also utilized two

hidden layers with R ¼ 20 and Q ¼ 8 hidden nodes and

g ¼ 7 for RBM. For both techniques, batch size g of DBN

was empirically obtained by trying different values (i.e.,

trail-and-error based) in order to obtain the best accuracy,

as in [36]. In this study, the overall accuracy was derived

from 2-fold cross-validation.

2.8 Evaluation of CAD system performance

To evaluate our proposed CAD-based DBN system, we

utilized overall accuracy and receiver operator character-

istic (ROC) curve with its area under the curve (AUC)

[12–14, 23]. The ROC curve presents a trade-off between

sensitivity and specificity, where the high rate of classifi-

cation is investigated when the AUC satisfies a set

threshold [13]. The ROC curve is defined based on sensi-

tivity and specificity as follows:

Sensitivity ¼ TP

TP + FN
; ð11Þ

Specificity ¼ TN

TN + FP
; ð12Þ

where sensitivity represents the ability to measure dis-

ease appearance as abnormal, while specificity represents

the ability to measure absence of disease as normal.

Overall accuracy represents the ability of the system to

distinguish between the different classes (i.e., normal,

benign, or malignant) and is defined as follows:

Overall accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
; ð13Þ

where true positive (TP) and true negative (TN) represent

the numbers of studies that are classified correctly as

positives and negatives, respectively. False positive (FP)

indicates the negative studies that are incorrectly distin-

guished as positives. False negative (FN) indicates the

positive studies that are incorrectly classified as negatives.

In this study, we utilized the pairwise comparison method

between each two classes to compute all of these metrics,

as presented in [38].

3 Results and Discussion

For data preparation in this work, we randomly split the

total cases into training and testing datasets. That is, a total

of 168 whole cases (or masses) were randomly split into a

training dataset (84 cases) and a test dataset (84 cases).

In Technique A (i.e., Mass ROIs), we extracted four

ROIs from each mass in the training dataset and collected a

h(2) h2recon out outrecon

< h2, out >(3)

h(1) h1recon

Input data Reconstruction data

< v1recon, h1recon >(1)< v1, h1 >(1)

(b) (c) (d) 
V1

h1

h2

Output
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h2
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h2

Output

(e) (a) 

< h2recon, outrecon >(3)
< v2recon, h2recon >(3)

< h1, h2 >(2)

Fig. 8 a Proposed DBN layers.

b–d Schematic diagram of

Contrastive Divergence (CD)

technique for greedy layer-wise

training, and e learning process

of DBN via back propagation

algorithm

Table 1 Accuracy of the

proposed DBN based CAD

system against other

conventional classifiers

Feature selection method Technique A: mass ROIs Technique B: whole mass ROIs

LDA QDA NN DBN LDA QDA NN DBN

SBS 82.14 80.33 82.57

92.86

75.00 65.48 80.95

90.48

SFS 77.08 72.02 83.12 78.57 75.00 84.52

SFFS 78.57 72.46 83.85 78.57 76.19 84.52

BBS 72.25 77.38 77.68 75.00 73.81 78.57

All features 74.11 69.33 79.17 63.10 62.5 79.52
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total of 336 ROIs for training. For testing, we also

extracted four ROIs from each mass in the test dataset and

classified each mass. In Technique B (i.e., Whole Mass

ROIs), we trained the classifiers with the features from the

whole mass in the training dataset. After training, we

classified each mass from the test dataset. In both tech-

niques, training and testing sets contained equal numbers of

cases for each class. In this study, all results were derived

as the average of 2-fold cross-validation with all classifiers.

Our two techniques using a CAD system based on DBN

were evaluated in terms of overall accuracy and area under

the ROC curves. All classifiers are used to classify three

kinds of breast tissues of normal, benign, and malignant.

The conventional classifiers (i.e., LDA and QDA) depend

on the selection feature algorithms to select the most

prominent features. The main purpose of using feature

selection techniques is to reduce the dimension of features

to make the classifiers strong enough for distinguishing

between the different lesions of breast tissues. On the other

hand, the NN classifier has a good structure to deal with all

features, so its performance does not change much with

selection algorithms. On the contrary, we directly utilized

all extracted features without any dimension reduction as

an input of DBN. Overall accuracies of our DBN-based

CAD system compared with other classifiers in both

techniques are reported in Table 1. The performance of

each conventional classifier varied corresponding to the

utilized feature selection algorithm. In Technique A, the

performance of NN with SFFS was better than those of

LDA and QDA, with an accuracy of 83.85%. On the other

hand, the performances of QDA and LDA with SBS were

better than those of other selection algorithms. On the

contrary, DBN achieved a much higher classification rate

with an accuracy of 92.86%. In Technique B, DBN again

showed better performance than all other classifiers, with

an accuracy of 90.48%. In this technique, all conventional

classifiers provided high accuracy with SFFS and SFS

algorithms. The performance of QDA with SFFS was

slightly increased by 1.19% compared with SFS. From the

results in Table 1, we conclude that the performance of

DBN in both techniques provides higher accuracy than the

others methods. The performance of DBN in Technique A

was slightly higher by 2.38% than in Technique B. For

conventional classifiers, the NN classifier showed better

performance than LDA and QDA for both techniques. This

indicates that our DBN-based CAD is preferable to the

other classifiers to obtain a highly accurate rate of breast

cancer diagnosis. The confusion matrices of our three

classes for DBN are shown in Table 2. In Technique A, the

error (i.e., misclassification) of mixing benign with normal

cases was 3.57%, while the error of mixing malignant with

benign was 17.86%. In Technique B, there was no mixing

error for benign with normal, but the mixing rate error for

confusing benign with malignant was 28.57%. Meanwhile,

the ROC curve is considered a detection tool to verify the

performance of the CAD system. Due to the misclassifi-

cation rate between normal and benign for both techniques,

the AUCNB (i.e., AUC for ROC curve between 1-speci-

ficity for normal and sensitivity for benign) in Technique A

was slightly lower than that in Technique B, as reported in

Table 3. Due to the false rates of classification between

benign and malignant, as shown in Table 2, the values of

AUCBM (i.e., AUC for ROC curve between 1-specificity

for benign and sensitivity for malignant) were 93.54% and

86.56% for Techniques A and B, respectively. Therefore,

the average 97.26% of all AUCs in Technique A was

higher than the 95.39% for Technique B. Figure 9 shows

an example of ROC curves for DBN against other

Table 2 Confusion matrices of

DBN based CAD system for

both techniques

Technique A: mass ROIs Technique B: whole mass ROIs

Normal Benign Malignant Normal Benign Malignant

Normal 112

100%

0

0.0%

0

0.0%

28

100%

0

0.0%

0

0.0%

Benign 4

3.57%

99

88.39%

9

8.04%

0

0.0%

25

89.29%

3

10.71%

Malignant 0

0.0%

11

9.82%

101

90.18%

0

0.0%

5

17.86%

23

82.14%

Table 3 Performance analysis

of DBN based CAD system
Metrics (%) Technique A: mass ROIs Technique B: whole mass ROIs

AUCNB 98.23 99.60

AUCNM 100 100

AUCBM 93.54 86.56

Overall accuracy 92.86 90.48
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classifiers corresponding to 1-specificity for normal and

sensitivity for benign and the AUCs (i.e., AUCNB for all

classifiers) for both techniques. ROC curves of the con-

ventional classifiers are depicted with the most robust

feature selection algorithm of SFFS. Both Techniques A

and B with DBN provided much higher AUCs compared

with other classifiers. This indicates that a DBN-based

CAD system can distinguish different breast abnormalities

with higher probability. Figure 10 shows the capability of

DBN along with other conventional classifiers with respect

to different numbers of datasets in terms of accuracy and

stability, as in [14]. These results show that the perfor-

mance of DBN improves slightly as the size of the dataset

increases. We confirmed the stability of DBN and some

improvements in the performance with an increase in

dataset size against the conventional classifiers. On the

other hand, a much larger dataset on a more powerful

machine would likely provide better characterization of the

clusters and hence better performance. The presented

results of our proposed CAD system utilizing DBN show

the feasibility of distinguishing different breast tissues. The

usability of deep learning techniques such as DBN or CNN
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has been validated for various medical applications such as

prostate cancer detection [39], breast cancer detection

[13, 14], and discriminative cue integration for medical

image annotation [21]. In this work, we developed a DBN-

based CAD system to distinguish among three different

breast tissue abnormalities, an improvement over previous

studies [40] and [41] differentiating only two tissue types

(i.e., benign against malignant). Currently, we are investi-

gating the application of a convolutional neural network

(CNN) for even better performance with a CAD system

[13–15, 39–43].

4 Conclusions

In this paper, we present a DBN-based CAD system to

classify among three classes of breast tissues, which are

normal, benign, and malignant. We present an automatic

mass detection algorithm to identify suspicious masses on

mammograms. Then, statistical features are derived from

the detected masses. After that, we utilize DBN to inves-

tigate its potential for a CAD system with breast tissues.

The results of the DBN-based CAD system demonstrate

significantly improved performance compared to previous

conventional CAD systems. The results indicate that CAD

systems with deep learning capability offer great potential

for computer-aided detection of breast cancers. For the two

proposed techniques, there was a slight difference in per-

formance. However, Technique A could be preferable for

microcalcifications’ problems, especially when the expec-

ted target is relatively small in size. Otherwise, Technique

B could be more preferable when the entire mass is

considered.
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