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In Brain-computer Interface (BCI), the detection of activations is based on the experience gained through calibra-
tion or training sessions prior to actual use to build the classification model. This gives rise to several problems
that include inter-session variability and time fading of accuracy after calibration. In this work, we investigate a
new approach for brain-computer interface data that requires no prior training. The basic principle of this new
class of unsupervised techniques is that the trial with true activation signal within each block has to be different
from the rest of the trials within that block. Hence, a measure that is sensitive to this dissimilarity can be used to
make a decision based on a single block without any prior training. The new approach is applied to experimental
data for P300-based BCI for both normal and disabled subjects and compared to the classification results of
the same data using the conventional processing techniques requiring prior calibration. Performance in different
experiments assessed using classification block accuracy suggests that this approach can reach accuracies not
very far from those obtained with training while maintaining robust performance in practice.
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1. INTRODUCTION
Brain-computer interface (BCI) offers hope for a communication
channel with disabled patients who are not capable of using the
normal communication channels. In spite of the major grounds
covered by research in this area over the past decade, the chal-
lenge to make a reliable BCI system that combines mobility
and accuracy remains open. Moreover, for some BCI techniques
such as those based on detecting P300 signals in speller or one-
of-multiple image selection tasks, existing commercial systems1

require assistance from caregivers or patient’s family to oper-
ate the system by the patient. So, there is an immediate need
for developing technologies that would lead to the availability of
such devices to patients at home with more independence and in
less restrictive settings.

In P300-based BCI, a signal is triggered by an auditory or
visual stimulus when participants are asked to watch for a partic-
ular target stimulus presented within a stream of other stimuli in
an oddball paradigm.2 In all previous P300-based BCI interfaces,
detection of the P300 is based on experience gained through cal-
ibration or training sessions prior to actual use to utilize super-
vised training sets to build the classification model.3 Several
problems arise with this model including temporal variability of
the signal (or inter-session variability) due to several reasons that
include non-stationary brain dynamics and possible movement of

∗Author to whom correspondence should be addressed.

electrode locations. This means that in practice, to communicate
efficiently using such systems, the acquisition of data must be
preceded by calibration with time difference as small as possi-
ble. As a result, the temporal persistence of such experience can
be assumed to follow a training model close to an interpolation
around the point at which the calibration/training was done, with
most likely consequence is that the initial accuracy is expected
to fade as time goes by after the initial training session. This
required training imposes limitations on the utility (and hence
commercialization) of the technology by individuals outside of
research labs. Hence, efforts must be directed to develop meth-
ods that use unconventional decision models to overcome such
limitations and achieve sufficient robustness for practical utility.

Previous work attempted to decrease the amount of calibration
required for BCI and move toward a zero-training goal.4 This
method relies on observing the variation in training sessions and
fitting such variation to spatial filters that can be used to make
calibration sessions shorter. Even though the goal of this method
is zero training, the approach relies on the utilization of prior
information to allow future calibrations to be shorter or ideally
no required. In that sense, it can be considered as a supervised
training method with a more efficient training strategy that makes
it possible for the training model to be more generalized and thus
last longer. As a result, developing a P300-based BCI technology
that can work adaptively without any prior calibration is still
an open goal that once achieved would further the use of this
important technology in real-life.
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The aim of this work is to investigate new methodologies for
P300-based brain-computer interface data that require no prior
training. This targets the development toward “plug-and-play”
P300-based BCI devices whereby the device is taken out of the
box and used immediately by the patient. The new method will
be applied to experimental data and compared to the classifica-
tion results of the same data using the conventional processing
techniques requiring prior lengthy training sessions.

2. METHODS
The basic principle of the new class of unsupervised techniques
is that the trial with P300 signal within each block has to be dif-
ferent from the rest of the trials within that block. In other words,
if we have an N -trial block, one signal has a different form from
all the other (N − 1) signals. This means that if we could find
a measure that can be sensitive to this dissimilarity (or alterna-
tively, the similarity of signals without activation), then we can
indeed make a decision based on a single block without any prior
training. In the following, we present a number of such measures
and discuss how they will be used to separate the activated trial
from the rest of trials in the same block. The assumption in all
these methods remains that there is only one activated trial within
each block. The input to each of these methods is a set of tri-
als �x1� x2� � � � � xN � given as a collection of M ×1 vectors. The
general block diagram for all methods is presented in Figure 1.

2.1. Outlier Detection Method
In this method, each trial is formulated as a vector in M-
dimensional space where M is the number of points within each
trial. The assumption underlying this method is that the vectors
of all trials that exhibit no P300 activation will be similar and
that they are all different from the one that has a P300 activa-
tion. Hence, a distance measure is used to compute the distance
between each trial and all other trials in a pairwise manner. Then,
for each trial, the sum of all distances with other trials is used
to differentiate the one trial with the largest distance from all
other trials. In mathematical form, the trial with P300 signal is
computed as the solution to the optimization problem given by,

max
i

∑
all j �=i

�xi−xj� (1)

This means that this method detects the trial that is the furthest
from all other trials. The norm in this equation was used as the
2-norm.5 Possibility of using other norm definitions is possible
but this one was selected to make its concept more visible by
appealing to the common Euclidean distance as the measure used
in this problem.

2.2. Correlation Method
The detection of the P300 signal relies on its characteristic shape
and onset that are unique and help distinguish this type of activa-
tion from any other type. It is also very common for the literature
working with P300 signals to show the P300 signal form their
data by simple averaging of a number of trials with known acti-
vation presence. Here, we borrow an activation detection method
from functional magnetic resonance imaging given the similarity
between this technique and that of P300 based BCI. In particular,
if the activation signal shape is somewhat known, it is possible to

Fig. 1. Block diagram of the new approach.

detect its presence by simple correlation of a “template” activa-
tion and each trial signal. If we have N trials within a block, then
the trial with the strongest correlation with the template activa-
tion should most likely be the one with P300 signal. Since the
onset of the true P300 signal varies between 300 and 500 ms, the
template activation is used with different amounts of time shift to
detect such correlation to make sure that such variability is taken
into consideration. In a mathematical form, the activated trial is
found by solving the following optimization over all trials in the
block:

max
all i��t

�xTi s�t� (2)

Here, s�t is the template activation signal shifted in time by
�t. It is possible to constrain the range of time shifts to include
only those with onset within the known range of P300 signal.
However, this was not done in this work and the range of shifts
was extended to be the full range of [−M , M] for the M-sample
signals.

2.3. Dot Product Method
This method is very similar to the Outlier Detection method
above with the only exception in that the measure is here the
dot product of the two trial vectors rather than the norm of
their difference. This dot product relies on the fact that the dot
product designates the component of one vector onto the other
or basically the cosine of their angle if they both have similar
magnitudes.6 That is, similar vectors have higher dot products
and vice versa. So, the optimization is here to find a trial that
has the smallest dot product with all remaining vectors. Conse-
quently, Eq. (1) is modified to be as follows:

min
i

∑
all j �=i

xi ·xj (3)

2.4. Cross-Correlation Method
This method bears similarities to both the dot product method and
the correlation method. In particular, rather than computing the
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dot product between two trials, it computes the cross-correlation
between them and obtains the peaks of this cross-correlation
function as the measure of similarity for this method. So, it is a
generalization of the concept in the dot product method and also
a variant of the correlation method whereby the template sig-
nal is just a different trial in the same block. In a mathematical
form, we select the trial that satisfies the following optimization
problem:

max
i

{∑
j �=i

max
�t

xTi xj��t

}
(4)

2.5. Singular Value Decomposition (SVD) Method
The issue of representation of a set of vectors is a well-known
problem in mathematics and also has wide utility in many appli-
cations. Some of the well-known solutions are based on the prin-
cipal component analysis (PCA) that allows the computation of
the so-called “principal component” that best represents a set of
vectors by inspecting the eigenvalues of the different eigenvec-
tors in the eigen-decomposition of the problem and finding the
eigenvector with much larger eigenvalue from the rest. As the set
of vectors become more and more independent, it becomes more
difficult to find a single vector that can best represent them all
ending with the ideal case of orthonormal basis that result in all
unity eigenvalues. In our context, the assumption is that (N −1)
trials are somewhat similar (at least not independent). Therefore,
if we perform such analysis for each of the possible (N −1) tri-
als and using a sparsity measure for the resultant eigenvalues of
each decomposition that can detect how close each of these sets
of vectors to the idea case of a single outstanding eigenvalue, it
can be possible to detect the trial with activation as the remaining
vector.7 That is, the most sparse set of eigenvalues of all decom-
position denote that these trials are not activated and it turn the
remaining vector has the P300 signal. The 1-norm measure was
selected as the sparsity measure for the singular values in our
implementation. In a mathematical form:6

For Trial i� Ai = �xj�1≤j≤N� j �=i = U�V T (5)

where U and V are orthogonal matrices of size M×M and �N −
1�× �N − 1� respectively, and � is a M × �N − 1� matrix with
its upper �N −1�× �N −1� matrix taking a diagonal form with
singular values sij on the diagonal and the lower �M −N +1�×
�N − 1� a zero matrix. The activated trial is hence taken as the
solution to the following optimization problem,

max
i� allAi

��s1� s2� � � � � sN−1��1 (6)

That is, we select the trial that has all the remaining trials
forming a matrix with the largest 1-norm for its singular values
(similar to the strategy used with compressive sensing8).

3. EXPERIMENTAL VERIFICATION
The experimental P300-based BCI data of Hoffmann et al.3 were
used to test the developed no-training unsupervised methods and
compare it to their results that were obtained with 3 sessions
of training of a Bayesian Linear Discriminant Analysis (BLDA)
classifier. To make that comparison directly applicable, we fol-
lowed the exact same sequence of preprocessing and classifica-
tion in this paper. The description of the data set is found in

detail in Hoffmann et al.3 but a summary will be provided here.
The duration of one run was approximately one minute and the
duration of one session including setup of electrodes and short
breaks between runs was approximately 30 min. One session
comprised on average 810 trials, and the whole data for one
subject consisted on average of 3240 trials. The experimental
paradigm consists of flashing one of six images in a random order
after asking the subject to count how many times a particular
image appears. So, the six stimulus images appear in 6 consec-
utive trials, usually termed a block. The P300 signal is triggered
by the appearance by the image of interest only (i.e., the one
currently being counted and not the other five images) and can
be detected from EEG signals to indicate the subject selection.
In the supervised BLDA method, four-fold cross-validation was
used to estimate average classification accuracy for each subject.
So, each result from this classifier needs 3 sessions for training
to compute. On the other hand, the proposed techniques work
directly on the data without any prior training. This is a major
difference between the previous methods and this work.

The standard preprocessing operations were applied to the data
including referencing, bandpass filtering with cut-off frequencies
set to 1.0 Hz and 12.0 Hz, downsampling by a factor of 64, single
trials extraction, windsorizing and finally amplitude normaliza-
tion. Additionally, for the new approach, signal denoising based
on spectral subtraction was employed to the raw data before the
above preprocessing.9 Other methods were used based on wavelet
denoising and other types of filters can also be used for similar
results.10�11 The denoising block is placed before the standard
preprocessing steps above as shown in Figure 1. The number of
electrodes was selected as 4, 8, 16 or 32 depending on the experi-
ment with the same electrode configurations in the data set used.3

Then, the samples from the selected electrodes were concate-
nated into feature vectors to be used for classification using either
supervised BLDA3 or based on the new approach in this work.
The dimensionality of the feature vectors was Ne×Nt , where Ne

denotes the number of electrodes (selected as 4, 8, 16, or 32)
and Nt denotes the number of temporal samples in one trial (32
samples in our experiments). The results of the different methods
proposed are compared to each other and to supervised BLDA
classification. The performance is measured using the block accu-
racy measure which is most relevant comparison criterion in this
application. The block accuracy considers the data as blocks of 6
trials where only one of them should be selected with P300 signal
showing while the others are not. If the classification results indi-
cate anything other than only one activation at the correct image,
it considers the whole block as incorrect. The results using dif-
ferent numbers of blocks were achieved by summing the signals
from the selected number of blocks and using the sum as the new
signal for classification using the proposed techniques. For the
new approach, the block accuracy estimation experiments were
repeated 24 times for independent sets of blocks containing trials
from the same session and from different sessions for a given
subject to avoid any bias and obtain accurate final results. The
results are computed as block accuracy results for each subject,
and average block accuracy results for all subjects. Also, relative
block accuracy results were obtained by dividing the block accu-
racy results of the proposed methods by the block accuracy of the
reference supervised BLDA method to allow better assessment
of the performance.
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4. RESULTS AND DISCUSSION
The block accuracy results of using the new approach on 4 sam-
ple subjects are shown in Figure 2. The figure presents the results
using

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. Block accuracy results for 4 subjects using (a) outlier detection method, (b) correlation method, (c) dot product method, (d) cross correlation method,
(e) singular value decomposition method, and (f) supervised classification using BLDA for comparison in different rows.

(a) outlier detection method,
(b) correlation method,
(c) dot product method,
(d) cross correlation method,
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(e) singular value decomposition method, and
(f) supervised classification using BLDA for direct comparison,
each on a separate row.

The results also show the cases of using 4, 8, 16 and 32 chan-
nel data on the same graph for each case/method. The relative
block accuracy results are shown in Figure 3 with the same order
of the methods for better interpretation. In Figure 4, the aver-
age block accuracies and relative block accuracies for all sub-
jects are presented for each method to see an overall picture
of the performance. In Table I, the low and high limits for the
block accuracies for each method are given whereas those for
relative block accuracies are given in Table II. In the following,

(a)

(b)

(c)

(d)

(e)

Fig. 3. Relative block accuracy results for 4 subjects using supervised BLDA results as a reference for comparison using (a) outlier detection
method, (b) correlation method, (c) dot product method, (d) cross correlation method, and (e) singular value decomposition method in different
rows.

the analysis of the results according to different parameters is
presented.
• Effect of Method: The results from the sample individual cases
show that the proposed method based on SVD provided the
best performance reaching 95% block accuracy in some cases.
The other 4 methods were comparable in block accuracy perfor-
mance reaching accuracies above 80% in all cases. Examining
the relative block accuracy curves, it is clear that all method
range from 30% of the performance of the supervised BLDA
method for low block averaging to above 90% in some cases with
high block averaging and particularly for SVD. From the average
performance curves and Tables I and II, the performance of the
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(a)

(b)

(c)

(d)

(e)

Fig. 4. Average block accuracy and Relative block accuracy results
over all subjects for comparison using (a) outlier detection method,
(b) correlation method, (c) dot product method, (d) cross correla-
tion method, and (e) singular value decomposition method in different
rows.

Table I. Performance of different methods in terms of their low and high block classification accuracies computed over all subjects as compared
to the results from supervised comparison method that requires 3-session training at the bottom row.

4-Channels 8-Channels 16-Channels 32-Channels

Block accuracy limits Low (%) High (%) Low (%) High (%) Low (%) High (%) Low (%) High (%)

Outlier detection 14.6 61.5 16.7 62.5 14.6 58.3 15.6 67.7
Correlation 17.7 57.3 20.8 57.3 17.7 62.5 16.7 69.8
Dot product 17.7 54.2 20.8 58.3 22.9 61.5 19.8 69.8
Cross-correlation 17.7 66.7 21.9 65.6 17.7 58.3 16.7 72.9
SVD 18.8 69.8 26.0 79.2 18.8 80.2 17.7 84.3
Comparison method 38.5 98.9 44.8 100 43.8 100 50.0 100

SVD method was clearly dominant on the high end of the range
of block and relative block accuracies with average performance
reaching 84.4%. The other proposed methods provide block and
relative block accuracies around 70%. Their performances vary
but they are within a close proximity of each other.
• Effect of number of channels: The difference is clear between
the cases of 4 and 32 channels due to the implicit spatial averag-
ing that occurs in using the higher number of channels. However,
the difference in performance between the cases of 8 and 16
channels was not much and they both present accuracies in the
middle between those of 4 and 32 channel data.
• Effect of number of blocks: There is a clear linear relationship
between the block and relative block accuracies and the num-
ber of blocks used that is evident in all average curves. This is
expected since the higher number of blocks allows more tempo-
ral averaging that improve the signal-to-noise ratio of the trials
enhancing their separation procedures.
• Variability among subjects: Some variations among subjects
were observed where the results from Subject 2 for example were
significantly lower than those from other subjects.

From a global overview of results, one can observe that the
new methods with no training requirement were able to achieve
relative block accuracies of above 70% of the performance of
the supervised BLDA method that require prior lengthy training
with 3 full sessions. This is particularly important for such appli-
cations as P300-based BCI where the disabled person chooses
one out of several images to indicate the need for a particular
action. Such selection is usually done infrequently and with time
separation that would require training to be repeated every time
one selection has to be made, which would make this cumber-
some for practical use. This demonstrates potential for the new
approach that works adaptively without any prior knowledge or
assistance from care givers or family members and without the
training overhead required in supervised methods.

Given that the correct communication between the brain and
the computer must include no ambiguity, a measure that consid-
ers the correct answer at the level of a whole block (i.e., one of
six images) rather than an individual image on/off measure must
be used. For example, if within a particular block 2 images out of
6 are classified as “selected” with only one of them a true selec-
tion, the usual accuracy would give a success rate of 5 out of
6, which is 83.3%. This is clearly incorrect because the message
received was ambiguous. On the other hand, the block accuracy
considers this whole block as incorrectly classified and would
give a success rate of 0%, which is a realistic assessment of the
utility of the received information. Other measures were used in
other studies as well such as the bit rate. Here, given that we are
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Table II. Performance of different methods in terms of their relative low and high block classification accuracies computed over all subjects with
reference to the results from supervised BLDA comparison method that requires 3-session training.

4-Channels 8-Channels 16-Channels 32-Channels

Block accuracy limits Low (%) High (%) Low (%) High (%) Low (%) High (%) Low (%) High (%)

Outlier detection 32.9 62.0 32.7 62.5 31.3 58.3 31.9 67.7
Correlation 33.1 61.8 28.9 57.3 28.2 62.5 36.5 69.8
Dot product 37.1 55.3 36.3 58.3 33.2 61.5 37.3 69.8
Cross-correlation 41.5 67.8 37.3 65.6 31.2 58.3 30.9 72.9
SVD 48.1 71.3 50.9 79.2 47.8 80.2 38.5 84.4

comparing methods with no training to others with long train-
ing, the commonly used definition of bit rate is clearly flawed
because it fails to account for the time needed for the required
training and the fading of such training with time. Therefore, it
was not possible to utilize this measure in this work.

The results for a particular number of blocks were achieved
by summing the signals from the selected number of blocks and
using the sum as the new signal for classification using the pro-
posed techniques. Another approach that can be used is to calcu-
late the proposed classification metrics from each block and then
sum up all metrics from the desired number of blocks then make
the classification decision based on this sum. The approach we
used gave a better performance and hence was preferred over this
alternative. The analysis of the problem shows that this is due to
the nonlinearity of the computed measures that makes the aver-
age of the individual block measures completely different from
the measure of average of blocks.

The applications of the new approach include developing plug-
and-play P300 based BCI devices that require no training and
work straight out of the box. Even though the block accuracy of
such devices will be lower than the conventional methods with
prior training, its adaptive nature and availability for immediate
use without calibration boosts the robustness of their performance
and practical utility.

5. CONCLUSIONS
The results of a new approach for processing P300-based brain-
computer interface data that allows classification of trials within
a block without prior training are presented. The new method
was verified using experimental data and compared to the results
obtained with conventional processing with lengthy training.
Promising results were obtained suggesting potential for the new
approach in making the P300 based BCI technology easier to
implement as plug-and-play device with no prior calibration

required and capable of adaptively follow any changes in the
subject’s condition.
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