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Four-dimensional (4D) ultrasound imaging extends the real-time capability of ultrasound to visualize a real-
time volume that can be manipulated by the sonographer. Among the different visualization methods, surface
rendering is a common mode for displaying volumetric datasets such as in obstetrical applications. A challenge
in this mode is that surface shading is required to visualize the surface and enhances the surface contrast
and this has very demanding computational requirements for 3D surfaces. Here, we present an optimized high-
performance rendering pipeline based on four stages for preprocessing, volume rendering, surface shading, and
postprocessing. The new approach is implemented to render volumes acquired on a 4D commercial ultrasound
imaging system to illustrate its practicality. The results demonstrate diagnostic quality of rendered volumes at a
computational time cost that is suitable for 4D real-time processing. Given its low cost of required hardware, the
new pipeline has potential for making 4D imaging systems more affordable while maintaining diagnostic quality
and performance.
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1. INTRODUCTION
Volume rendering in medical imaging offers a display of a volu-
metric dataset after it is projected onto a plane using ray-casting.1

Many algorithms to extract surfaces of different structures inside
the body have been developed for imaging modalities with suf-
ficient resolution and signal-to-noise ratio (SNR) such as mag-
netic resonance imaging and computed tomography.2 However,
surface extraction in ultrasound imaging applications is a much
tougher problem given the lower resolution and SNR in addition
to the presence of speckle as a characteristic texture in ultrasound
images. Moreover, for volume scanning applications, reflected
waves from specular reflectors vary with the direction of scan-
ning unlike scattering. If we add to all that the real-time nature
of ultrasound imaging that require such rendering to be done on
the fly rather than offline as with other modalities, we realize
how challenging this problem is.

Four-dimensional (4D) ultrasound surface rendering is a chal-
lenge for many reasons including noisy dataset, nonuniform vol-
ume sampling and processing time constraints. Two-dimensional
(2D) cross-sectional images of three-dimensional (3D) objects
require realistic shading to create the illusion of depth.3 Hence,
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the implementation of a complete system requires several steps.
The first step is rendering the volume dataset considering the
problem of polar sampling of ultrasound dataset, also surface
detection must be take place while raycasting the volume to gen-
erate the Z-components of the rendered image, and due to the
fuzzy nature of the ultrasound the volume rendering must include
filtering of the data sets. The second step is Z-component fil-
tration due to the noisy nature and surface discontinuities then
uses the Z-components to shade the surface. Finally, the third
step includes additional smoothing that enhances the rendered
2D image.

The utilized programming platforms for the implementation
include OpenGL, which draws the volume cube and shading
language that perform ray-casting of the volume and coordi-
nate transformation in addition to filtration. Alternatively, surface
shading can be utilized where traditional surface rendering algo-
rithms convert the volume data into geometric primitives in a
process known as iso-surface extraction. The geometric primi-
tives (polygon mesh) are then rendered to the screen by conven-
tional computer graphics algorithms.4 Another method is based
on gradient calculation where the gradient vector is calculated
first then used to represent the normal vector to be used for sur-
face shading calculations.5
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Surface shading is an excellent method for allowing the oper-
ator to visualize the 3D shape of a structure.6 The method is
intuitive since humans perceive objects as solid structures that
can be viewed from different perspectives to form an impression
of their shape. The surface shading method aims to simulate this
process in the digital world7 and serves as a common tool for
visualization in many imaging modalities. In ultrasound, the low
SNR and parallel tissue boundary discontinuities make defining
smooth surfaces difficult. Smoothing of a surface can be per-
formed at the rendering stage. An approach was presented to
render the fetal surface from the ultrasound 3D dataset.8 First,
the 3D dataset is smoothed using median and Gaussian filters.
Then, a surface primitive is extracted and used for surface shad-
ing. Another approach renders smooth surfaces from 3D ultra-
sound based on the oriented splatting.9 In this case, the surface is
extracted based on the variational classification principle. Fuzzy
surface rendering is done by oriented splatting whereby it creates
triangles aligned with the gradient of the surface function. Such
triangles are then colored with a Gaussian function and rendered
in a back-to-front order. Another group proposed an improved
surface rendering technique for 3D ultrasound data of fetuses10

where modified anisotropic diffusion filtering is first applied to
the dataset. In spite of the success of such methods for their
respective applications, such approaches were not intended for
real-time processing in addition to not being optimized for imple-
mentation on the presently available GPU technology.11 Sev-
eral groups proposed GPU-based framework for the ultrasound
data volume render11–14 with main focus on processing time. An
approach that would combine the optimization methods used in
offline 3D visualization and real-time processing on GPUs would
offer an excellent platform for 4D imaging applications.

In this work, we present an optimized framework for surface
rendering of the 4D ultrasound volumetric data sets in real-time.
This approach offers real-time performance while maintaining
high quality of surface rendering that is close to what is offered
by offline 3D rendering methods. Image space z-buffer shading is
used,3 which postpones the surface shading to the last stage of the
surface rendering. An additional task is added to the ray-casting
routine for edge detection, which can be implemented to get good
results with modest computational effort. Shading based on a 2D
texture offers optimized performance as compared to 3D texture
and allows further enhancement of the surface and further post-
processing while meeting real-time requirements. Moreover, such
image space shading offers independent volume rendering and
shading processing in the different stages. This allows pipelining
for higher performance and makes it possible to process both the
volume rendered and surface rendered images concurrently. The
new approach is implemented and verified on a customized pro-
cessing based on off-the-shelf components this ensuring low-cost
of required hardware.

2. ACQUISITION AND RENDERING
HARDWARE DESCRIPTION

The hardware setup used for the surface rendering is illustrated
in Figure 1. Imaging was performed using the DIGISON-Q ultra-
sound scanner. This scanner has independent 32-channel digital
transmitters and receivers. The processing in the receive system
filters and detects the digital RF lines which are subsequently
converted and sent via fast PCIe interface to the digital pro-
cessing computer. The processing platform is custom-built from

Ultrasound Scanner
DIGISON-Q

Motor
Control

Computer
Intel Core i7

CPU@3.3GHz

GPU
GeForce GTX650

PCIe Interface

RS-232

4D Probe

Display

Fig. 1. Block diagram of the system data acquisition hardware.

off-the-shelf hardware components comprising Intel® Core™ i3
processor with 4 cores running at 3.3 GHz each with 4 GB of
DDR3-1600 RAM, a GA-B75M-D3H motherboard (GIGABYTE
Technology Co., LTD) with PCI-E Gen3 expansion slots, and
a NVidia GeForce GTX650 video card (NVIDIA Corporation,
Santa Clara, USA) with 1027 MB of video RAM and 384 graphi-
cal processing unit (GPU) cores. The computer components were
chosen to have sufficiently fast data transfer rates for real-time
data acquisition, processing, and graphical display. The data are
acquired directly from the ultrasound scanner through a single
lane PCIe Gen3 with a maximum bandwidth of 1 GB/s per lane.
The total cost of the hardware of the processing platform was less
than $1500, which is a very modest figure for such demanding
application.

The rendering is performed using the multicore GPUs on
the programmable video card in real-time. The data acquisition,
transfer, reconstruction and rendering processes are implemented
in different layers with software developed using Microsoft
Visual Studio 2010, the Microsoft DDK, Intel Parallel Stu-
dio, The Intel Math Kernel Library, OpenGL15 and NVidia CG
language.16 Each detected ultrasound line of the imaging sys-
tem is low-pass filtered then undersampled to 512 samples per
line with quantization of 4 Bytes/sample. The ultrasound data
from the acquisition hardware are copied directly to the computer
memory as raw scan line data (image sticks) and then arranged
in an ordered polar (�, r) grid prior to transfer to the GPUs for
further rendering processing.

3. RENDERING METHODOLOGY
As the Frames are sent to the GPUs on the graphics card and
before being integrated into the 3D texture memory, 2D image
processing takes place in Pass (1). In Pass (1) after coordinate
conversion, a homogenous filter is applied to smooth and slightly
blur the scan-converted 2D image obtained from interpolating the
sector radial scan lines into a uniform grid. The output from this
stage is integrated directly into the 3D texture. In Pass (2), pro-
cessing starts only after complete reception of all volume frames.
Ray-casting and Z-buffer calculation are applied in this stage.
The Z-buffer is filtered using homogenous filter in the subse-
quent Pass (3) then used to shade the rendered 2D image. Finally,
Pass (4) further applies a homogenous filter on the final image
before display. The block diagram of the proposed processing
methodology is shown in Figure 2.
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Fig. 2. Rendering pipeline.

3.1. Pass (1): Preprocessing
As the 4D ultrasound probe wobbles, ultrasound detected lines
are sent to the GPUs synchronously. In this stage, we include a
preprocessing step before integrating the ultrasound data to the
3D texture. The fragment shader uses a look-up table (LUT) to
convert the image sticks from a polar (r , �) to a Cartesian (x,
y) coordinate system for each image. Moreover, a homogenous
filter is applied to the raw data. One of the major performance
issues of this stage is skipping the empty spaces that result from
the coordinate transformation process. In this work, we use a
third component flag in the LUT to skip the empty spaces in the
scan-converted image.

3.2. Pass (2): Volume Rendering
This processing stage takes care of transforming the volume data
from polar to Cartesian coordinate in the probe motion direc-
tion also using a LUT-based method (since the in-plane direction
transformation is done in Pass (1)). Then, volume ray-casting
is performed to the transformed data where 3D Texture is used
with a trilinear interpolation. The implementation here uses a
parallel projection ray-casting model without loss of generality
(current implementation is also applicable on the perspective pro-
jection with a slightly different point to plane distance calcula-
tion). Figure 3 illustrates ray-casting geometry. Alpha-blending
comprising the combination of pixel values to allow for trans-
parency is subsequently applied to the resultant volume1 followed
by a 3D smoothing Gaussian filter. This 3D filter kernel is cal-
culated in the CPU and sent to the fragment program as a float
array. By pipelining the samples, there is no need to read the
entire 3D rendered volume samples but rather it is possible to
read the front slice of samples and discards the oldest slice and
so on to optimize the data transfer.13

As the last step, edge detection and z-buffer formation are
performed. Such steps take advantage of the special form of the

Fig. 3. Viewing plan with respect to the volume data set and distance map
calculation. Lower right show the pixel vector components.

ultrasound imaging data especially in such cases when imaging
the fetus face. Since the fetus face is preceded by amniotic fluid
that produces very little reflected ultrasound signal compared to
the baby face that acts close to a specular reflector, an excellent
contrast between them is obtained. While ray-casting the volume,
the data samples are saved in a circular buffer (a data structure
that is connected from both ends with a position index to simplify
the implementation of a first-in first out queue) with a reasonable
length (A buffer length of as small as 8 was sufficient to maintain
stable performance in the experimental verification of this work).
We compute the following measure,

Difference=
i=�n/2�−1∑

i=0

data�i�−
i=n−1∑

i=n/2

data�i� (1)

Here, n is the buffer length. We compare the Difference value
to a user-selectable threshold to do the segmentation. In case of
a surface point, we store the length of the ray at this point in the
4th element of the rendered pixel vector, this value will present
the distance to the viewing plane (or the Z-Component).

It should be emphasized that the threshold value is a user-
controlled parameter that he/she can change from the user-
interface to enable distinguishing different surfaces of the volume
based on this selection. Also taking the sign of the Difference
into consideration can be used to detect different surfaces of the
volume such as detecting the surface of fetal face versus detect-
ing the surface of a fluid-filled structure such as the uterus.

3.3. Pass (3): Surface Shading
This stage represents the lighting stage of the rendered volume.
This stage begins by filtering the rendered Z-buffer components
using a homogenous filter. Then, the 2D rendered image is appro-
priately shaded using image space shading3 and local illumina-
tion models17 as follows. The ray-casting model is to directly
evaluate the volume-rendering integral along rays that are tra-
versed from the viewing plan. For each pixel in the image, a
single ray is cast into the volume. Then the volume data is resam-
pled at discrete positions along the ray. By means of the transfer
function, the scalar data values are mapped to optical properties
that are the basis for accumulating light information along the
ray. Typically, compositing can be performed in the same order
as the ray traversal.18

A point light source is used, while a directional light source
is still applicable. Point light source enhances the contrast of
the fetus face. The Blinn–Phong model is used for the surface
illumination where it computes the light reflected by an object
as a combination of three different terms, ambient, diffuse, and
specular intensity terms in the form:17

IPhong = Iambient + Idiffuse+ Ispecular (2)

The shadowing illumination components are first calculated by
testing each surface pixel if it is shadowed or not using ray-
tracing back from each pixel to the light source and if there is
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Fig. 4. Shadow ray tracing using height map.

no other pixel obstructs the ray this pixel considered as lighted
pixel and if not it’s a shadowed pixel. If a shadowed pixel is
found, reduction of the pixel value by the shadowing coefficient
constant is done. The geometry of the process using the map of
voxel heights from the viewing plane is illustrated in Figure 4.
It should be noted that shadowing noticeably affects the overall
performance due to the ray-tracing needed. However, it is still
achievable in our system using a modest graphics card because
it is still done on 2D texture data rather than 3D texture data.

3.4. Pass (4): Postprocessing
To enhance the output image, an edge-preserving speckle reduc-
tion filter is applied on the final shaded image.19–21 For simplicity,
the homogenous filter was selected for use with this implemen-
tation of the new system.19 Filtration is done on the Z-Buffer
component and works as a sand paper smoothing of the rendered
a surface. Surface rendering with different settings with low fil-
tration using a 5×5 kernel or high filtration using a 9×9 kernel
can be selected by the user. The main advantage of this approach
is that the filtration is performed on a 2D texture dataset, which
makes the memory fetching performance better than working on
a 3D texture.

4. RESULTS AND DISCUSSION
The time to collect an ultrasound volume assuming 35 frames per
volume and a depth of 16 cm can be calculated from the echo-
ranging theory to be around 466 ms (since the time to receive
one line from a depth d is equal to 2d/c where c is the speed
of ultrasound and the total time is this time multiplied by num-
ber of lines per image and number of images in the scanned
volume).22 This time becomes shorter when the number of ultra-
sound frames per volume becomes less or the depth of scanning
is decreased. Hence, this time maps directly to the quality of the

(a) (b)

Fig. 5. Rendering with light position from the front (a) and front-left (b).

(a) (b)

Fig. 6. Rendering with low filtration (a) and high filtration (b).

rendered volume. Figure 5 shows sample 4D rendering results
using data collected by scanning a 3D ultrasound training phan-
tom (CIRS, Inc. Model 068) with different light positions show-
ing light source from the front and front–left directions. Also, in
Figure 6 presents the results of rendering with (a) low filtration,
and (b) high filtration kernel sizes. The results show good diag-
nostic quality of rendering which was performed in real-time.

To obtain quantitative results, a number of experiments were
performed to compute the rendering time variation with the dif-
ferent imaging parameters to assess the practicality of the devel-
oped system. The results of the variation of the rendering time
with number of frames within the rendered volume are shown in
Table I (for surface rendering mode, 3D Kernel size of 3×3×3,
2D homogeneous filter kernel size of 9× 9, image sector size
of 77�, 3D scanning Fan angle of 61� and volume size of
512×512×512). It is clear from the results that such variations
do not have a high order of complexity as suggested by the small
differences in time for the whole range of values considered.
Table II presents the results of the variation of the rendering
time with size of rendered volume (for surface rendering mode,
3D Kernel size of 3×3×3, 2D homogeneous filter kernel size of
9×9, image sector size of 77�, 3D scanning Fan angle of 61� and
37 frames per volume). In this case, the variation show a linear
O(n) variation with size of data in each dimension. Moreover, the
study of the variation of the rendering time with size of 3D filter
kernel is presented in Table III (for surface rendering mode, 2D
homogeneous filter kernel size of 9×9, image sector size of 77�,
3D scanning Fan angle of 61�, 37 frames per volume and volume
size of 512×512×512) and shows a linear variation with number
of points in the 3D filter kernel as expected. On the other hand,

Table I. Rendering time variation with number of frames per volume.

Frames per volume Rendering time (ms)

27 53.7
31 54.0
35 54.6
37 54.6

Table II. Rendering Time variation with 3D filter kernel size.

Volume data size Rendering time (ms)

512×512×512 54.6
384×384×384 35.0
256×256×256 15.8
128×128×128 13.2
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Table III. Rendering Time variation with 3D filter kernel size.

3D Filter kernel size Rendering time (ms)

No filtering 21.5
3×3×3 54.6
5×5×5 187

Table IV. Rendering time variation with 2D homogeneous filter size.

Homogenous filter Render time (ms)

3×3 54.3
5×5 54.9
7×7 55.5
11×11 56.8

the variation of the rendering time with size of 2D homogeneous
filter kernel presented in Table IV suggest very small variation
of rendering time with 2D homogeneous kernel size (for surface
rendering mode, 3D filter kernel size of 3×3×3, image sector
size of 77�, 3D scanning Fan angle of 61�, 37 frames per volume
and volume size of 512×512×512). As a result, it is clear that
the key issue in the rendering time is the choice of 3D filtration
kernel size. Also, the results demonstrate that the performance
offered by this midrange graphics card for different practical set-
tings is acceptable and fulfill the timing constraints of real-time
rendering. In other words, the frame rate in the developed system
is limited only by the data collection speed not the reconstruction
and visualization.

In our system, the 4D ultrasound probe assumes the geom-
etry of a convex 2D probe making a convex motion trajectory
in the cross-plane direction. In any given probe position along
this trajectory, the acquired 2D ultrasound image is composed of
ultrasound scan lines or sticks sampled on a polar grid. Hence,
the system has to do two polar-to-Cartesian transformations for
in-plane data to construct individual 2D images in the volume,
then for such collection of images to form the 3D volume. The
amount of required data acquisition and processing depend on
both the fan angles of the 2D images and the fan angle of the
probe motion and the selection of these parameters by the user
affects the frame rate of the system that is mainly limited by the
acquisition part physics. As shown by the results, the process-
ing and display part is significantly faster in our implementation
and therefore does not impose any limitations on this combined
process.

Scan conversion is done during fetching the volume data using
a simple LUT, a 2D texture memory is used for the LUT on
the GPU side to do the job. The LUT data are calculated and/or
updated in the CPU based on the current parameters of the data
acquisition and then sent to the GPU side. Performance enhance-
ment in the ray-casting step in Pass (2) is achieved in this work
with early ray termination is done whenever the surface point
is detected depending on the type of rendering required (ren-
dering baby face is an example where this can be applied). In
general, three criteria are used here for determining ray termina-
tion to optimize the performance. The first is based on leaving
the bounding box designating the volume of interest selected by
the user. The second is based on the high accumulated opacity
value.23 Finally, the third criterion is based on the scan-converter
LUT detecting a ray going out from valid volume data cone to
empty space with no data.

Further enhancement can be achieved in the edge detection
step of filtering the sampled data. Instead of using the current
sample to be saved in the circular buffer, we can use a 2D win-
dow perpendicular to the ray, taking the window average and
using this averaged value as the current sample in the circular
buffer. Using the 2D window average along with the filter that
we already use in the Difference calculation in Eq. (1) has the
effect of a 3D moving average filtration of the volume dataset.

As higher performance GPU technology becomes available,
advanced memory textures and throughput rate are expected to
grow significantly. Here, we used a mid-range graphics card to
confirm that the current implementation does not significantly
affect the ray-casting performance. The two major specifications
of the graphics card that affect performance are the core and
memory specifications. For the core, the number of cores used
and the texture filling rate are the most important feature. On the
other hand, the performance of the memory part is determined
by its bandwidth.

In Pass (2), all the overheads added to the regular raycasting
are just storing the most recent sample in a circular buffer, one
addition, one subtraction, and one comparison. Because the new
method does not need more fetching the 3D dataset memory,
there is no significant decrease of the timing performance. In
the Pass (3), the input to this stage is a 2D texture, which has
better fetching time performance than the 3D texture used in the
second pass. So, without shadowing calculations, this stage does
not significantly affect the rendering time performance.

5. CONCLUSIONS AND FUTURE WORK
In this work, we presented a high-performance rendering pipeline
implemented on a customized platform made up of low-cost com-
mercial components. This approach combines the optimization
methods used in offline 3D visualization and real-time processing
on GPUs to offer an optimized platform for 4D imaging appli-
cations. The processing system is verified by rendering volumes
acquired on a 4D commercial ultrasound imaging system with a
research interface with results showing diagnostic quality while
maintaining real-time performance suggesting potential for prac-
tical utility.
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