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Heart sounds contain useful information that can help in early diagnose of heart disease. Therefore, the analysis
of such signals has been an active research point for many groups. In this work, we present a new processing
and classification system for heart sounds. We introduce a new technique to convert the time series represen-
tation of heart sound signal into time-frequency heat map representation based on fractional Fourier transform
based mel-frequency spectral coefficients. Such representation is then classified using a stacked sparse autoen-
coder deep neural network. The proposed system is experimentally verified on the heart sounds database of
the PhysioNet/Computing in Cardiology Challenge 2016. The proposed system achieves an accuracy of 0.9550
with 0.8930 sensitivity and specificity 0.9700. The average between sensitivity and specificity (score) is 0.9315.
The details of the methodology and its implementation are presented and discussed.
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1. INTRODUCTION
Cardiovascular disease (CVD) remains the leading cause of mor-
bidity and mortality with an estimated 17.7 million people world-
wide died from CVD-related conditions in 2015, representing
31% of all global deaths.1 Heart disease patients can be diag-
nosed by several techniques with the most sophisticated of these
involving medical imaging procedures, which are rather costly
and cumbersome and hence of limited availability to most peo-
ple. On the other hand, the simplest CVD diagnostic technique,
which is heart sound auscultation, is an old yet very effective
diagnostic tool to check the condition of the heart. Patients are
usually examined by means of a stethoscope and may then be
referred to a cardiologist if abnormality is detected. Early detec-
tion of abnormal heart sounds provides precious time for physi-
cians that is much needed to take corrective actions to treat the
cause and prevent cardiovascular system disruption.

The phonocardiogram (PCG) is a graphical representation of
heart sound. The PCG signal contains useful information that
helps diagnose heart disease and assess the quality of cardiovas-
cular system function.2 Each PCG is comprised of more than
one repeating cardiac cycle (beat), and each beat is comprised of
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four heart sound states (S1, systole, S2, and diastole) resulting
from the closing of the valves at each heart period (mitral and
tricuspid valves before systole, aortic and pulmonic valves before
diastole). Generally speaking, heart sounds are often difficult to
interpret due to their low intensity and dominating frequencies
near the lower limits of the human hearing range. Consequently,
auscultation needs a lot of training and experience to allow early
detection of abnormalities.
A potential solution proposed to address PCG diagnosis prob-

lem was to utilize computers to develop automated diagnos-
tic tool to assist the physician in the initial diagnosis or the
so-called computer-aided auscultation. In the past few decades,
many automated analysis algorithms were developed to assess
patients based on the PCG alone without electrocardiogram
(ECG) synchronization. There were difficulties associated with
such approach that include variation of heart rate in same patients
that generate temporal variations of PCG and the limited model
generalization across patients. So, this area has received a lot of
research work aimed at overcoming such difficulties.
Potes et al.3 proposed an ensemble of a feature-based classifier

and a deep learning based classifier to boost the classification
performance of heart sounds. A total of 124 time-frequency fea-
tures were extracted from PCG signal and input to AdaBoost
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ensemble classifier. PCG signals were decomposed into four fre-
quency bands to train convolutional neural network (CNN). The
final decision was based on combining the outputs of AdaBoost
and the CNN. An algorithm developed by Rubin et al.4 trans-
formed one-dimensional PCG signal into two-dimensional time-
frequency heat map representations using mel-frequency cepstral
coefficients (MFCC). Convolutional neural network was used
to automatically classify normal versus abnormal heart sound
recordings.

The PhysioNet/Computing in Cardiology Challenge 2016
offered a dataset to develop, test and compare various algorithms
to classify heart sounds. Many research groups contributed new
methods in response to this challenge.5–7 Gokhale8 presented an
algorithm that uses Hilbert envelope and wavelet features. The
boosted trees ensemble classifier using LogitBoost was applied
for automated PCG signals classification. Goda et al.9 used sup-
port vector machine (SVM) classifier and time-frequency domain
features. An algorithm was developed by Grzegorczyk et al.10

to determine normal-abnormal heart sound recording based on
neural networks. Forty-eight time and frequency domain fea-
tures were used with conventional neural network and auto-
encoder deep neural network. Another technique was presented
by Tschannen et al.11 for heart sounds classification where
deep features generated by a wavelet-based convolutional neu-
ral network and time-frequency domain features were used with
L2-SVM classifier. Homsi et al.12 introduced an approach for
classifying PCG signals using time, frequency, wavelet and sta-
tistical domain features with nested set ensemble classifiers that
included random forest, LogitBoost and cost-sensitive classifiers.
Langley and Murray13 classified unsegmented and short dura-
tion PCG signals using wavelet entropy where a wavelet entropy
threshold was determined from the training set then PCG signals
with entropy below the threshold were classified as abnormal.
In Singh-Miller and Singh-Miller,14 spectral features with dis-
criminative model based on random forest regressor were applied
for classification of heart sound recordings. Vernekar et al.15

implemented Markov features with a weighted ensemble classi-
fier including four AdaBoost ensemble classifiers and four arti-
ficial neural networks (ANN) to classify PCG signals. Plesinger
et al.16 demonstrated a fuzzy logic like approach with logical
rules and probability assessment based on histograms to classify
heart sounds. A frequency-domain bandpass filter and Hilbert
transform were used to derive amplitude envelope in five fre-
quency bands. The averaged shapes of S1/S2 pair were computed
from amplitude envelopes, then a total of 228 features extracted
from statistical and symmetry properties of the averaged shapes.
Nabhan and Warriek17 tried to improve the work in Ref. [12]
where the outlier signal was detected and separated from standard
range signal by using an interquartile range threshold. A total of
131 features were extracted from the standard and outlier signals
were fed separately into an ensemble of 20 two-step classifiers. In
the first step, the classifier included a nested set of ensemble algo-
rithms, consisting of a cost-sensitive classifier (CSC), LogitBoost
(LB) and random forest (RF) classifiers. The second step used a
voting rule for the class labels from the first step. Abdollahpur
et al.18 proposed an algorithm that assessed the signal quality of
the segmented cardiac cycle then a total of ninety features includ-
ing time domain, time-frequency, perceptual and mel-frequency
cepstral coefficient (MFCC) were extracted from the correctly
segmented cycles only. The classification was performed using

three feed-forward neural networks followed by a voting system.
Langley and Murray19 tried to improve the work in Ref. [13]
where short and unsegmented heart sounds recordings were clas-
sified using feature threshold-based classifier. Spectral amplitude
and wavelet entropy features were calculated using FFT and
wavelet analysis. For each feature, a threshold-based classifier
was built by analysis of frequency and scale to determine the
optimal threshold for classification accuracy. A decision tree was
then used to combine the spectral amplitude and wavelet entropy.
Maknickas and Maknickas20 applied CNN to classify heart sound
records with mel-frequency spectral coefficients (MFSC), differ-
ence and second-order difference of the MFSC calculated and
fed to CNN as three dimensions for each frame. Whitaker et al.21

proposed combining sparse coding and time domain features for
heart sounds classification. Springer’s segmentation was used to
separate each record into five arrays of smaller audio segments.
The first four arrays contained a list of all S1, systole, S2 and
diastole sounds respectively. The fifth array contained copies of
the full heart cycles. A discrete Fourier transform was calculated
for each sound segment and sparse coding was applied whereby
frequency-domain data are decomposed into a dictionary matrix
and a sparse coefficient matrix. Five SVM classifiers were trained
for each audio segment as well as the full cardiac cycle and a
sixth SVM combined the preliminary SVMs.

In spite of the success of previous methods to reach sig-
nificant improvement in the accuracy of classification of heart
sounds, there is still room for further improvement of results and
robustness of automated diagnostic systems. In this work, a new
computer-aided auscultation system is presented. The new sys-
tem utilizes novel features obtained from the fractional Fourier
transform based Mel-frequency spectral coefficients. The frac-
tional Fourier transform offers a generalization of the Fourier
transform with the Fourier spectrum and the time domain sig-
nal are both special cases of this transform. Hence, it allows a
more flexible time-frequency representation than other methods
such as the spectrogram, Wigner distribution or ambiguity func-
tion in that it can transform signals to any intermediate domain
between time and frequency.22 Such time-frequency representa-
tion of heart sound signals are then utilized as input to stacked
autoencoder deep neural network (DNN). The implementation
of the proposed diagnostic system is described in terms of its
preprocessing, heart sound segmentation, transformation of time
series waveforms into time frequency heat map representations
and classification stages. The proposed system with several vari-
ants of its implementation are verified on the dataset of the Phy-
sioNet/Computing in Cardiology Challenge 2016 and compared
to previous work on the same dataset.

2. METHODOLOGY
The components of the proposed computer aided auscultation
system are shown in Figure 1 and are detailed as follows.

2.1. Preprocessing
The heart sounds comprise several key components called S1,
S2, S3 and S4 which overlap with each other in the frequency
domain. Moreover, murmurs and artifacts from respiration and
other non-physiological events also overlap significantly within
the same frequency range. The typical frequency ranges of these
components are: S1 within 10–140 Hz (energy concentration usu-
ally in low frequencies of 25–45 Hz), S2 within 10–200 Hz
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Fig. 1. Block diagram of the proposed approach for classification of heart sounds using stacked autoencodder deep neural network.

(energy concentration usually in low frequencies of 55–75), S3
and S4 within 20–70 Hz, murmurs can be as high as 600 Hz,
respiration for 200–700 Hz. The fundamental heart sound com-
ponents that need to be segmented (mainly S1 and S2) overlap
with many noise sources in the frequency domain, which leads to
difficulty in separation of heart sounds from abnormal sounds or
artifacts using traditional frequency-domain analysis. Moreover,
the morphological similarity of the noise to the fundamental heart
sounds makes identification of the latter also extremely difficult
using time-domain techniques. It should also be noted that abnor-
mal heart sounds usually show higher frequencies, with noise
between beats. On the other hand, normal heart sounds are more
regular, with silence between beats.7

Ambient sounds, lung sound, internal body noise, cough and
stethoscope movement are the main interferences in heart sounds
recording and analysis. Therefore, the first step should use an
effective filtration method to enhance the heart sounds signal by
reducing the influence of background noise and removing spike
noise. In this work, a 3rd-order Butterworth band pass filter with
corner frequencies of 15 and 800 Hz is used to select the use-
ful bandwidth of the heart sounds that includes the energy con-
centration ranges of its components in addition to the range of
frequencies of murmurs.

2.2. Heart Sounds Segmentation
Accurate segmentation of heart sound is an important step to
extract useful features for better classification. In the second
stage, each PCG signal is split into the fundamental heart sounds
(S1, Systole, S2 and Diastole) using Springer’s improved version
of Schmidt’s segmentation algorithm.23 Then, each complete car-
diac cycle is used for processing. This algorithm uses a logistic
regression hidden semi-Markov model (HSMM) to predict the
most likely sequence of states by incorporating information about
expected heart sound state durations.

To mitigate the problem of variable time length of cardiac
cycles (and hence size of their digital signals) in subsequent pro-
cessing steps, the size of all signals was set to be the longest
cardiac cycle found across all PCG recordings (here, it was
around 2 s). For cardiac cycles with shorter length, they were

zero-padded to that length. Since the sampling period remains
the same, this amounts to a higher resolution sampling of the unit
circle in the z-domain. This ensures the alignment of the spectral
components computed from all samples of varying record lengths
given the uniform frequency resolution.24

2.3. Fractional Fourier Transform Based
Mel-Frequency Spectral (FrFT-MFSC)

A modified version of MFCC will be implemented to convert
the time series representation of the segmented heart sound sig-
nal into time-frequency heat map representations. This will be
done using the Fractional Fourier Transform (FrFT), which is a
generalization of Fourier transform and indicates a rotation of a
signal in time-frequency plane. Whereas the Fourier transform
can obtain the frequency components of a signal, FrFT analy-
sis can show the mixed time and frequency components of the
signal. Therefore, FrFT is suitable for non-stationary signal pro-
cessing and has wide applications in basic signal analysis and
speech recognition.
The continuous form of FrFT with ath-order of a signal s�t�

can be defined within 0 ≤ �a� ≤ 2 through the linear operator
as,22�26�28–29

�F as��wa�=
∫ �

−�
Ka�wa� t�s�t�dt (1)

Here, the kernel Ka�wa� t� is given by:

Ka�wa� t� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k�exp�j��w2
a cot���

−2wat csc���+ t2 cot������ if a�= 0�±2�

��wa− t�� if a= 0�

��wa+t�� if a=±2
(2)

where, � = a�/2 and k� = exp�−j���sgn���/4� −
��/2��/

√� sin���� =√
1−jcot���, and wa means the variables

in ath-order fractional Fourier transform. Similar to the dis-
crete Fourier transform (DFT), the discrete fractional Fourier

3



R ES E A R CH AR T I C L E J. Med. Imaging Health Inf. 9, 1–8, 2019

transform (DFrFT) matrix F a�m�n� is obtained as the discrete
version of Eq. (2) as,

F a�m�n� =
N−1∑
k=0

uk�m�exp
(−j�ka

2

)
uk�n� (3)

Here, u is discrete Hermite-Gaussian function and a is the frac-
tional order. The discrete fractional Fourier transform of a signal
is just the matrix vector multiplication of this transform matrix
in Eq. (3) with the signal vector.

The fractional Fourier transform based Mel-frequency spectral
coefficients (FrFT-MFSC) features transform the original PCG
signal into a time-frequency representation of the distribution
of signal energy same as the traditional Mel-frequency cepstral
coefficients (MFCC). The discrete fractional Fourier transform
matrix in Eq. (3) will be used instead of discrete Fourier trans-
form matrix and the log-energy will be computed directly from
the Mel-frequency spectral coefficients without using the discrete
cosine transform.

FrFT-MFSC features are computed by the following steps:
1. The signal is pre-emphasized then framed and windowed into
125 ms frames length.
2. The discrete fractional Fourier transform of the windowed
signal is calculated.
3. The powers of the obtained spectrum are mapped into
the mel-scale using triangular overlapping windows.
4. The logarithms of the powers are calculated at each mel-
frequency to obtain the FrFT-MFSC features.

It should be noted that normalization is performed to make all
FrFT-MFSC coefficients in the range of [0, 1]. The Mel-scale is
defined at a given frequency f in Hz as,

Mel�f �= 2595 log10

(
1+ f

700

)
(4)

The Mel-frequency scale is approximately linear for frequencies
below 1 kHz and logarithmic for frequencies above 1 kHz.25 This
is motivated by the fact that the human auditory system becomes
less frequency-selective as frequency increases above 1 kHz.

2.4. Stacked Sparse Autoencoders Deep
Neural Network

An Autoencoder (AE), also named autoassociator or Diabolo
neural network, derived from the multi-layer perceptron (MLP),
composed by an input layer, a hidden layer and an output layer.30

The autoencoder aims to transform inputs into outputs with the
least possible amount of distortion.31 It maps an input x ∈ �0�1�d

to a hidden representation y ∈ �0�1�d
′
through a deterministic

mapping (encoding),

y = s�Wx+b� (5)

where s is a transfer function for the encoder and it is non-linear
function such as a sigmoid function, e.g.: s�t� = 1/�1+ e−t�, or
a positive saturating linear function

s�t� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0� if t ≤ 0�

t� if 0 < t < 1�

1� if t ≥ 1

and where W is a weight matrix and b is a bias vector for
encoder. The hidden representation y, or code, is then mapped
back into a reconstruction z of the same shape as x (decoding).
The mapping happens through linear transformation or a positive
saturating linear function or non-linear transformation such as a
sigmoid function,

z= s′�W̄ y+ b̄� (6)

where z is a prediction of x, given the code y. where s′ is a trans-
fer function for the decoder, W̄ is a weight matrix and b̄ is a bias
vector for decoder. In general, z is not to be interpreted as an
exact reconstruction of x, but rather in probabilistic terms as the
parameters (typically the mean) of a distribution p�X �Z= z� that
may generate x with high probability. Training an autoencoder is
unsupervised since that no labeled data is needed. The training
process is still based on the optimization of a cost function. Opti-
mization process for the model parameters (W�W̄ �b� b̄� is done
to minimize the average reconstruction error. The cost function
that measures the squared error in most traditional autoencoders
is given by,

L�x�z� = �x−z�2 (7)

The basic autoencoders is forced to learn the identity function.
If the hidden layer size is greater than the size of the input layer,
a sparsity constraint imposed to get more robust features.30–33

Sparsity of an autoencoder is possible by adding a regularizer
to the cost function in Eq. (7). This regularizer is a function of
the average output activation measure of a neuron. The average
output activation measure of a neuron i is defined as,

	̂i =
1

n

n∑
j=1

z
�1�
i �xj �=

1

n

n∑
j=1

h�w
�1�T
i xj +b

�1�
i � (8)

where 	̂i is the average output activation measure, n is the total
number of training examples, xj is the jth training example, w�1�T

i

is the ith row of the weight matrix W�1�, and b
�1�
i is the ith entry

of the bias vector, b�1�.
Two terms are added, namely L2 regularization term and

the sparsity regularization term. So, the cost function for training
a sparse autoencoder is defined as,

L�x�z� =
mean squared error︷ ︸︸ ︷

�x−z�2 +
∗
L2 regularization︷ ︸︸ ︷
�weights +�∗

sparsity regularization︷ ︸︸ ︷
�sparsity

(9)
where 
 is the coefficient for L2 regularization term and � is the
coefficient for the sparsity regularization term. The L2 regular-
ization term is defined as,

�weights =
1

2

L∑
l

n∑
j

k∑
i

�wl
ji�

2

(10)

where L is the number of hidden layers, n is the number of
training examples, and k is the number of variables in the training
data. The sparsity regularization term could be calculated using
the Kullback-Leibler divergence as,

�sparsity =
D�1�∑
i=1

KL�	�	̂i�=
D�1�∑
i=1

	 log
(
	

	̂i

)
+�1−	� log

(
1−	

1− 	̂i

)
(11)

where 	 is the desired value of the average output activation
measure also defined as sparsity proportion and 	̂i the measured
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Table I. Parameters of the stacked sparse deep neural network.

Parameter Value

Autoencoder 2
Training softmax layer Mean square error
Hidden size 800
L2 weight regularization 0.00001
Sparsity regularization 4
Sparsity proportion 0.02
Encoder transfer function Positive saturating linear
Decoder transfer function Linear

value of the average output activation measure for neuron i. In
training we would like to make the value of 	̂i for hidden neuron
i close to the value of 	. The coefficient for L2 regularization
term 
, the coefficient for the sparsity regularization term � and
the sparsity proportion 	, are the set parameters for autoencoder
training.

Autoencoders can be stacked in a greedy layer-wise fashion
to form a deep neural network that is the stacked sparse autoen-
coders deep neural network where each level is associated with
an autoencoder that can be trained separately. The output of the
autoencoder at the first layer feeds as input to the autoencoder
in the second layer and so on. When all layers are pre-trained, a
classification layer is added, and the deep network can be fine-
tuned. Each stacked sparse autoencoders deep neural network has
input layer, autoencoders layers followed by a softmax layer and
the output layer. We can use more than one autoencoder. Greedy
layer-wise training approach used to obtain good parameters.27

In this work, we build a deep neural network classifier using
two sparse autoencoder layers and a softmax layer. In training
phase, the autoencoder in the first layer trains on raw input data
to obtain the set of parameters �W1� W̄1� b1� b̄1�, then extract the
primary features in the hidden layer based on raw input. The
primary features from first autoencoder used as an input to train
the second autoencoder and obtain the second set of parameters
�W 2� W̄2� b2� b̄2�, then extract the secondary features in the hid-
den layer of the second autoencoder based on these primary fea-
tures. The secondary features from the second autoencoder used
to train a softmax layer for classification. After that stack the two
autoencoders and the soft max layer to form a deep neural net-
work, we finally train the deep network using the raw input data.
Then, the deep network will be ready to predict the output for
any input. Table I summarizes the set of parameters considered
in this work.

2.5. Performance Evaluation
To evaluate the performance of classification process, the con-
fusion matrix is computed and used to calculate the values for
sensitivity, specificity and accuracy as,

Sensitivity (Se)= TP
TP+FN

(12)

Specificity (Sp)= TN
TN+FP

(13)

Accuracy = TP+TN
TP+TN+FP+FN

(14)

Here TP, TN, FP, and FN are the confusion matrix entries repre-
senting true positive, true negative, false positive and false nega-
tive cases respectively. An additional performance metric called

the score conventionally used in the area of heart sounds classi-
fication. It is defined as the average of the sensitivity and speci-
ficity metrics.

3. EXPERIMENTAL VERIFICATION
The performance of the proposed system was verified using
the data of the PhysioNet/Computing in Cardiology Challenge
2016 database.7 This dataset includes 3153 recordings. The sure
labeled data of the training dataset includes 2868 recordings col-
lected from six research groups. Normal patient records are 2249
whereas abnormal patient records are 619, lasting from 5 seconds
to just over 120 seconds. All recordings have been resampled to
2,000 Hz and have been provided as “.wav” format. They were
recorded in different real-world clinical and nonclinical environ-
ments and include recordings of varying amounts of noise. They
were collected from healthy people and from patients who suf-
fered from a variety of illnesses, including heart valve defects
(mitral valve prolapse, mitral regurgitation, aortic stenosis, valvu-
lar surgery) and coronary artery disease. The data recorded from
different locations on the body (including aortic area, pulmonic
area, tricuspid area and mitral area, among others). The data are
clearly imbalanced since the number of normal recordings are
much larger than that of abnormal recordings. Since the testing
dataset of the challenge was not available from the challenge
organizers, the available training dataset was divided randomly
into two independent sets with 80% for training and 20% for
testing. This assumes that the missing testing dataset was taken
from the same population as the training data and thus expected
to possess the same characteristics and challenges such as being
imbalanced.
Each of the PCG records was preprocessed using the Butter-

worth band-pass filter of order 3 with corner frequencies 15 and
800 Hz. Each record was segmented into cardiac cycles resulting
in 79492 cardiac cycles. The longest cardiac cycle found across
all PCG recordings has a length of around 2 s. So, if a cardiac
cycle had a length less than 2 seconds, the time series was zero-
padded to that length.
For FrFT-MFSC time frequency heat map transformation, the

processing parameters were as follows: four fractional orders
�a= 090�095�10�11�. The frame length parameter was cho-
sen to cover the duration of each of the fundamental heart sounds
S1 and S2 (nominal values: S1= 122 ms, S2= 114 ms). So, the
chosen frame length is taken as 125 ms. The frame shift was
taken close to 50% of the frame length as is commonly used
in the literature and chosen to be 50 ms. The number of bands
was taken as 20 based on experimentation. For each fractional
order, a 20× 38 spectral coefficients matrix was computed. The
time frequency heat map representations vector was formed by
concatenating spectral coefficients matrices for all four fractional
orders. That is, for each cardiac cycle, a total of 3040 features
were obtained. To improve the classification process, all features
vector values were normalized to interval [0, 1]. Then, dimen-
sion reduction process was performed using PCA such that the
percentage of variance represented by the results is 95%. This
process reduced the size of vector down to 40.
At the beginning, sparse autoencoders was trained on the

training data without using labels. Greedy layer-wise training
approach used so the first autoencoder was trained using the
training set with a hidden layer of size 800, a positive saturating
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linear transfer function for the encoder and a linear transfer func-
tion for the decoder. Then the features in the hidden layer were
extracted. After training the first autoencoder the second autoen-
coder was trained in a similar way by using the obtained features
from the first autoencoder. The features in the hidden layer of the
second autoencoder was extracted. The second autoencoder have
the same parameter as first one. Then a softmax layer was trained
to classify the obtained features vector from the second autoen-
coder. Unlike the autoencoders, training of the softmax layer is
done in a supervised approach utilizing the labels for the training
data. A standard softmax cross entropy loss function was used
to optimize the network during training. Finally stack the two
encoders and the softmax layer to form the deep network. The
deep network is ready for more analysis using the test data.

The performance of sparse autoencoder is controlled by adjust-
ing the L2 weight regularizer coefficient, sparsity regularizer
coefficient and sparsity proportion factor. In this work, different
values for L2 weight regularizer coefficient were checked but
no noticeable change in the performance of autoencoders so L2
weight regularizer coefficient was fixed to 0.00001. Performance
comparison was done by trying different values for sparsity reg-
ularizer coefficient and sparsity proportion factor.

4. RESULTS AND DISCUSSION
Table II shows the results of using different values of sparsity
regularizer coefficient and sparsity proportion factor was set to
0.02. Table III shows the results of using different values of spar-
sity proportion factor and sparsity proportion factor was fixed to
4. Sparsity regularizer coefficient of 4 and sparsity proportion
factor of 0.02 achieve the best result, accuracy of 0.9550 with
0.8930 sensitivity and specificity 0.9700. The average between
sensitivity and specificity (score) is 0.9315.

In order to establish the generalization capability of the pro-
posed method, multiple random sampling trials for local hold-out
testing (here 80%–20%) are performed to verify that the pro-
posed algorithm generates robust results and not by chance. The
results of five such experiments are shown in Table IV with
the accuracy, sensitivity, specificity and score computed for each
experiment. Also, the mean and standard deviation of the results
from all five experiments are calculated. As can be observed,
the results vary within a very narrow range as indicated by the
standard deviation of all experiments, which were 0.14% for the
accuracy, 0.5% for the sensitivity, 0.1% for the specificity, and
0.24% for the score relative to their respective mean values. This
rules out the possibility that the reported results were affected by
chance and confirms the robustness of the methodology.

The comparison of the results of the proposed work against
those from previous work in the literature is presented in Table V.

Table II. Results of using different values of sparsity regularizer coef-
ficient at sparsity proportion factor of 0.02.

Stacked AE
sparsity regularization Accuracy Sensitivity Specificity Score

2 0.9510 0.8740 0.9700 0.9220
4 0.9550 0.8930 0.9700 0.9315
6 0.9520 0.8810 0.9700 0.9255
8 0.9530 0.8840 0.9690 0.9265
10 0.9530 0.8870 0.9690 0.9280
16 0.9530 0.8830 0.9700 0.9265

Table III. Results of using different values of sparsity proportion factor
at sparsity regularizer coefficient of 4.

Stacked AE
sparsity proportion Accuracy Sensitivity Specificity Score

0.05 0.9446 0.8610 0.9650 0.9130
0.04 0.9465 0.8720 0.9650 0.9185
0.03 0.9506 0.8760 0.9690 0.9225
0.02 0.9550 0.8930 0.9700 0.9315
0.01 0.9558 0.8890 0.9725 0.9308

The table shows the proposed method as they rank against other
techniques as sorted by the average between sensitivity and speci-
ficity (score). It also shows the classification methods used in
each and the sensitivity and specificity values when available.
The comparison of such methods should address the balance
between sensitivity and specificity values. As can be observed,
the proposed method shows better performance than the other
techniques included in this comparison. Also, the sensitivity and
specificity values obtained from the new system are relatively
close. This indicates the potential of the new approach for use in
clinical applications.

This study indicates the value of FrFT-MFSC features for
phonocardiogram analysis where FrFT-MFSC represent the dis-
tribution of PCG signal energy in a more effective time-frequency
manner even under different noise and recording environment
conditions. Applying FrFT-MFSC features with different frac-
tional orders provides a good tool to represent noisy PCG sig-
nal in different time-frequency planes where they also preserve
locality in both time and frequency. The use of log-energy com-
puted directly from the mel-frequency spectral coefficients main-
tains such time-frequency localization. The alternative yet more
common use of discrete cosine transform for this computation
projects the spectral energies into a new global basis that would
not maintain such localization.

In conducting this study, several difficulties were encountered.
First, the lack of large enough dataset for deep neural network
training to get more robust results was a major problem. This
was overcome by breaking down the heart sound signals into
segments representing cardiac cycles to significantly increases
the number of training data. Second, variations in heart rate lead
to temporal record length variations for cardiac cycle segments.
This was addressed via zero-padding to the length of the longest
record. This maintains the same sampling rate while harmoniz-
ing frequency resolution among all records, which is critical to
our method given its reliance on frequency domain features.24

Finally, the variability between records that is introduced by het-
erogeneity in the collection of the recordings can render a classi-
fier trained on one population much less effective when applied

Table IV. Results of multiple random sampling trials for local hold out
testing showing.

Run index Accuracy Sensitivity Specificity Score

1 0.9531 0.881 0.9720 0.9265
2 0.9530 0.8860 0.9700 0.9280
3 0.9530 0.8840 0.9700 0.9270
4 0.9550 0.8930 0.9700 0.9315
5 0.9560 0.8910 0.9720 0.9315
Mean 0.9540 0.8870 0.9708 0.9289
Standard deviation 0.0014 0.0049 0.0011 0.0024
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Table V. Comparison of proposed method to those reported in literature for the same dataset.

Reported results

Method Classifier Sensitivity Specificity Score

Proposed work FrFT-MFSC with stacked autoencoder deep neural
network

0.8930 0.9700 0.9315

Plesinger et al.16 Fuzzy logic like approach 0.8690 0.9370 0.9030
Langley and Murray19 Amplitude spectrum and wavelet entropy threshold

followed by decision tree
0.8690 0.9370 0.9030

Goda and Hajas9 SVM 0.9700 0.8200 0.9000
Nabhan and Warriek17 Ensemble methods with outliers for phonocardiogram

classification
0.8740 0.9140 0.8940

Abdollahpur et al.18 Three feed-forward NNs 0.8883 0.8851 0.8867
Whitaker et al.21 SVM 0.8867 0.8816 0.8841
Homsi et al.12 Nested ensemble of algorithms including random forest,

LogitBoost and a cost-sensitive classifier
0.9440 0.8690 0.8840

Tschannen et al.11 L2-SVM 0.9080 0.8320 0.8700
Potes et al.3 Final decision rule based on AdaBoost ensemble

classifier and convolutional neural network
0.8800 0.8200 0.8500

Singh-Miller et al.14 Discriminative model based on random forest regressor 0.8100 0.8900 0.8500
Potes et al.3 Convolutional neural network (CNN) 0.7900 0.8600 0.8200
Vernekar et al.15 Weighted ensemble classifier including four AdaBoost

ensemble and four ANN classifiers
0.7920 0.8430 0.8200

Potes et al.3 AdaBoost-ensemble classifier 0.7000 0.8800 0.7900
Langley and Murray13 Wavelet entropy threshold 0. 9500 0.6000 0.7800
Gokhale8 Boosted trees ensemble classifier NA∗ NA∗ 0.7600
Grzegorczyk et al.10 Conventional neural network and autoencoder 0.8300 0.6200 0.7300

Note: ∗NA: Not available from the reference.

to another. Here, the features proposed seem to capture the salient
features among all such populations and hence show a more
robust performance among populations coming from very differ-
ent collections settings.

The processing platform used in this work was based on an
Intel® Core™-i7 laptop with 8 GB of RAM running Matlab 2017a
on Windows 10 operating system. The processing time for the
training part of the study was around 3.5 hours, while that of
the testing phase was around 1.8 seconds. It should be noted that
the testing phase processing time indicates the potential of the
system for real-time performance as it stands. Several approaches
can make such processing time much smaller including the use
of multi-core processing, use of graphical processing unit pro-
cessing, and/or implementation of code in C++.

It should be noted that the main focus of this work was to show
the potential of the new method and hence the optimization of
performance under different sets of algorithm parameters such as
the set of fractional orders, frame length, frame shift and number
of warped bands was not thoroughly pursued. This remains to be
addressed in future work.

5. CONCLUSIONS
A new approach is proposed to classify heart sounds. The
main contribution of this approach is to introduce new features
based on fractional Fourier transform based Mel-frequency spec-
tral coefficients combined with stacked autoencoder deep neu-
ral network. The description of the proposed methodology and
its implementation details are presented. The results of exper-
imental verification indicate that the presented approach has
potential to overcome the challenges encountered during heart
sound classification under different settings. These results indi-
cate the robustness of the new features and their potential in
clinical use.
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PCG classification using a neural network approach, Proc. 2016 Computing
in Cardiology Conference (CinC) (2016), pp. 1129–1132.

11. M. Tschannen, T. Kramer, G. Marti, M. Heinzmann, and T. Wiatowski, Heart
sound classification using deep structured features, Proc. 2016 Computing in
Cardiology Conference (CinC) (2016), pp. 565–568.

12. M. N. Homsi, N. Medina, M. Hernandez, N. Quintero, G. Perpiñan,
A. Quintana, et al., Automatic heart sound recording classification using a
nested set of ensemble algorithms, Proc. 2016 Computing in Cardiology Con-
ference (CinC) (2016), pp. 817–820.

13. P. Langley and A. Murray, Abnormal heart sounds detected from short dura-
tion unsegmented phonocardiograms by wavelet entropy, Proc. 2016 Com-
puting in Cardiology Conference (CinC) (2016), pp. 545–548.

7



R ES E A R CH AR T I C L E J. Med. Imaging Health Inf. 9, 1–8, 2019

14. N. E. Singh-Miller and N. Singh-Miller, Using spectral acoustic features to
identify abnormal heart sounds, Proc. 2016 Computing in Cardiology Confer-
ence (CinC) (2016), pp. 557–560.

15. S. Vernekar, S. Nair, D. Vijaysenan, and R. Ranjan, A novel approach for
classification of normal/abnormal phonocardiogram recordings using temporal
signal analysis and machine learning, Proc. 2016 Computing in Cardiology
Conference (CinC) (2016), pp. 1141–1144.

16. F. Plesinger, I. Viscor, J. Halamek, J. Jurco, and P. Jurak, Heart sounds
analysis using probability assessment. Physiological Measurement 38, 1685
(2017).

17. H. M. Nabhan and P. Warrick, Ensemble methods with outliers for
phonocardiogram classification. Physiological Measurement 38, 1631
(2017).

18. M. Abdollahpur, A. Ghaffari, S. Ghiasi, and M. J. Mollakazemi, Detection of
pathological heart sounds. Physiological Measurement 38, 1616 (2017).

19. P. Langley and A. Murray, Heart sound classification from unsegmented
phonocardiograms. Physiological Measurement 38, 1658 (2017).

20. V. Maknickas and A. Maknickas, Recognition of normal-abnormal phono-
cardiographic signals using deep convolutional neural networks and
mel-frequency spectral coefficients. Physiological Measurement 38, 1671
(2017).

21. B. M. Whitaker, P. B. Suresha, C. Liu, G. Clifford, and D. Anderson, Com-
bining sparse coding and time-domain features for heart sound classification.
Physiological Measurement 38, 1701 (2017).

22. L. B. Almeida, The fractional Fourier transform and time-frequency represen-
tations. IEEE Transactions on Signal Processing 42, 3048 (1994).

23. D. B. Springer, L. Tarassenko, and G. D. Clifford, Logistic regression-HSMM-
based heart sound segmentation. IEEE Transactions on Biomedical Engineer-
ing 63, 822 (2016).

24. L. Chapparo, Signals and Systems Using Matlab, 2nd edn., Academic Press
(2015).

25. D. O’Shaughnessy, Speech Communications: Human and Machine, 2nd edn.,
Wiley-IEEE Press (1999).

26. A. C. McBride and F. H. Kerr, On namias’s fractional fourier transforms. IMA
Journal of Applied Mathematics 39, 159 (1987).

27. A. Ng, Deep Learning and Unsupervised Feature Learning, http://
deeplearning.stanford.edu/wiki/index.php/Main_Page, accessed January
(2018).

28. C. Candan, M. A. Kutay, and H. M. Ozaktas, The discrete fractional fourier
transform. IEEE Transactions on Signal Processing 48, 1329 (2000).

29. S.-C. Pei, M.-H. Yeh, and C.-C. Tseng, Discrete fractional Fourier transform
based on orthogonal projections. IEEE Transactions on Signal Processing
47, 1335 (1999).

30. Y. Bengio, Learning deep architectures for AI. Foundations and Trends in
Machine Learning 2, 1 (2009).

31. A. Ng, Sparse Autoencoder, CS294A Lecture Notes (2011),
Vol. 72.2011, pp. 1–19.

32. C. Poultney, S. Chopra, and Y. L. Cun, Efficient learning of sparse representa-
tions with an energy-based model. Advances in Neural Information Process-
ing Systems 19, 1137 (2006).

33. H. Lee, C. Ekanadham, and A. Y. Ng, Sparse deep belief net model for visual
area V2. Advances in Neural Information Processing Systems 20, 873 (2007).

Received: xx Xxxx xxxx. Accepted: xx Xxxx xxxx.

8


