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In this paper, we introduce new features that quantitatively characterize the shape of the m-dimensional phase
space trajectory reconstructed for the electroencephalogram (EEG) signals which reflects the brain electrical
activity at different motor imagery tasks. The proposed features consist of the distances between the two extreme
points along each embedding dimension of the reconstructed phase space (RPS) as well as the length of the
line segment representing the projection of the trajectory points on every embedding dimension separately. The
new features were extracted for dataset III from BCI competition II while the K-nearest neighbor (KNN) classifier
was used to evaluate the effectiveness of the proposed set of features. The maximum classification accuracy
was 89.29% while the maximum mutual information (MI) obtained-the competition criterion- was 0.70 which
outperform the state of the art algorithms proposed for the same dataset.
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1. INTRODUCTION
Brain-computer interface (BCI) is considered as a communica-
tion channel between the human brain and the external world.1

BCI systems were developed to make it is easier for the dis-
abled people to communicate with their environment through
measuring the brain activity at different mental states.2 Differ-
ent techniques may be used to measure the brain activity but
the electroencephalogram (EEG) offers EEG-based BCI systems
with high temporal resolution, relatively low cost, and more con-
venient for patients to use.3

The EEG signals are measurements of the brain electrical
activity at different mental states through scalp electrodes. These
signals contain multiple frequency bands which can be used to
characterize each mental state. The analysis of the EEG signals
measured when awake subject does not produce any sensory or
motor actions shows brain activity over the sensorimotor cortex
at mu (8–13 Hz) and beta (14–25 Hz) bands which is termed
as “event-related synchronization (ERS)” while these activities
at mu and beta frequency bands are attenuated when the human
subject starts to process sensory stimuli or motor commands
and this phenomenon is called “event-related desynchronization
(ERD).”4 The ERS/ERD activities could be occurred also during
the imagination of movements and hence the changes of these
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activities could be used to build a BCI system which depends on
the motor imagery tasks.5

Different classification algorithms were introduced to differen-
tiate between the EEG signals recorded at different mental states
proposing extracting different features. The winner of BCI com-
petition II who addressed dataset III extracted features based on
Morlet-wavelets with the Bayesian classifier to classify two dif-
ferent motor imagery tasks; imagination of left and right hand
movements.6 Xu et al. extracted statistical features for the set
of wavelet coefficients and used fuzzy support vector machine
(FSVM) classifier.7 Zhou et al. introduced bispectrum-based fea-
tures to characterize the non-Gaussian information embedded in
the EEG signals with different classifiers.8

In addition, different algorithms addressed the nonlinear infor-
mation contained in the EEG measurements through the non-
linear dynamical modeling of the EEG signals.9 Hosseinifard
et al. extracted nonlinear features such as Lyapunov exponent,
correlation dimension, Higuchi fractal, and detrended fluctuation
analysis (DFA) with the KNN classifier to differentiate between
normal and depression patients.10 Banitalebi et al. extracted
features such as mutual information, correlation dimension,
Lyapunov exponents, and minimum embedding dimension to
classify between different motor imagery tasks.11

In this work, we introduce extracting nonlinear dynamical
modeling features based on the characterization of the shape of
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the reconstructed phase space (RPS) which transform the 1D
EEG signal into an m-dimensional trajectory. The new features
represent simple phase space morphological descriptors that can
be used to differentiate between the imagination of left and right
hand movements.

2. DATASET DESCRIPTION
Dataset III from BCI competition II12 which was recorded dur-
ing motor imagery tasks at the Laboratory of Brain-Computer
Interface, Graz University of Technology13 was used to examine
the effectiveness of the new set of features. The EEG signals in
this dataset were measured using channels C3, Cz, and C4 for
one normal female subject who was required to control a feed-
back bar by the imagination of left or right hand movements. The
dataset contains 140 trials for training and 140 trials for testing.
In addition, the trials were divided equally between the imagina-
tion of right and left hand movements. The sampling rate of the
measured EEG signals was 128 Hz and these signals were filtered
using band-pass filter with corner frequencies 0.5 and 30 Hz. The
duration of each trial is 9 seconds and the imagination starts at
t = 3 when an arrow appears on the screen in random order to
indicate the direction at which the subject should imagine the
movement.

3. METHODOLOGY
The EEG-based BCI systems consist of different stages namely;
preprocessing, feature extraction, feature selection or dimension-
ality reduction, and finally the classification stage.

3.1. Preprocessing
The EEG signals were filtered using third-order Butterworth
band-pass filter with corner frequencies 0.5–30 Hz. In addition,
the spectral subtraction denoising (SSD) methodology14 was uti-
lized with � = 5 for further removal of the undesired noise in
the filtered EEG signals.

3.2. Feature Extraction
3.2.1. Phase Space Reconstruction
The time-delay embedding methodology15 has been widely
employed to reconstruct an m-dimensional phase space trajec-
tory or attractor using one or more time series measured from a
dynamical system. Takens16 proved that the reconstructed phase
space (RPS) for a measured time series will has the same dynam-
ical properties as the true attractor of the system that produced
this time series, and hence the characterization of the RPS will
reflect the system’s behavior at different states.

Two parameters should be identified for the time series mod-
eled by phase space which are the embedding dimension and
the delay-time. Let �xk � k = 1�2� � � � �N � be the measured time
series. Then, the reconstructed phase space Y �m� can be repre-
sented as the following:

Yi�m�=

⎡
⎢⎢⎢⎢⎣

Y1

Y2

� � �
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⎤
⎥⎥⎥⎥⎦
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(1)

where M = N − �m−1�	�N is the length of the time series, m
is the embedding dimension, and 	 is the delay-time.

Here, we dealt with the EEG signals as measurements obtained
from a nonlinear dynamical system that can be modeled by phase
space. The delay-time 	 was selected to be the time lag at which
the first local minimum of the mutual information between the
EEG time series xk and its delayed version xk+	 occurs.17 Fur-
thermore, Cao’s algorithm18 was used to calculate the embedding
dimension m for each time series. The average of the delay-
time 	 as well as the average of the embedding dimension m

calculated for the whole training dataset were selected to be
the optimal delay-time and the optimal embedding dimension
respectively.

3.2.2. Morphological Features
The RPS is considered as an m-dimensional object which could
be characterized by some quantitative measures describing its
shape. Two morphological descriptors are introduced here;
(a) The Euclidian distance between the two extreme points along
each embedding dimension and
(b) The length of the line segment representing the projection of
the trajectory points over each dimension.

Figure 1 shows a simplified 2D phase space trajectory where
each point is represented by two values �X1�X2� and the mor-
phological features that can be extracted to characterize its
shape. As shown in Figure 1(a); D1 and D2 represent the dis-
tance between the farthest and nearest points along embedding

Fig. 1. Simplified phase space trajectory. (a) Distance between two
extreme points, (b) length of the projection regions.
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Fig. 2. EEG data segmentation using sliding window procedure.

dimensions X1 and X2 respectively. The farthest point along
embedding dimension X1 is considered as the point which has
the maximum value of X1 with its corresponding value of X2,
while the farthest point along embedding dimension X2 is con-
sidered as the point that has the maximum value of X2 with its
corresponding value for X1. The nearest points are determined in
the same way but they are characterized by the minimum value
along each dimension.

On the other hand, if the trajectory points projected over X1 or
X2, they would occupy a region of length L1 or L2 respectively as
shown in Figure 1(b). L1 and L2 are calculated by subtracting the
minimum value of each embedding dimension from the maximum
value of the same dimension as follows:

L1=max�X1�−min�X1� (2)

L2 =max�X2�−min�X2� (3)

3.3. Dimensionality Reduction and Classification
The principal component analysis (PCA) with 99% of variances
was used here for the dimensionality reduction purposes while
the K-nearest neighbor (KNN) classifier at different values of K
was used for classification. The classification procedure used in
this work is similar to the procedure used by Fang et al.19 who
extracted features from an EEG segment inside a sliding window
of 2 sec length which starts at t = 3 sec and moves by one
time step until t = 9 sec as shown in Figure 2. The classification
is performed at every time step and the maximum performance
measures over the whole classification period are reported.

4. RESULTS AND DISCUSSION
To extract the morphological features for the RPS, the embedding
parameters should be identified first. The optimal delay-time 	

and the optimal embedding dimension m calculated for the train-
ing dataset using the first minimum of mutual information and
Cao’s algorithm were 3 and 9 respectively.

Using the aforementioned parameters, the phase space was
reconstructed for each EEG segment inside the sliding window
for channels C3 and C4 and the proposed features were extracted
from the RPS and fed to the classifier as three feature sets;
(a) the features based on distance between the two extreme
points (e.g., D1 and D2),

Table I. Maximum performance measures using set 1.

Classifier Min ERR (%) Max MI (bit) Time of max MI (sec)

K = 1 17.86 0.38 5.95
K = 3 15.71 0.45 6.01
K = 5 12.14 0.62 5.94
K = 7 12.14 0.62 5.95
K = 9 14.29 0.52 6.37
K = 11 14.29 0.51 5.77

Table II. Maximum performance measures using set 2.

Classifier Min ERR (%) Max MI (bit) Time of max MI (sec)

K = 1 16.43 0.46 6.07
K = 3 15.00 0.49 6.05
K = 5 13.57 0.54 5.90
K = 7 12.86 0.60 5.91
K = 9 11.43 0.64 5.91
K = 11 12.86 0.54 5.90

(b) the features based on the length of the line segment repre-
senting the projection region (e.g., L1 and L2) and
(c) the combined feature vector using the first and second sets.

The length of the feature vector in sets 1 and 2 is 2 m while the
length of the feature vector is 4 m for the third set. Furthermore,
the mutual information (MI) which represents the information
transfer between the human brain and the external devices20 was
used as an evaluation criterion to evaluate the effectiveness of
each feature set.
Table I presents the minimum error rate (ERR) as well as the

maximum MI obtained using only the first set of features while
Table II shows the performance measures obtained using the sec-
ond set of features. Furthermore, Table III shows the minimum
error rate (ERR) as well as the maximum MI obtained over the
whole classification period in addition to the time at which the
maximum MI occurred. In addition, Figure 3 shows the time
course of the MI and the error rate (ERR) from t = 3 sec to
t = 9 sec that was calculated using feature set 3 with the KNN
classifier at K = 5 which produced the maximum MI.
Different methods were introduced to boost the MI for the

dataset addressed in this paper to enhance the performance of the
BCI systems developed for the motor imagery tasks. Table IV
shows the comparison between the proposed system using the
phase space morphological features and the other studies which
addressed the same dataset.
The proposed set of features outperformed the methods

in comparison based on the competition criterion (i.e., MI).
Table IV shows that the first winner of the competition6 obtained
MI equals to 0.61 using Morlet-Wavelets at frequencies between
10 and 22 Hz for channels C3 and C4. Zhou et al.8 proposed
autoregressive (AR) based features combined with higher-order
statistical features extracted from the bi-spectrum of channels
C3 and C4 in addition to the power spectral density. Further-
more, they employed different classifiers to evaluate the perfor-
mance of their system such as the linear discriminant analysis
(LDA) and neural networks (NN). Using the NN classifier, they
obtained MI equals to 0.64 bit. In addition, Xu et. al.7 utilized
fuzzy support vector machine (FSVM) to classify the two dif-
ferent motor imagery tasks using statistical features calculated
for the set of the wavelet coefficients extracted from the EEG
segments. Fang et al.19 extracted features based on the phase

Table III. Maximum performance measures using set 3.

Classifier Min ERR (%) Max MI (bit) Time of max MI (sec)

K = 1 15.00 0.47 5.65
K = 3 14.29 0.54 5.72
K = 5 10.71 0.70 5.86
K = 7 12.14 0.61 5.93
K = 9 12.86 0.55 5.91
K = 11 14.29 0.46 5.91
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Fig. 3. Time Course of MI and ERR using KNN with K = 5.

Table IV. Comparison between the proposedmethod and other studies
for the same dataset.

Max MI Min Time of
Method Features Classifier (bits) ERR (%) max MI (sec)

Proposed Features set 3 KNN, K = 5 0.70 10.71 5.86
Fang et al.19 AFAPS+

ARPS
LDA 0.67 9.29 5.76

Xu et al.7 Wavelet based
features

FSVM 0.66 12.14 5.92

Zhou et al.8 Higher order
statistics

NN 0.64 10 –

Zhou et al.8 Higher order
statistics

LDA 0.63 10.71 –

Winner6 Morlet
Wavelets

Bayesian 0.61 10.71 7.59
classifier

space reconstruction of the EEG signals. They assumed that the
embedding dimension value is m = 2. In addition, the delay-
time 	 was selected as the delay-time that produce the maximum
performance measures using cross validation over the training
data. No optimization procedures were used in their procedure
to select the optimal embedding dimension and the delay-time.
Fang et al. extracted two sets of features which were: the AR
model coefficients of the RPS (ARPS) and the maximum ampli-
tude of the discrete Fourier transform of the RPS in 
 and �
bands (AFAPS). The features were extracted from each embed-
ding dimension for channels C3 and C4 and the feature vector
was fed to LDA classifier.

The delay-time and the embedding dimension used in this
work were selected using selection algorithms such as the first
minimum of the mutual information and Cao’s algorithm to avoid
any assumptions. In addition, The MI obtained using the com-
bined feature vector with simple classifier such as the KNN at
K = 5 was 0.70 bits which outperform the studies in comparison
and suggest that these new features can be used in differentiating
between the imagination of left and right hand movements.

5. CONCLUSIONS
In this paper, we introduced new descriptors that characterize
the shape of the reconstructed phase space trajectory for the

EEG signals at different motor imagery tasks. These descriptors
are based on calculating the distances between the two extreme
points for each embedding dimension as well as the lengths of
the line segment representing the projection region of the trajec-
tory points over each embedding dimension. The KNN classifier
was used to evaluate the performance of the proposed system
and the maximum MI obtained was 0.70 which outperform the
state of the art algorithms which addressed dataset III from BCI
competition II.
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