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Abstract 

Adaptive immune system is one of the human body’s defense mechanisms 

developed to protect against repeated infection by the same pathogen through 

immunologic memory. Vaccination uses this concept to design vaccines to protect 

our bodies from infectious diseases. Some cells of the immune response cannot 

recognize antigen fragments unless attached to Major Histocompatibility Complex 

(MHC) molecules. Therefore, predicting peptides that are able to bind to MHC 

molecules is a key step when designing vaccines. MHC class II is one type of 

MHC molecules that is characterized by its ability to bind peptides of different 

length. Machine learning techniques can facilitate discrimination between peptides 

to classify them into binders or non-binders to MHC class II molecules. However, 

building a classification model passes through several stages that may influence its 

final decision. In this study, we design a robust MHC class II peptides classifier 

using neuro-fuzzy techniques. In particular, we optimize each of the stages 

involved including construction of training and testing datasets to eliminate bias, 

mapping variable length peptides into fixed feature vector, mining important 

features through several feature selection techniques, and choice of neuro-fuzzy 

classifiers.  The experimental results demonstrate the importance of this 

optimization to obtain objective evaluation and show how bias in the results of 

such techniques as cross-validation can cause wide variability of outcomes for the 

same data. This can explain the fluctuations in performance of several techniques 

and suggests a more robust strategy to use for a more objective comparison of 

different techniques. 
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1. Introduction 

Cell-mediated immunity is the immune response associated with cells that does not 

involve antibodies. Major Histocompatibility Complex (MHC) molecules have the 

main rule to elicit the T cell-mediated immune response. The two main classes of 

MHC molecules (class I and class II) are cell surface glycoproteins coded on 

chromosome 6 in humans and called Human Leukocyte Antigen (HLA). T cell 

antigens cannot be recognized unless its fragments are attached to MHC molecule 

to be present on the surface of T-cells. After binding to a fragment of a pathogen, 

MHC class II molecules activate the helper T cells and hence stimulate cellular and 

humoral immunity. Not all antigenic peptide fractions are able to bind MHC class 

II molecules [1]. Therefore, predicting which specific peptides are able to bind 

MHC class II molecules is an important step in vaccine design. Computational 

immunology is an emerging branch of bioinformatics (also called immuno-

informatics) that has potential to play a major rule in this task by reducing time and 

cost by targeting more precise binding peptide prediction.  

Several epitope databases are available to serve the goal of predicting peptides that 

are able to bind MHC class II molecules. Different allele-specific datasets (that is, 

a separate dataset for each allele) consisting of binding and nonbinding peptides 

can be extracted. Similarity between sequences in the resulting dataset may cause 

biased evaluation measures due to the likely presence of similar peptides in both 

the training and testing dataset. This is particularly even more problematic when 

measuring performance using cross-validation, which is a common practice in 

most previous work [2]. To address this problem, several studies performed 

similarity reduction on the dataset to remove redundant sequences [3] [4]. 

However, this approach may result in removing important information from the 

training dataset. A change in one position between two sequences may be a good 



reason to cause a change of its state from binder to non-binder or vice-versa. 

Therefore, the results of each method will highly depend on the similarity 

reduction technique used, which hinder objective evaluation of its performance. 

For example; according to the same database –MHCBN [5] – the sequence 

“AAFAAAKAAAAAA” is classified as a binder while “AASAAAKAAAAAA” is 

classified as a non-binder to MHC class II although the two sequences are exactly 

the same for all the positions except for the third one. 

To obtain realistic performance results without bias or loss of information, similar 

sequences from those found in the training data are removed from the testing data 

used in a blind testing procedure instead of cross-validation. An optimal local 

alignment approach is used to find the score of the best alignment between each 

two sequences in the binders and non-binders datasets. Testing data then will only 

contain a set of sequences that do not show similarity, and all other sequences will 

form the training data. 

To accomplish the prediction goal using machine learning techniques, peptides in 

the dataset must be represented by a set of features of fixed length (unlike actual 

MHC class II molecules lengths). MHC class II binding grooves at its end are open 

which explains their ability to bind different length peptides [6]. Consequently, 

variable length peptides are to be converted to fixed length ones using feature 

representation. To reach this goal, different features are extracted from a well-

known physicochemical amino acids data repository and averaged over the peptide 

length. Increasing number of features along with thousands of peptides results in a 

high dimensional data that are difficult to deal with in addition to their prohibitive 

computation time and memory requirements. To overcome this problem, feature 

selection techniques are utilized to select only the most informative features for our 

problem. 



Feature selection techniques are classified into three types namely; filter, wrapper 

and embedded. The former is characterized over the other two types by its easy and 

fast computing procedure. In addition, they do not depend on the used classifier so 

they are implemented once and then integrated with any classifier. Their main duty 

is to calculate a score for each feature using data intrinsic properties. Features with 

highest scores remain in the feature vector and the rest are discarded [7]. Filter 

techniques are either parametric or non-parametric tests. Parametric tests constrain 

the sample data to have a specific probability distribution and a predefined value of 

distribution parameters. On the other hand, nonparametric tests need more data to 

reach the same conclusion using fewer assumptions [8]. Classifying using only the 

top ranked features offer lower computational and memory requirements while 

increasing performance due to the lower data dimensionality. 

Neuro-fuzzy classifier (NFC) is a type of machine learning network based 

classifier that is able to build a fuzzy system using neural network learning 

capabilities. The learning procedure is data driven and operates on local 

information. A three layer neuro-fuzzy classifier expresses its first layer as inputs, 

second layer (hidden) corresponds the fuzzy rules (i.e., if-then rules) and outputs 

form the third layer. Connection weights are the definition of the fuzzy sets. Fuzzy 

rules are considered as prototypes of training data and so, neuro-fuzzy classifier 

has the advantage of the possibility of its construction by using training data or 

fuzzy rules. Neuro-fuzzy have a main characteristic of the ability of being 

interpreted in linguistics rules [9]. 

When using neuro-fuzzy classifiers (NFC) on large-scale data sets, nonlinear 

network parameters often cause significantly higher computation time, which may 

not be practical in many cases. Scaled conjugate-gradient (SCG) algorithm is 

known to consume less memory and presenting high convergence rate when 



training type 1 fuzzy systems [10]. Here, three different implementations of the 

adaptive NFC based on the work of Bayram [11] [12] are employed and compared 

in our study with a proposed modification to maintain stable results. 

Accordingly, one of the objectives of this study is to highlight the role of some 

data mining techniques on the prediction goal. Data mining algorithms used are 

represented in two main categories; outlier detection and classification. Outlier 

detection is achieved through feature selection techniques which are employed to 

discard features that have negative influence on the model performance in addition 

to those having no influence at all. In this context, six different feature selection 

techniques are compared and their effect on the prediction accuracy is studied. The 

machine learning technique involved in the classification process is a hybridization 

between fuzzy inference systems and neural network. Several parameters of the 

merged techniques are tuned and modifications are proposed to overcome negative 

issues appeared during implementation. 

  



2. Previous Work 

A broad study of available web servers serving the function of predicting peptides 

binding to MHC class II molecules reported poor performance and recommended 

focusing on collecting adequate data and enhancing predictive models [13]. 

Although some previous work showed somewhat accurate prediction, results were 

still unsatisfactory. One related study aimed to increase accuracy in addition to 

minimizing the time consumed in the prediction phase when training using Fuzzy 

neural network (FNN). FNN was recommended as a suitable predictor with a slow 

processing problem. A proposed solution was to use boosted fuzzy classifier with a 

SWEEP operator method (BFCS) [14]. Their model was successful when trained 

on a dataset of 1050 peptides for HLA-DRB1*0401 in the context of fast 

processing, easily obtaining linguistic rules and a slight increase in accuracy. This 

study, however, suffered from three main drawbacks. Data were downloaded from 

two databases only resulting in low number of peptides. Features selected for 

discrimination were only three without a rationale for the criteria of choice. 

Moreover, evaluation of model involved cross-validation not blind testing [2]. The 

last drawback was solved later in another study by examining its model using blind 

testing on a separate data [4]. However, this work did not remove similar peptides 

from the blind dataset and hence is prone the risk of bias.  

A study that adopted the idea of comparing results when evaluating a model with 

full data against a similarity-reduced data was reported [4]. Three different 

databases were the source of fifteen constructed datasets, five reduced datasets for 

each specific-length allele downloaded from each database. Prediction was carried 

out using three different techniques and results are recorded on several MHC class 

II alleles. Unfortunately, their datasets lacks collectivity as data downloaded from 

three databases are not put together but rather used separately, which is likely to 



decrease amount of information needed for training the classifier. Furthermore, the 

study did not involve feature selection, which leads to the problem of higher data 

dimensionality and its computation time and memory complications. 

A study was carried out to demonstrate the effect of using forty-two different 

combinations of six features extracted from the Chou’s PseAAC [15] along with 

Multi-Layer Perceptron (MLP) and Support Vector Machine (SVM). Datasets of 

allele HLA-DRB1*0301 constructed in [4] are used for evaluation in a 5-fold 

cross-validation procedure. The importance of using balanced data through 

Synthetic Minority Oversampling Technique (SMOTE) was emphasized and 

reported to enhance prediction performance [3]. Unfortunately, same previously 

stated drawbacks were observed with absence of blind testing, use of only one 

database, and use of six features with no feature selection. A review study 

concentrating on the tools available through the Immune Epitope Database and 

analysis Resource [16] was held out to highlight the importance of the practical use 

of those tools. Two case studies are investigated to figure out the immunogenicity 

of erythropoietin and timothy grass pollen [17].  

Some tools were designed to serve both MHC class I and II binding peptides 

prediction. These tools are mainly characterized by their independence on the 

peptide length where amino acid sequences were treated as time series data. This 

method overcame the drawback of peptides length-dependent machine learning 

techniques and offered an opportunity to predict uncommon length epitopes [18]. 

A recent study proposed a new classification algorithm using ℓ1-minimization 

techniques operated on a sparse representation of peptides. The research concluded 

that physicochemical properties encoding of features is preferred over binary 

encoding scheme. Prediction of peptides binding to five different alleles were 

examined using 10-fold cross-validation [19]. 



Analysis of previous work defines main prediction shortcomings that will be 

addressed in this work by enhancing each step of the process. First, the data 

collection is done using three most recent updated epitope databases. Different 

datasets are then constructed to decide which is more appropriate for training a 

classifier, full data or similarity reduced data. The effect of data resampling is 

monitored through the establishment of a balanced dataset. Second, feature 

selection techniques are utilized to automate choosing features based on well-

defined criteria. Third, neuro-fuzzy classifier is used for classification given its 

excellent performance in similar problems while incorporating a speed up scaled 

conjugate-gradient algorithm to boost their speed. Finally, the evaluation of the 

proposed model is performed using different measurement metrics. A comparison 

of the results from cross-validation with blind testing is performed for the 

developed system. In contrast to previous work that carried out blind testing on 

unpublished datasets that most probably contain similar peptides to the ones used 

in training, we ensure removing any similar peptides in the testing set for blind 

testing. The new system has the potential to provide more robust prediction results 

by eliminating all sources of bias in the evaluation process, which is important for 

objective evaluation. 

 

3. Methodology 

The objective of this paper is to propose a classification model to predict which 

peptides within a group of sequences are able to bind MHC class II molecules. An 

initial influential step is to take a decision concerning which peptides participate in 

the training phase of the classification algorithm. Since chosen peptides 

significantly affect the classification model, this stage is thoroughly studied by 

comparing the model performance when trained with five mixed datasets formed 



from three downloaded datasets. Two datasets are subjected to similarity reduction 

based on an optimal local alignment procedure. Fig. (1) illustrates all the data 

aggregation, filtering, processing and splitting steps.   

Classifying peptides into binders and non-binders using a machine learning 

technique needs informative features. Therefore, features must be first collected 

and calculated to have a global peptides representation. Then, feature selection 

techniques must be implemented to choose the most informative features. As a 

final step, a neuro fuzzy classifier with three distinct implementations classifies the 

peptides using datasets with the assigned features. 

3.1. Data aggregation and processing 

The most common web available databases that contain information about binding 

capabilities of peptides to MHC class II molecules are; Immune Epitope DataBase 

(IEDB) [16], MHCBN [5] [20], SYFPEITHI [21], MHCPEP [22] and AntiJen 

[23]. Last update for AntiJen database was in 2003 and that for MHCPEP was in 

1998. Therefore, the data available through these two databases are not included in 

the data collected for our study. That is because correctness cannot be guaranteed 

and there is a possibility that the state of any of the peptides is changed later. 

Furthermore, MHCPEP is one of the data sources of the MHCBN database (last 

updated 2009). On the other side, IEDB is characterized by being the largest 

container for MHC molecules data and is the most frequently updated (last updated 

2015). Also, SYFPEITHI database (last updated August 2012) contains quite a bit 

good list of peptides binding to some MHC alleles. 

In accordance to the previous quick analysis, data used in this study will be a 

collection of binding and non-binding peptides to MHC class II alleles withdrawn 

from the three databases; IEDB, MHCBN and SYFPEITHI. These data are filtered 

first according to the specifications of its source database and then collected to 



form one dataset. IEDB data are filtered by; first, removing peptides with no 

reported IC50 value then omitting any peptide does not meet the database 

construction conditions. MHCBN data are filtered by removing peptides with no or 

uncertain qualitative values. SYFPEITHI data are not in a need to any filtration 

since it contains binding peptides only. This new collected dataset is further 

filtered by removing any repeated sequence such that the resulting dataset contains 

only unique peptides (FUD).  

3.2. Similarity reduction by optimal local alignment 

To obtain a similarity reduced dataset, FUD is then split into two sub-datasets; 

namely, binders and non-binders datasets. Clusters are formed for each sub-dataset 

such that each cluster contain all sequences sharing a similarity of 80% or more. 

Similarity is detected using optimal local alignment algorithm [24] by calculating a 

similarity score between each two sequences in the same sub-dataset. Optimal 

local alignment is a dynamic programming algorithm developed from that of Smith 

and Waterman [25]. Pairwise alignment is included along with a gap penalty value 

of 8 when executing this algorithm. 

To guarantee a fair blind testing, 15% of each sub-dataset is set aside then merged 

to form a testing dataset. This is done under a constraint that clusters that contain 

only one peptide are the only allowed as a part of the testing dataset. This ensures 

that the testing dataset can never contain a peptide similar to any of the ones found 

in the training dataset. That is because a cluster with only one peptide means that 

there is no similar peptide in its sub-dataset (up to at least 80% similarity). A 

similarity reduced training dataset is a one that contains no two peptides share 

similarity in sequences more than 80%. This is achieved by taking only one 

peptide from each cluster. The chosen peptide is the one that share the maximum 

similarity with other peptides in the same cluster. 



3.3. Feature representation 

The variable length characteristic of the MHC class II molecules raises the 

importance of expressing peptides by a fixed length feature set. This ensures 

converting a variable length vector into a fixed length one to be computationally 

convenient for the classification process. Features contributing to the fixed length 

feature vector construction are extracted from the Amino Acid Index (AAindex) 

database [26]. AAindex is a huge repository of physicochemical properties of all 

amino acids expressed in numerical indices. AAindex contains 545 properties 

reduced to 531 after removing those appearing in undefined values at specific 

amino acids. The remaining properties are all used as features in the feature vector 

representation to have a feature vector for each peptide of size 1×531. Each peptide 

feature is an averaged value of each physicochemical property calculated by Eq. 

(1). 

𝑃𝐹𝑉 =
∑ 𝐴𝐴𝑃𝑉𝐿
1

𝐿
 ,                                                  (1) 

where PFV is the feature value of each peptide, AAPV is the property value of 

each amino acid, and L is the peptide length. Therefore, for every single peptide, 

the previous equation is repeated 531 times to result in a 531 PFVs representing 

the peptide feature vector of size 1×531. 

For example to calculate the feature value of the property named “Hydrophobicity 

index” for the 9-mer peptide sequence “'ARSMAAAAA'”, the hydrophobicity 

index value of each amino acid (AAPV) in the sequence is fetched from the 

AAindex database, then the 9 values are summed up and divided by L (9) to have 

one representative hydrophobicity index value of the mentioned sequence. Fig. (2) 

illustrates this numerical example. This process is repeated 531 times for all the 

amino acid physicochemical properties.  



3.4. Feature selection 

Since each peptide has a feature vector of 531 values, this results in a feature 

matrix of size n×531 where n is the total number of peptides in the dataset. This 

clearly poses a high dimensional data problem, which is challenging for the 

classification problem in addition to its computation time cost. Feature selection 

techniques are used to extract the most informative features to address this 

problem. Here, we use four filter-type feature selection techniques with both 

parametric and non-parametric tests in addition to a proposed hybrid technique. In 

particular, ranking features by t-test and entropy represent parametric tests while 

using receiver operating characteristics (ROC) and Wilcoxon calculations are non-

parametric. For parametric tests, data are normalized along each feature around 

zero mean and unit variance. This is in addition to proposing the hybrid and the 

fuzzy filter feature selection techniques. 

 The four filter feature selection techniques are; t-Test [27], Relative Entropy 

(RE) [28], ROC (Receiver Operating Characteristics) [29] and Wilcoxon 

Mann Whitney test [30]. For example, when calculating the values of each 

of these four tests on the 531 physicochemical properties (using FUD data), 

the “polar requirement” property had the highest entropy value which is 

equal to 0.65. Another property named “Knowledge-based membrane-

propensity scale from 3D_Helix in MPtopo databases” had the highest t-test 

and ROC values which are equal to 28.4 and 0.225 respectively. As for the 

Wilcoxon test, the “Averaged turn propensities in a transmembrane helix” 

property had the highest rank with a value equals to 0.5. 

 Hybrid filter chooses the best informative highest scoring feature according 

to each of the four previous techniques to form a feature vector of size 1×4 

for each peptide. Since four filter techniques are applied, the hybrid filter 



chooses the first ranked feature from each of these four. As a result, four 

features only are used in the hybrid technique. If any feature is repeated 

among the chosen ones, the algorithm skips it to the next unrepeated feature 

to ensure having four different ones. The hybrid filter technique diagram is 

shown in Fig. (3).  

 Fuzzy ranking [31] selects features using powers of fuzzy sets expressed by 

their linguistic hedge values. Adaptive neuro fuzzy classifiers are used to 

define classification fuzzy sets whose linguistic hedge values describe the 

importance of features. A feature is considered informative if its 

corresponding linguistic hedge value of classes is greater than 0.5 and more 

close to 1. Otherwise, features are omitted from the informative features list. 

3.5. Neuro-fuzzy classifier (NFC) 

A neuro-fuzzy classifier is a hybridization between fuzzy systems and neural 

networks. Such type of merged technique has the ability to produce decisions 

across their built-up fuzzy rules with their membership functions tuned by neural 

network. The NFC algorithm defined in our employed implementations are based 

on the zero-order Sugeno fuzzy model shown in Fig. (4) [32]. The model rule is 

stated as; if x is A and y is B then z = C, where; x and y are the input variables, A 

and B are the antecedent fuzzy sets, and C is the class to which z belongs. This 

model comprises five layers where, layer 1 nodes always have outputs specifying 

the degree of satisfaction (membership grade) between the node and its linguistic 

label. Each node in Layer 2 (rule node) represents a rule with an output expressing 

the degree of fulfillment of that rule (firing strength). Normalized firing strengths 

are the output of Layer 3 which is known as the normalization layer. Normalized 

firing strengths are multiplied by each individual rule to give the output of layer 4. 



Finally, all incoming outputs of layer 4 are summed up in layer 5 to give the model 

output [32] [33]. 

Three adaptive neuro-fuzzy classifiers are utilized based on partial modification of 

Bayram’s classifiers [11] [12]. The original implementations were shown to have 

good performance on medium and large-scale data. However, they have not been 

applied to our type of data before [34] [35]. All three algorithms initialize their 

fuzzy rules by clustering using K-means where number of clusters per class is user 

dependent. Also, they share the same fuzzy sets description method which is based 

on Gaussian membership function. Number of clusters are set to 10 for a number 

of epochs of 50 when examining datasets and feature selection techniques. Then, 

number of clusters and epochs are changed to study their effect on the chosen 

dataset and feature selection techniques. A description of the three adopted NFC 

methods and the proposed modification is as follows:  

 Scaled conjugate-gradient Neuro-Fuzzy Classifier (SCG-NFC) [11]: SCG 

algorithm possess an acceptable convergence rate and low memory usage 

when training neuro-fuzzy classifiers. SCG stands on the second-order 

gradient supervised learning procedure. A combined trust-region method 

eliminates the step size calculation learning time problem of the line-search 

method. SCG-NFC is executed when comparing the effect of different 

datasets and feature selection techniques. 

 Speedup SCG-NFC (SSCG-NFC) [11]:  Gradients of the SCG are calculated 

twice for each iteration to each training instance. A method to further 

decrease time while preserving convergence rate is to use gradients 

estimation instead of calculation. This method allows decreasing 

computation time by 20 to 50% when applied to different applications. 



 Power of Fuzzy sets-SCG-NFC [12]: PF-SCG-NFC is a modification of the 

SCG-NFC that enhances the recognition rate and positively contribute to 

resolving overlapped classes misleading issue. Linguistic hedges of the 

power of fuzzy sets are proposed to add one more layer of the underlying 

network and is trained with other network parameters. 

 Integrated K-means modification: K-means clustering coded in Bayram 

classifiers initialize its centroids randomly. Consequently, multiple 

processing classify instances differently according to the final built-up 

clusters that always depend on the initial cluster centroids. Alternatively, we 

propose uniform choice of centroids based on sorting the summation of all 

features for each instance. Then, sample points are chosen starting from the 

smallest until the largest with a calculated step. The step is determined from 

the data size and the number of clusters.  

 

4. Experimental Verification 

Here, the detailed evaluation of the proposed model is presented. One of the main 

points under study is the effect of training a classification model with different 

datasets and choosing a reliable evaluation strategy. Therefore, this work aims to 

answer two important questions. The first is about the type of data to be used to 

train a classifier. Data downloaded from a database can be utilized in two different 

forms, either to consider removing repeated peptide sequences as sufficient or 

opting to continue to have similarity-reduced data. The second important issue is 

about the evaluation strategy that is able to express results in more realistic results 

and hence more robust assessment of the methodology. Therefore, comparison of 

model evaluation using cross-validation against blind testing is performed. 

4.1. Evaluation criteria 



Four evaluation metrics are recorded to assess the model performance on 

predicting binding peptides to human MCHII molecule HLA-DRB1*0101; 

namely, area under receiver operating characteristics curve (AUC), accuracy, 

sensitivity and specificity. AUC differs from accuracy in that the result of the 

former depends on all thresholds discriminating between the two classes. Whereas, 

the later gives a result using one threshold value (cut-off point) detected by the 

classifier. Sensitivity and specificity are mainly used to figure out the model 

performance on the positive (binders) and negative (non-binders) instances 

separately. All evaluation metrics are recorded for each of the six implemented 

feature selection techniques on five datasets. Table (1) lists details of datasets 

construction of the HLA under investigation.  

 FUD: Filtered Unique Dataset is a filtered collection of binders and non-

binders extracted from the three previously chosen databases. 

 SRD: Similarity Reduced Dataset is constructed from FUD by removing 

peptides sharing a similarity of 80% or more. 

 TrFUD-R: Training FUD is the result of randomly dividing FUD into 85% 

training data and 15% testing data constitutes the Testing Dataset (TestD-R). 

 TrFUD-C: Training FUD by Clustering is a training dataset of 85% of FUD 

but without any similar peptide to the ones found in the 15% forming the 

Testing Dataset (TestD-C). 

 TrSRD-C: Training Similarity Reduced Dataset by Clustering is derived 

from TrFUD-C by keeping only one peptide from a set of peptides sharing 

80% or more similarity. Its testing data (TestD-C) is the same of TrFUD-C 

to compare the effect of training a classifier with all available peptides 

against similarity reduced peptides. 



 BSRD: Balanced Similarity Reduced Dataset is constructed to eliminate the 

unbalancing data property. Down sampling of the majority class (binders) 

results in nearly equal number of peptides to those of the minority class 

(non-binders). Similarity clustering is the proposed resampling criteria 

where only one peptide is captured from a set of peptides that share 

sequence similarity of 60% or more. Fig. (5) shows its construction steps. 

The first two datasets are the used ones when evaluating the proposed model using 

K-fold cross-validation that creates disjointed evaluation sets with a K value of 5. 

Cross-validation with K of 10 is only carried once on FUD to show the variability 

in accuracy on different testing folds. The next three datasets are the blind testing 

datasets used to differentiate between random and planned choices of testing data. 

The last dataset evaluates the three classifiers’ implementations change in 

performance due to enrolling a balanced dataset on a 5-fold cross-validation basis. 

 

5. Results and Discussion 

Proposed work through this study involved several steps that should be assessed 

separately to have a fair evaluation for each. Section 5.1 aims to provide a 

comprehensive feedback on the effect of using similarity-reduced data by its 

comparison with the usage of unique peptides data. The preference of using blind 

testing over cross-validation is explained in section 5.2. Comparing the 

performance of the employed feature selection techniques and detecting the 

appropriate number of selected features is the objective of section 5.3. Section 5.4 

displays the results of the three classifier implementations in addition to evaluating 

them on the BSRD. 

5.1. Comparison of similarity-reduced data against raw data 



The performance of the classification model when using similarity reduced 

datasets was compared to full unique peptides dataset to decide the choice of 

dataset construction criteria. Tables (2)-(7) record the values of all the evaluation 

metrics of the five datasets for the six feature selection techniques at constant 

classifier parameters. Random choice of testing data (TestD-R) AUC values were 

the highest for five out of six feature selection techniques. The other three 

measurements were dependent on the features ranking method choice as its highest 

value differs from one to another. That observation meets the proposed idea that 

training without similarity reduction gives overly optimistic results. The reason 

behind is TestD-R (as it is randomly selected) may contain peptides similar in 

sequences to any in TrFUD-R. A situation which despite being more close to 

reality does not give a reliable model assessment. 

SRD is extracted from FUD after removing all similar peptides. FUD showed 

higher three measurements (AUC, accuracy and sensitivity) than that of SRD for 

all feature selection techniques. Specificity is always lower except that of hybrid 

filter which was a little bit higher (1%). This cannot be interpreted as FUD being 

better than SRD when evaluating classifiers because of the similarity and the 

randomness choice of data problems. Again, TrSRD-C is compared to TrFUD-C as 

the former contains peptides of the later with similar ones removed. Specificity of 

TrSRD-C showed a significant increase in four of the feature selection techniques 

(reached 8%) on the account of decrease in sensitivity (5%). The reason behind 

this is that reduction by 27% in the binders dataset corresponds to only 19% in the 

non-binders dataset. TrFUD-C and TrSRD-C AUC and accuracy results are mostly 

comparable. TrSRD-C had the highest AUC in most cases while TrFUD-C 

accuracy values were better. To make a decision about the dataset to use, we 



choose TrSRD-C to have a sort of balanced results according to its specificity and 

AUC values. 

5.2. Comparison of cross-validation against blind testing 

To compare between cross-validation and blind testing results, an average AUC 

value of SRD and FUD (cross-validation datasets) is compared against that of 

TrFUD and TrSRD across all feature selection techniques in Fig. (6). TrFUD-R 

results are excluded from the comparison to have an ultimate fair blind testing. 

Results demonstrate that cross-validation results are always higher due to random 

choice of data shared in its folds causing bias. On the contrary, blind testing with 

clustering testing dataset did not contain any similar peptides and hence provide 

more robust, bias-free results. 

To understand the effect of randomness, the results of applying 10 fold cross-

validation on FUD are presented in Fig. (7). This figure shows the big variance in 

the model performance on each testing fold of the specified 10 folds. Each fold is a 

random choice contributing a 10% of the original dataset. Testing accuracy values 

varies from 67% to 74% keeping all classification model parameters fixed and only 

peptides forming training and testing data are changed. This gives an indication of 

the dependency of the model performance when evaluating using cross-validation 

on random split of data. On the other hand, blind testing gives more realistic 

results. This indicates that cross-validation cannot serve as realistic model 

evaluation. 

5.3. Feature selection 

The model proposed in this work is first trained by five different combinations of 

the downloaded datasets. Each dataset is represented by a group of features chosen 

by six feature selection techniques. The most repeated features names and code 



extracted from the AAindex database with a letter given as abbreviation for further 

listing simplification is listed in Table (8). Table (9) mentions the top significant 

feature picked up by each technique for every dataset. The most repeated feature is 

the polar requirement (Woese, 1973). This feature is chosen by the entropy and 

fuzzy tests for all the datasets and so it is a basic part of the hybrid selection. While 

t-test had the same selected feature, ROC and Wilcoxon tests change selection two 

times for the five datasets. Therefore, parametric tests (t-test and entropy) were not 

affected by removing similar peptides from the datasets. Non-parametric tests 

(ROC and Wilcoxon) ranking were subject to change when data construction is 

varied. 

By analyzing measurement values for each filter selection technique, we found that 

none of the six feature selection techniques is considered the best due to varying 

results with data. But, ranking by hybrid and fuzzy tests values is seen to be the 

best performing on clustered datasets. Thus, their selected features values will 

assemble the features vectors for the rest of evaluation. What is really was 

interesting that the four hybrid filter chosen features are enclosed within the some 

of the other feature selection tests chosen ones. Accordingly, effect of changing the 

number of top ranked features constituting feature vectors is visualized in Fig. (8). 

The results showed that the number of features is not directly proportional to the 

performance values. Thus, different features number ought to be under trial first to 

detect the best suitable composition for a specific classifier.  

5.4. Classifier performance 

A first step was to show the effect of changing number of clusters and epochs on 

the classifier assessment. Fig. (9) displays the values of the evaluation metrics 

assuming different numbers of clusters in the SCG-NFC design one time by trying 

30 epochs and another time by 10. Number of epochs have no big influence while, 



increasing number of clusters above a certain limit mostly reduces AUC values. 

Best AUC value happened at 10 clusters and 30 epochs (10/30) and so these are 

parameter values when evaluating the difference in performance of the three 

classifiers shown in Table (10). To ensure the comparison output, we changed the 

number of clusters to be 6 and number of epochs to be 50 (6/50) and documented 

the results in the same table. SCG-NFC had the highest AUC, accuracy and 

sensitivity for both cases. SSCG-NFC showed comparable results with 

characteristic of reducing time to the third. PF-SCG-NFC always had the smallest 

AUC for these two cases. 

The effect of the three classifiers is further examined on the balanced dataset 

(BSRD) which was constructed specifically for this purpose after noticing the 

specificity low values in different stages. Results when using the same previous 

two cases of epochs and clusters numbers are present in Table (11). Balanced data 

had a great effect on the specificity values for the three classifier implementations 

(8% increase from the highest achieved before). Sensitivity was negatively affected 

by down-sampling of data which in turn affects accuracy values. Then, SCG-NFC 

outperforms PF-SCG-NFC in most cases which contradicts its proposed idea of 

increasing performance for our type of data. 

 

6. Conclusions 

In this study, we constructed a robust MHC class II peptides neuro-fuzzy 

classification system. We outlined the effect of different parameters on the 

performance of a model designed to classify various peptides into MHC class II 

binders and non-binders. Datasets of HLA-DRB1*0101 were used to compare and 

evaluate different model stages including dataset construction, feature selection 

and representation, classifier modeling, and evaluation criteria. Similarity reduced 



datasets were found to be the most appropriate for classification due to treatment of 

the over-fitting and overly optimistic issues. Variable length peptides were mapped 

into fixed length feature vectors where features are automatically selected 

according to their ranking scores. Fuzzy selection and integrating the top ranked by 

different tests into a hybrid one were shown to be the best feature selection 

techniques. Comparing results from cross-validation and blind testing methods was 

performed and indicated that blind testing eliminates the bias in the results that 

result from similarity of data in cross-validation. Three implementations of 

adaptive NFC were developed. Among these methods, SSCG-NFC reduced 

computation time by 30% with comparable classification performance. The 

developed system outlines the importance of eliminating similarity in data sets and 

bias in evaluation measures in order to maintain robustness and objective 

assessment of methodology. 
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Table (1): Number of peptides for HLA-DRB1*0101 starting at download from 

different databases passing by each separate step. Step1 refers to removing 

peptides with no reported IC50 value and step2 refers to omitting any peptide does 

not meet the database construction conditions. 

 

All Downloaded Data for Binders and non-Binders 

IEDB MHCBN SYFPEITHI 

All Step1 Step2 All Filtered All (binders only) 

9834 8231 7299 588 575 21 

Total after filtering and collecting in one dataset 

7299+575+21=7895 

Dataset Total Binders Non-binders 

FUD 7571 5253 2318 

SRD 
Tot. clust. 6012 4067 1945 

1 pep clust. 5022 3357 1665 

TrFUD 6435 4465 1970 

TrSRD 4876 3279 1597 

TestD-C 1136 788 348 

BSRD 4815 2497 2318 

 

  



Table (2): HLA-DRB1*0101 performance values recorded on different testing 

procedure using the top 10 results of the t-test based feature selection (50 epochs 

and 10 clusters for SCG-NFC) 

 

Eval. Testing Data AUC Accuracy Sensitivity Specificity 

CV 

(K=5) 

FUD 0.66 0.75 0.89 0.43 

SRD 0.64 0.70 0.83 0.46 

Blind 

test 

TestD-R 0.66 0.74 0.90 0.41 

TestD-C (TrFUD-C) 0.64 0.73 0.87 0.41 

TestD-C (TrSRD-C) 0.64 0.71 0.82 0.45 

 

  



Table (3): HLA-DRB1*0101 performance values recorded on different testing 

procedure using the top 10 results of the entropy based feature selection.  

 

Eval. Testing Data AUC Accuracy Sensitivity Specificity 

CV 

(K=5) 

FUD 0.65 0.75 0.89 0.41 

SRD 0.64 0.72 0.85 0.43 

Blind 

test 

TestD-R 0.68 0.74 0.88 0.48 

TestD-C (TrFUD-C) 0.62 0.71 0.84 0.41 

TestD-C (TrSRD-C) 0.65 0.72 0.84 0.47 

 

  



Table (4): HLA-DRB1*0101 performance values recorded on different testing 

procedure using the top 10 results of the wilcoxon based feature selection. 

 

Eval. Testing Data AUC Accuracy Sensitivity Specificity 

CV 

(K=5) 

FUD 0.65 0.75 0.90 0.40 

SRD 0.65 0.73 0.87 0.43 

Blind 

test 

TestD-R 0.66 0.73 0.88 0.44 

TestD-C (TrFUD-C) 0.60 0.66 0.75 0.45 

TestD-C (TrSRD-C) 0.61 0.65 0.71 0.51 

 

  



Table (5): HLA-DRB1*0101 performance values recorded on different testing 

procedure using the top 10 results of the roc based feature selection. 

 

Eval. Testing Data AUC Accuracy Sensitivity Specificity 

CV 

(K=5) 

FUD 0.67 0.75 0.89 0.44 

SRD 0.66 0.74 0.87 0.46 

Blind 

test 

TestD-R 0.66 0.73 0.87 0.46 

TestD-C (TrFUD-C) 0.62 0.68 0.78 0.46 

TestD-C (TrSRD-C) 0.63 0.72 0.85 0.42 

 

  



Table (6): HLA-DRB1*0101 performance values recorded on different testing 

procedure using the hybrid feature selection. 

 

Eval. Testing Data AUC Accuracy Sensitivity Specificity 

CV 

(K=5) 

FUD 0.65 0.73 0.87 0.43 

SRD 0.64 0.72 0.86 0.42 

Blind 

test 

TestD-R 0.66 0.74 0.89 0.44 

TestD-C (TrFUD-C) 0.65 0.73 0.86 0.44 

TestD-C (TrSRD-C) 0.65 0.73 0.86 0.44 

 

  



Table (7): HLA-DRB1*0101 performance values recorded on different testing 

procedure using the fuzzy feature selection. 

 

Eval. Testing Data AUC Accuracy Sensitivity Specificity 

CV 

(K=5) 

FUD 0.67 0.74 0.85 0.49 

SRD 0.66 0.72 0.84 0.48 

Blind 

test 

TestD-R 0.67 0.74 0.89 0.44 

TestD-C (TrFUD-C) 0.65 0.72 0.83 0.47 

TestD-C (TrSRD-C) 0.67 0.71 0.78 0.55 

 

  



Table (8): List of the first top ranked features according to all the employed feature 

selection techniques. Features names and codes are those used by AAindex 

database. The last column contains an abbreviation letter to be easily used in the 

next table. In addition to the number of repetitions of each between brackets for all 

feature selection techniques excluding the hybrid one. 

 

Name Code  Abbrev. 

Polar requirement (Woese, 1973) WOEC730101 W (10) 

Knowledge-based membrane-propensity scale from 3D_Helix in 

MPtopo databases 
PUNT030102  P (8) 

Averaged turn propensities in a transmembrane helix (Monne et 

al., 1999) 
MONM990201  M (4) 

AA composition of MEM of multi-spanning proteins 

(Nakashima-Nishikawa, 1992) 
NAKH920108  N (3) 

Negative charge (Fauchere et al., 1988) FAUJ880112  F (3) 

Membrane-buried preference parameters (Argos et al., 1982) ARGP820103  A (1) 

Principal component I (Sneath, 1966) SNEP660101 S (1) 

 

  



Table (9): The most significant feature as specified by each filter technique when 

ranking features using different datasets. In case the first top ranked feature in a 

test is recognized by another test for the same dataset, the next two top ranked are 

shown in order between brackets. 

 

 t-Test Entropy Wilcoxon ROC Hybrid Fuzzy 

FUD P (W, N) W M P P,W,M,N W, F 

SRD P (W, N) W A P P,W,F,A W, S 

TrFUD-R P (W, N) W M P P,W,M,N W 

TrFUD-C P W M F P,W,M,F W 

TrSRD-C P W M F P,W,M,F W 

 

  



Table (10): Performance of the three NFC implementations trained with TrSRD-C 

and tested over TestD-C. Top ten features selected by the Fuzzy feature selection 

represents the feature vectors. The first column indicate number of clusters and 

number of epochs of the classifier in the form (clusters/epochs) 

 

 Classifier AUC Acc. Sens. Spec. Time 

10/30 

SCG-NFC 0.67 0.72 0.79 0.55 3.79 

PF-SCG-NFC 0.64 0.70 0.79 0.49 5.94 

SSCG-NFC 0.64 0.70 0.79 0.50 1.96 

6/50 

SCG-NFC 0.66 0.71 0.80 0.52 5.94 

PF-SCG-NFC 0.66 0.71 0.80 0.52 19.23 

SSCG-NFC 0.65 0.70 0.76 0.54 1.89 

 

  



Table (11): Performance of the three NFC implementations trained and tested over 

the balanced data BSRD on a 5-fold cross-validation basis. Feature vectors 

representation used the most informative ten features according to the Hybrid 

feature selection. 

 

 Classifier AUC Acc. Sens. Spec. Time 

10/30 

SCG-NFC 0.66 0.66 0.70 0.62 2.1 

PF-SCG-NFC 0.66 0.65 0.69 0.63 6.97 

SSCG-NFC 0.65 0.65 0.68 0.61 1.49 

6/50 

SCG-NFC 0.66 0.66 0.71 0.61 2.27 

PF-SCG-NFC 0.67 0.67 0.71 0.62 6.09 

SSCG-NFC 0.67 0.67 0.72 0.62 1.36 

 



Fig. (1): Datasets aggregation, filtration, processing and splitting workflow. 
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Fig. (2): An illustration of a numerical example on calculating a feature value of a 

peptide sequence 

 

 

 

 

 

 

 

 

 

 

 

 

Sequence                          A      R      M       S       A      A        A       A       A 

Hydrophobicity index   0.61   0.6   0.05   1.18   0.61   0.61   0.61   0.61   0.61 

 

       Sum = 5.49 

FPV = 5.49/9 = 0.61 



 

 

 

 

 

 

 

 

 

Fig. (3): The Hybrid Technique Block Diagram 

  

Dataset  

t-Test 

Wilcoxon 

ROC 

Entropy 

F
et

ch
 t

h
e 

to
p

 r
an

k
ed

 f
ea

tu
re

 

Hybrid 

features 

C
h
ec

k
 f

o
r 

re
p
et

it
io

n
 

Fetch the next 

unrepeated 

feature 



 

 

Fig. (4): Block diagram of the NFC model 
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Fig. (5): Balanced Similarity Reduced Dataset construction 
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Fig. (6): AUC and accuracy values averaged over each two datasets contributing in 

cross-validation and blind testing comparison. Values are extracted from tables (2)-

(7) to simplify the results analysis. Cross-validation results always exceeds blind 

testing results by 0.5% to 4.5% for AUC and by 0.5% to 8.5% for accuracy except 

for the hybrid feature selection technique. 
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Fig. (7): Accuracy values on the training and testing folds on a 10-fold cross-

validation testing using entropy for feature selection and FUD as the dataset. The 

horizontal axis is only an indication of the fold number. 
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Fig. (8): evaluation of the SCG-NFC (10 clusters & 50 epochs) when trained on 

TrSRD-C and tested over TestD-C assuming different number of top ranked 

features of the fuzzy and hybrid feature selection techniques. For fuzzy selection, 

best AUC (66.9%) achieved when using top 10 ranked features (acc. = 71%). 

Highest accuracy (73.4%) was at the choice of the top 50 features with 

AUC=66.5%. For hybrid selection 4 and 16 features shared the highest accuracy 

and AUC respectively. Using less features has the advantage of less processing 

time. 
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Fig. (9): Different measurements recorded on TestD-C when training the SCG-

NFC with TrSRD-C. Hybrid algorithm is the selected feature selection technique. 

The left graph is the performance of 30 epochs using different clusters number 

while, the right one is for 10 epochs only. Best AUC and accuracy for both 

happened at 4 and 10 clusters. Highest AUC for 10 epochs equals 64% (70% 

accurate) while that for 30 epochs equals 65% (73% accurate). 
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