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Abstract- The proper design ofRF pulses in magnetic resonance imaging (MRI) has a direct
impact on the quality of acquired images, and is needed for many applications. Several
techniques have been proposed to obtain the RF pulse envelope given the desired slice
profile. Unfortunately, these techniques do not take into account the limitations of practical
implementation such as limited amplitude resolution. Moreover, implementing constraints for
special RF pulses on most techniques are not possible. In this work, an approach is proposed
to develop for designing optimal RF pulses under theoretically any constraints. The new
technique poses the RF pulse design problem as a combinatorial optimization problem and
uses efficient techniques from this area such as genetic algorithms (GA) to solve this
problem. In particular, an objective function is proposed as the norm of the difference
between the desired profile and the one obtained from solving the Bloch equations for the
current RF pulse design values. The proposed approach is verified using analytical solution
based RF simulations and compared to previous methods such as Shinnar-Le Roux (SLR)
method, and analysis, selected, and tested the options and parameters that control the Genetic
Algorithm (GA) can significantly affect its performance to get the best improved results. The
results show a significant improvement over conventional design techniques, and suggest the
practicality of using of the new technique for most important applications as slice selection
for large flip angles, in the area of unconventional spatial encoding, and another clinical use.

I. INTRODUCTION
Magnetic resonance imaging (MRI) is an imaging technique using primarily in medical setting to produce

high quality images of the inside of the human body. It offers true volumetric acquisition, ability to visualize
and quantify flow, and spectroscopic imaging to image both anatomy and function. This technique relies on
collecting the sign-al from an excited slice or volume witlin the human body. This excitation is achieved using
special RF pulses that are designed to provide the required localization within the imaged volume. The proper
design of RF pulses is important to avoid artifacts such as cross-talk in the acquired images.

The design of RF pulses is a rather difficult problem maithematically [1]. The basic goal of this design is to
enable the desired slice profile to be achieved using the available RF pulse generation hardware. The practical
implementation of RF pulse systems consists of a comput;er that stores the array of digital values representing
the RF pulse envelope amplitudes. These values are converted using a digital-to-analog converter (DAC) into
actual voltage levels. This DAC has a limited resolution in both amplitude and time. As a result, the generated
envelope voltages appear like a piecewise constant curve with a fixed time step and limited stepwise amplitudes.
These levels modulate the amplitude of the output of an RE generator before applying this output to the RF
coils. The RE coils may be either linear (i.e., allowing only the real component to be applied) or quadrature (i.e..
allowing both the real and imaginary components to be used). The actual frequency of the RE generator and the
applied slice selection magnetic field gradient determine the position of excited slice. On the other hand, the
amnplitudes of thle RE pulse envelope points determine the shalpe of the exYcitation profile as well as its flip anlgle.

D)evelopment of such pulses has been a topic of interest to researchers for ovler 20 years [2] and many
methlods hlave been developed. Hoult showed that at small tip angles (30 or less), the chlaracteristic Blochl
equations are nearly linear in nature [3]. As a resullt, assuming linear response in the spectrometer transmitter
chainl, the Fourier transform (ET) of thle desired magnetization profile is a reasonable choice for the RE
wave:form. Pulses derived in this mnanner can produce acceptable results at larger tip angles, but as thle tip angle
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approaches and exceeds 90, the Blocih equations become increasingly nonlinear, with significant distortion in
both phase and magnitude [41.

Researchers have extensively investigated both direc-t and inverse approaches to RF pulse optimization.
Hoult [31 and Mansfield et al. [6] were pioneers in tho4iz-ct solution of the Bloch equations for shaped pulse
design. whose work was verified numerically by Locher [7]. Techniques for analytical inversion of the Bloch
equations were also proposed by Caprihan [81 and Silver et aL. [91. Caprihan concluded that numerical methods
are the key to effective selective pulse synthesis. Conolly et al. [101 and Murdoch et al. [III explored optimal
control adaptations to RF pulse refinement. This work was reinforced by Ngo and Morris 12], who showed that
the Bloch equations respond linearly to large excitations ifthey are treated as a superposition of perturbations of
small tip angle. Among the many design methodologies that have been proposed in the last decade, the Shinnar-
Le Roux (SLR) method is probably the most widely used [13]. This method works by transforming the problem
into one of designing a finite impulse response (FIR) filter. The solution of this problem is obtained as an FIR
filter coefficients and subsequently transformed back into the desired RF pulse envelope.

Given the extensive literature on FIR filter design, the strength of the SLR technique is that it taps into some
of the most powerful FIR filter design techniques to solve the original problem of RF pulse design [13].
Nevertheless, it still has some limitations that did not enable its performance to be optimal in practice. In
particular, this technique does not take into consideration the limited amplitude resolution in designing the RF
filter. As it is well knoNvn in FIR filter design literature, the limited precision (i.e., quantization or limited word
length effects) in implementing the digital filter may substantially deteriorate its performance [14]. Even if the
FIR filter design technique is modified to take care of this problem and provrides optimal filter coefficients for a
given precision, there is no guarantee that the backward transformation to RF pulse coefficients would preserve
this property for RF pulse coefficients. In other words, the characteristics of the SLR transformation do not
allow such constraints to be imposed. In fact, it is generally difficult to impose any type of constraints on the
solution (like for example adiabatic constraints). As a result, the obtained design may in fact be suboptimal in
many cases that are common in practical use. An example where difficulty to obtain accurate slice profiles is
reported is the use of unconventional spatial encoding techniques such as wavelet encoding and pseudo-Fourier
imaging [15]. The implementation of such techniques had to compromise between the need to use low flip
angles to obtain accurate slice profiles for correct encoding and the need for high flip angles for better signal-to-
noise ratio. Therefore, a new RE pulse design technique that can incorporate practical constraints thus offering a
tnre optimal performance under the practical implementation constraints would be rather helpful to solve these
problems.

In this work, the problem ofRF pulse design is fonriiiatec as a combinatorial optimization problem with an
arbitrary number of constraints and uses efficient techniques from this area such as genetic algorithms (GA) to
solve this problem. This formulation takes into account thie limited precision of RF pulse generation and
provides the optimal results at any given precision. UInlike SLR technique, the objective function will be
proposed as the norm of the difference between the desired profile and the one obtained from solving the Bloch
equations for the current RF pulse design values, whiclh of-fers a feedback loop to improve the results. The
proposed approach will be verified using analytical solutitno based RF simulations and compared to previous
methods such as Shinnar-Le Roux (SLR) method and anni. sis, selected, and tested the options and parameters
of genetic algorithms to get the best improved results. The detailed implementation is provided details for each
technique and present their results compared to those of tei SLR technique.

IX. THEORXY
Given the definition of the RF pulse, it is possible to comip-ute the expected slice profile using the solution

to the Bloch equations. This solution relies on using thle analytical form for the slice profile from a single
rectalngular pulse of arbitrary magnitude [I]. In traditional practical cases, the gradient is kept constant and the
relaxation times (T1&T2) are neglected. The Bloch equations relate magnetization values with these assumptions
is given by:

,Myy - .z O Bxj1{Myi=-AM (1)
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Here. Bx and By are the two quadrature components of the RE pulse, y is the gyromagnetic ratio, and G.Z is the
slice selection gradient. The gradient is assumed to lie along the +z axis. For a rectangular pulse. the solution
can be simplv computed as,

M(z) = Mo (z).F,xp(-A.t), (2)
Where t is the duration of the rectangular RF pulse and ae matrix exponent can be computed analytically for
this problem as in [1].

Keeping in mind the practical implementation of RF pulses in the form of piecewise constant envelope
pulses (i.e., a sequence of rectangular pulses of arbitrary amplitudes), the output magnetization from one piece
serves as the initial condition for the next. Hence, given any design for the RF pulse, the slice profile can be
computed this method. Given that the amplitudes of the RF pulses must be represented within a certain number
of bits, the problem now becomes the one of finding the optimal combination of amplitudes that would give a
slice profile closest to the desired. This problem description shows that this problem is indeed a combinatorial
optimization problem. Using the rich literature of this area, the solution can be obtained efficiently and
accurately. In this work, the one of the most prominent techniques is explored in this area, namely, genetic
algorithm (GA).

Ill. METHODS
The one of the most prominent techniques was used in the area of a combinatorial optimization problem,

namely, genetic algorithm (GA). The Genetic algorithm (GA) is an optimization and search technique based on
the principles of genetics and natural selection. A GA allows a population composed of many individuals to
evolve under specified selection rules to a state that maximizes the "fitness" (i.e., minimizes the cost function)
[16]. GA accommodate all the facets of soft computing, namely uncertainty, imprecision, non-linearity, and
robustness.

The Figure (1) summarizes how the genetic algorithm works:

Parameter Coding
Initial Pop. Random

Population of individuals
Children d- l - ecode

Recomnbination Parents Evaluate Fitness
(Crossover&mutation) (Objective fulnction)

mates SeleciII

Figure 1: Computational Flows in Genetic Algorithms

A solution is encoded as a string of genes to form a cl-romosome representing an individual. In many
applications the gene values are [0, 1j and the chromosomes are simply bit strings. An objective function, f, is
supplied which can decode the chromosome and assign a fitness value to the individual the clhromosome
represents.

Given a population of chromosomes the genetic operator's crossover and mutation can be applied in order to
propalgate variation within the population. Crossover takes two parent chromosomes, cuts them at some random
gene/bit position and recombines the opposing sections to create two children. Mutation is a background
operator, which selects a gene at random on a given individual and mutates the value for that gene (for bit
strings the bit is complemented).

The use of GA is robust in that th2ey are not affected by spurious local optima in the solution space.
Neverthleless, the parameters that control the GA can significantly- affect its performance. and there is no
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guidance in theory as to how properly select them but. in t;-his work, the options and parameters of genetic
algorithms are selected, and tested to get the best improved results and compared to previous works in this field.
The most important parameters are the population size, the fitness scaling, the selection function, the crossover
function, and the mutation function. Details of the proposed algoritlhm are as follows:

-1) Population of the chromosomes: Population represents the size of the solutions that we are working
with and specifies how many individuals there are in each generation. With a large population size, the
genetic algorithm searches the solution space more thoroughly, thereby reducing the chance that the
algorithm will return a local minimum that is not a global minimum. However, a large population size
also causes the algorithm to run more slowly.

2) Population Initialization: The populations of chromosomes are initialized randomly by the GA. A
chroinosome that represents the SLR solution is added to the initial population to produce the initial
population. This means that we start with the best solution in the literature and try to get a more
optimal solution that produces a better slice profiles.

3) Chromosome structure: Binary chromosome is u;sed. The RF pulse is encoded into the chromosome as
follows. The real RF pulse values are converted into discrete ones according to the resolution of the
D/A of the MIRI machine (12 or 16 bit for exam-nple). Every bit represents a gene. The most significant
bits of all values are placed adjacent to each other, then the second most bits and so on until placing the
least significant bits together at the end. Hence, the chromosome size equals the number of the RF
pulse envelope values times the bit resolution (usually 12 or 16).

4) Fitness criterion: The chromosome is decoded to obtain the corresponding RF pulse envelope
amplitudes and its slice profile is computed by solving the Bloch equations. Then, an error measure is
calculated for the difference between the response of this RF pulse and the desired response. This
measure is usually taken as either the 1-norm or 2- norm of the difference vector. The results of this
paper were obtained using the 1-norm. The evaluation function is used:

F - D -Mxi + D -My + DZ -mI i (3)
5) Fitness scaling: Fitness scaling converts the raw fitness scores that are returned by the fitness function

to values in a range that is suitable for the selection function. The range of the scaled values affects the
performance of the genetic algorithm. If the scaled values vary too widely, the individuals with the
highest scaled values reproduce too rapidly, taking over the population gene pool too quickly, and
preventing the genetic algorithm from searching other areas of the solution space. On the other hand, if
the scaled values varv only a little, all individuals have approximately the same chance of reproduction
and the search will progress very slowly. Options for fitness scaling in the GA is specified:
* Rank: Rank, scales the raw scores based on the rank of each individual instead of its score. The

rank of an individual is its position in the sorted scores. The rank of the most fit individual is 1, the
next most fit is 2, and so on. Rank fitness scaling removes the effect of the spread of the raw
scores.

* Proportional: Proportional scaling makes the scaled value of an individual proportional to its raw
fitness score.

* Top: Top, scales the top individuals equallv. Selecting Top displays an additional field, Quantity,
which specifies the number of individuals that eare assigned positive scaled values. Quantity can be
an integer between 1 and the population size or a fraction between 0 and 1 specifying a fraction of
the population size.

* S1hift linear: Shift linear, scales the raw scores so that the expectation of the fittest individual is
equal to a constant multiplied by the average score. You specify the constant in the Max survival
rate field, which is displayed when you select Shift linear.

6) Selection: Selection options specify how the genetic algorithm chooses parents for the next generation.
You can specify options for selection in the GA:
* Stochastic uniform: stochlastic uniform, lays out a line in which each parent corresponds to a

section of the line of length proportional to its scaled value. The algorithm moves along the line in
steps of equal size. At each step, the algorithm allocates a parent from the section it lands on. The
first step is a uniform random number less than the step size.

* Remlainder: Remainder, assigns parents deterministically from the integer part of each individual's
scaled value and then uses roulette selection on the remaining fractional part.

*Roulette: Roulette, chooses parents by simullating a roulette wheel, in which the area of the section
of the wheel corresponding to an individual is proportional to the individualts e.xpectation. The
algorithlm uses a ralndom number to select one of the sections with a probability equal to its area.
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Tournamnent: Tournament selection chooses eacht parent by choosing Tournament size players at
random and then choosing the best individual out of that set to be a parent. Tournament size must
be at least 2.

7) Reproduction: Reproduction options specify how the genetic algorithm creates children for the next
generation. You can specify options for reprodu-ctioi'n in the GA:
* Elite count: specifies the number of individuals that are guaranteed to survive to the next

generation. Set Elite count to be a positive integer less than or equal to the population size. The
default value is 2.

* Crossover fraction: specifies the fraction of the next generation, other than elite children, that are
produced by crossover. Set Crossover fraction to be a fraction between 0 and 1. The default value
is 0.8.

8) Crossover: Crossover options specify how the genetic algorithm combines two individuals, or parents,
to form a crossover child for the next generation. You can specify options for crossover in the GA:
* Scattered: creates a random binary vector and selects the genes where the vector is a 1 from the

first parent, and the genes where the vector is a 0 from the second parent, and combines the genes
to form the child.

* Single point: chooses a random integer n between I and Number of variables.
* Two point: Selects two random integers' m and n between 1 and Number of variables.
* Intermediate: Creates children by taking a weighted average of the parents. You can specify the

weiglhts by a single parameter, Ratio, which} can be a scalar or a row vector of length Number of
variables. The function creates the cnild from parentl and parent2 using the following formula.
CGhild =parent] + rand * Ratio * (parent2 - parent]).

9) M1utation: Mutation options specify how the genetic algorithm makes small random changes in the
individuals in the population to create mutation children. Mutation provides genetic diversity and
enables the genetic algorithm to search a broader space. You can specify options for mutation in the
GA:
* Gaussian: Gaussian, adds a random number taken from a Gaussian distribution with mean 0 to

each entry of the parent vector. The variance of this distribution is determined by the parameters
Scale and Shrink, and by the Initial range setting in the Population options.

* Uniform: Uniform mutation is a two-step process. First, the algorithm selects a fraction of the
vector entries of an individual for mutation, where each entry has a probability Rate of being
mutated. The default value of Rate is 0.01. In the second step, the algorithm replaces each selected
entry by a random number selected uniformAy from the range for that entry.

VI. RESULTS AND DISCUSSION
The proposed Genetic Algorithm method was applied to design RF pulses with rectangular spatial profile at

7r/2 and 7r flip angle. The outcome of the Genetic method is compared to the outcome of the SLR technique.
Firstly to get the best results from the genetic algorithm), it iusually needed to experiment with different options
of GA. Selecting the best options for a problem involves t-rL and error. 64 points for RF pulse design is used
and applied Genetic Algorithm to design RF pulses with rectangular spatial profile at 7t flip angle. The following
sections describe some ways you can change options to impnove results.
1) Population Size and Initial Range

One of the most important factors that determinie the peirfrmance of the genetic algorithm performs is the
diversity of thle population. If the average distance between individuals is large, the diversity is high; if the
average distance is small, the diversity is low. Getting the t:ight amount of diversity is a matter of trial and error.
If the diversity is too high or too low, the genetic algorithm might not perform well. This section explains how
to control diversity by setting the Initial range of the population, and also explains how to set the population
size. The effects of the initial range and popu:lation size on the performance of the genetic algorithm are
illustrated in Table (1).
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Table (1): Best values obtained for changing Population size and initial range

No. Pop.Size _ Norm-rI Errors(Best values)
Initial range Initial range Initial range

[-0.0001.0.000113_ [-0.01,0.011 [-O. 1,0. 1]
1 16 4.9923 5.0223 8.557
2. 32 4.9256 4.8973 5.1912
3. 64 4.9951 4.9348 4.8993
4. 128 4.986 5.026 5.0184
5. 256 4.9337 4.935 6.6971

2) The fitness scaling
The range of the scaled values affects the performance of the genetic algorithm. If the scaled values vary too

widely, the individuals with the highest scaled values reproduce too rapidly, taking over the population gene
pool too quickly, and preventing the genetic algorithm from searching other areas ofthe solution space. On the
other hand, if the scaled values vary only a little, all individuals have approximately the same chance of
reproduction and the search will progress very slowly. The effects of the fitness scaling on the performance of
the genetic algorithm are illustrated in Table (2), and Figure (2).

Table (2): Best values obtained for chaning the Fitness function
No. Scaling Function Nonn-I Errors (Best Values)
1. Rank 4.8973
2. Proportional 4.9541
3. Top 4.9981
4. Shift Linear 4.927

3) The function of selection
The effects of changing the selection function on the performance of the genetic algorithm are illustrated in

Table (3), and Figure (3).
Table (3): Best values obtained for changing the Selection function

No. Selection Function ] Norm-i Errors (BestValues)
1. Stochastic uniform 4.8973
2. Remainder 5.0248
3. Roulette 5.0006
4. Tournament 4.9209

4) The function of crossover
The effects of changing the crossover function on the performance ofthe genetic algorithm are illustrated in

Table (4), and Figure (4).
Table (4): Best values obtained for changing the Crossover function

No. Crossover Function T Normn-I Errors(BestValues)
1. ~ Scattered 4.8973
2. Singlepoint 5.0653
3. Two point 4.9948
4. Interm-ediate 5.2007

5) The function of mutation
The effects of changing the mutation finction on the pVrfcRrm-nce of the genetic algoritlm are illustrated in

Table (5), and Figure (5).
Table(5):Bestvaluesobtainedfor changing themutationfunction

No. Mutation Function Norm-i Errors (Best Values)
1~. Gassa 4.8973 ,_ .

Secondly,. after the test options of GA to get the best results, wve are applied Genetic Algorithlm wxith the best
options to design two RF pulses with rectangular spatial profiles at t/2 and 7r flip angle. The outcome of the
Genetic Algorithm is compared to the outcome of the SLR technique. and compared the outcome of this work
(used the best options for GA selected from above) to outcome of previous xvork (used the followsing options for
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GA: proportional scaling function, Roulette selection function, single point crossover function, probability of
crossover is taken as 90%/, unifonn mutation function, and probability of mutation is taken as 1%). The results
are shown in Table (6) and Figures (6), and (7). As can be observed, the GA technique show a significant
improvement over the design computed using the SLR technique. Also, the outcome of this work appears better
and faster to reach the solution than that from previous work in the number of experiments we performed.
Table (6): Norm-i Error resulting for w/2 and X flip an*le
No. Flip angle Norm-I Errors for 128 points Norm-i Errors for 256 points

SLR work previous work Our work SLR work previous work Our work
I

.,, ._ ..-.2~ 2.787 1.304 1.2698 2.5955 J 1.0979 0.88545
2. n 5.6079 3.9839 3.8768 3.5083 3.0929 2.7724
One of the most important applications for the proposed technique is in the area ofunconventional spatial

encoding where complex RF pulse are to be generate at high accuracy. The proposed technique is expected to
enable better reconstruction accuracy, less image artifacts, and higher signal-to-noise ratio. The study of this
area requires the investigation of several of these techniques and the assessment of the results and is left to
fxture work.

V. CONCLUSIONS
In this paper, a new optimized RE pulse design in MRI using the GA is presented. The new technique relies

on posing the problem as a combinatorial optimzation problem and uses GA to compute the solution under any
type of constraints, and select the best options for parameters ofGA to get the more improvement results. The
results demonstrate the success of the new approach and suggest its potential for practical use in clinical
magetic resonance imang.
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Figure (7): (a) Norm-1 Error for nl2 flip angle and 256 points from (previous work), (b) Normn-1 Error for
nc/2 flip angle and 256 points from our work, (c) Norm-1 Error for s flip angle and 256 points from

(previous work), and (d) Norm-1 Error for Iflip angle and 256 points from our work.


