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Abstract 
We introduce using Sparse MRI with random radial trajectories in order to allow MRI images 
reconstruction from a small number of acquired k-space data, so fulfilling the demands of 
dynamic MRI. Different random radial trajectories are generated by varying the parameters of 
the added random perturbations to the radial trajectories.  Images reconstruction is performed 
using the non-linear L1 norm reconstruction. Entropy is computed for the reconstructed 
images, as a quantitative measure for the reconstructed image quality. Both phantom 
simulation and real cardiac images are used in our experiments. Our results show that more 
sparsely sampled images can be reconstructed with higher quality compared to using non-
randomly sampled radial k-space trajectories. 
 
Keywords: Cardiac Magnetic Resonance Imaging (MRI), radial k-space sampling, dynamic 
imaging 
 
INTRODUCTION 
 
Patient motion during MRI cardiac imaging causes artifacts in the reconstructed image that obscure anatomical 
details. The main sources of these artifacts are cardiac and respiratory motion. Dynamic MRI captures an object 
in motion by acquiring a series of images at a high frame rate, thereby reducing motion artifacts. Dynamic 
imaging places conflicting demands requiring both high spatial resolution to resolve anatomical detail, and high 
temporal resolution to monitor rapid changes in signal. However, k-space sampling that obeys the Nyquist 
theorem usually precludes simultaneous achievement of both aims. k-space undersampling speeds up the 
acquisition by only sampling part of the required k-space. Sparse MRI is a fast imaging method based on 
undersampled k-space sampling and non-linear reconstruction [1]. This approach is inspired by theoretical 
results in sparse signal recovery [2, 3] showing that if the underlying image is compressible it can be recovered 
from randomly undersampled frequency data, an idea known as compressed sensing. It exploits the fact that 
medical images often have a sparse representation in some domain (such as finite differences, wavelets, Fourier, 
etc.), where the number of coefficients needed to describe the image accurately is significantly smaller than the 
number of pixels in the image. Uniform undersampling of the Fourier domain results in aliasing. When the 
undersampling is random, the aliasing is incoherent acting as additional noise interference in the image 
representing incoherent interference of the sparse transform coefficients. Sparsity is exploited by constraining 
the reconstruction to have a sparse representation and to be consistent with the measured k-space data.    The 
success of the reconstruction depends on the sparsity of the coefficients and that the interference is small, having 
random statistics. This approach has been used with randomly perturbed undersampled spirals [4] and with 
randomly undersampled 3DFT trajectories [5]. It has been shown that the used non-linear L1 norm 
reconstruction outperformed conventional linear reconstruction, recovering the image even with severe 
undersampling. 
 
Radial trajectories have many favorable intrinsic properties with respect to the demands of dynamic MRI 
including [6]: 

1) Motion-induced artifacts result predominantly in radial streaks with only low intensity near the 
source of motion and reduce motion-induced ghosting. No ghosts displaced along phase-
encoding direction are present. 
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2) The coverage of the k-space center in each radial line avoids contrast continuities and 
preserves the continuity of the process. Also, oversampling of the low spatial frequencies 
provides intrinsic averaging of the gross features of the subject. 

3) By applying a magnitude reconstruction, a reduced sensitivity to statistical phase errors may be 
achieved, although the amplitude of motion-induced artifacts increases. 

 
Random sampling may not be feasible in MR as the k-space trajectories have to be smooth due to hardware and 
physiologic considerations. Radial trajectories besides being fast and time-efficient, they result in k-space 
sampling with a variable density increasing linearly with the inverse of the distance from the k-space origin. 
Therefore, they are a good candidate to approximate random sampling due to although they span k-space 
uniformly; they are far from being regular as in Cartesian grid sampling.  
 
In this paper, we introduce using Sparse MRI with random radial trajectories to exploit the intrinsic advantages 
of these trajectories with respect to the demands of dynamic MRI. Different random radial trajectories are 
generated by varying the parameters of the added random perturbations to the radial trajectories.  Images 
reconstruction is performed using the non-linear L1 norm reconstruction. Entropy is then computed for the 
reconstructed images, as a quantitative measure for the reconstructed image quality. Our results show that more 
sparsely sampled images can be reconstructed with higher quality compared to using uniformly sampled radial k-
space trajectories. 
 
METHODOLOGY 
 
The block diagram in Figure 1 summarizes the main applied steps in our work. This section describes these steps 
in details.     

 
(A)Random Radial Perturbations 
 
Radial lines are perturbed by adding slight random deviations taken from Guassian distribution with zero mean 
and varying variances. Different schemes for the random perturbations are used in the simulations. These include 
1) using constant variance along radial lines, and 2) using montonically increasing variance with the distance 
from the k-space origin. i.e., variance is increased in areas of low sampling density and decreased in areas of 
high sampling density.  
Due to the impracticality of pure random sampling of k-space, a practical incoherent sampling scheme is aimed 
to closely mimic the interference properties of pure random undersampling. Therefore, the simulated random 
radial trajectories are processed using a numerical algorithm [7] to keep the applied RF gradients amplitude and 
slew rate below the maximum permissible limits.  
 
(B) Gridding Reconstruction 
 
In MRI, gridding has been used routinely with respect to nonuniform, non-Cartesian sampling of the k-space. 
Conventional gridding is applied here to compare with non-linear L1 norm reconstruction using the randomly 
perturbed radial trajectories.  The gridding algorithm is basically performed in four steps [8]: 
 

1) Precompensate the data with inverse of the sampling density to compensate for the varying density of 
sampling in k-space. 

2) Convolve with a Kaiser-Bessel window and resample onto a Cartesian grid. 
3) Fourier transform.  
4) Postcompensate to remove the apodization of the convolution kernel by dividing by the transform of the 

Kaiser-Bessel window. 
 
(C)Non-linear L1 norm Conjugate- Gradient Reconstruction 

 
Image reconstruction is performed by solving the following constrained optimization problem [1]: 
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where f is the reconstructed image, y is the measured k-space data,  Ψ is the sparsifying transform operator, TV 
or Total-variation is the finite-differences sparsifying transform. Minimizing the objective function promotes 
sparsity by both the specific transform and finite-differences at the same time. NFFT stands for the nonuniform 
fast Fourier transform of the image.ε  controls the fidelity of the reconstruction to the measured data. The 
threshold parameter ε  is usually set below the expected noise level. α trades Ψ sparsity with finite-differences 
sparsity. λ  is a regularization parameter that determines the trade-off between the data consistency and sparsity. 
An iterative non-linear conjugate gradient descent algorithm with backtracking line search is used, following the 
work in [1]. In our work, image reconstruction is done in the sparse spatial image domain, i.e., no sparifying 
transform is used. 
 
(D) Entropy Minimization 
 
The entropy criterion, E, is defined as [9]: 
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where N is the number of image pixels and Bj is the modulus of the complex value of the jth image pixel or the 
pixel brightness. Bmax is given by 
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When all the image energy is located in a single pixel and the remaining pixels are black. When a 128 x 128 
image has a uniform brightness, Bj /Bmax =1/128 for all the pixels and the entropy E = 621. Therefore, entropy 
minimization favors high contrast.  This entropy criterion favors alterations to the data that tend to increase the 
number of dark pixels. It has been used before as a focus criterion to remove motion-induced ghosts from low 
intensity regions of the image that would otherwise be dark. Entropy minimization is used here to as a measure 
of the reconstructed image quality. 
 
EXPERIMENTAL VERIFICATION 

 
(A)Phantom simulation 

 
A 2D numerical SheppLogan phantom is used. The phantom image is designed as a linear superposition of 
elliptical objects, whose FTs are scaled “jinc” functions (jinc x = J1(x)/(2x), where J1 is a first-order Bessel 
function. k-space samples can thus be evaluated directly, therefore the phantom simulates realistic k-space 
sampling and truncation.  
Phantom reconstruction is done using both non-linear conjugate-gradient method and the conventional gridding 
reconstruction. The reconstructed phantom resolution is 160 x 160. k-space undersampling with 8-fold is used. 
That is, k-space consists of 20 radial lines. Each line consists of 512 samples. Practically, each radial line is 
acquired during TR interval, which is relatively long. Therefore, the number of samples per line can be 
increased, as much as permitted by TR, without any increase in the overall acquisition time.  
 
(B)MRI data 

 
Cardiac MRI magnitude images are Fourier transformed at various generated random radial trajectories using 
non-uniform Fourier transform. Undersampling factors of 8 and 10 are used. k-space consists of 16 radial lines 
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with 512 samples/line in the case of 8-fold acceleration, and consists of 13 radial lines with 512 samples/line in 
the case of 10-fold acceleration. The reconstructed image resolution is 128 x 128.  

 
RESULTS AND DISCUSSION 

 
The results of simulation phantom reconstruction with 8-fold acceleration are shown in Figure 2. It can be seen 
that the small ellipses, as shown surrounded by the dashed rectangle, become more resolved with increasing the 
variance of the added random deviations. This is also accompanied by an overall decrease in image blurring. 
Image reconstructed using conventional gridding shows much lower quality, compared to those obtained using 
non-linear reconstruction. Table 1 demonstrates the computed entropy of the reconstructed phantom at the 
different variances used. It can be noticed that entropy value decreases with added variance increase. Linearly-
increasing variance shows entropy with slightly higher values compared to non-changing variance.  
Figures 3 and 4 display cardiac image reconstruction using 8-fold and 10-fold accelerations respectively.  It can 
be seen that the fine image details become clearer with added random perturbations compared to using non-
random radial trajectory. Also, as variance increases, more contrast enhancement is noticed. Even at very sparse 
undersampling of 10-fold, image reconstruction revealed more improvement. Table 2 demonstrates the 
computed entropy of the reconstructed images using non-linear reconstruction with random radial perturbations 
at different variances. It can be seen from the table that entropy decreases with variance increasing. Images 
reconstructed using conventional gridding method show lower quality compared to non-linear reconstruction. 
 
CONCLUSIONS 

 
Using randomly perturbed radial k-space enables more sparsely sampled image reconstruction with higher 
quality compared to using non-randomly sampled radial k-space trajectories. Future research should include the 
investigation of using sparsity transform in non-linear reconstruction of radially sampled images. Also, a study 
of varying the non-linear reconstruction parameters is to be done for different image models such as piece-wise 
varying and smoothly varying models. 
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TABLE 1 

 Entropy computed for phantom simulation with 8-fold acceleration. 
1. variance 2. Entropy 

3. 0 4. 186.9193 
5. 0.5 6. 174.1913 
7. 1 8. 167.6517 
9. 2 10. 163.4419 

11. Linearly 
increasing in the 

range[0.5-2], slope=0.5 

12. 168.5984 
13.  

14. Linearly 
increasing in the 
range[0.5-2.75], 

slope=0.75 

15. 164.3755 
16.  

 
 

TABLE 2 
 Entropy computed for cardiac image reconstruction with 8-fold and 10-fold accelerations. 

17. variance 
18. Entropy 

19. 8-fold 
acceleration 

20. 10-fold 
acceleration 

21. 0 22. 184.4959 23. 188.1973 
24. 0.5 25. 182.0886 26. 186.4292 
27. 1 28. 181.0794 29. 185.6843 
30. 2 31. 179.4062 32. 184.1696 
33. 3 34. 178.2825 35. 182.9701 

  
  

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Block diagram for the main steps employed. 
 
 

Random radial 
perturbations with 
different variances 

Processing of trajectories for 
practical gradients 

limitations  

Image reconstruction 
using L1 norm non-linear 

algorithm 

Entropy computation 
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Figure 2. Phantom image reconstruction with 8-fold acceleration. (a) Original image. (b) Image reconstructed 
using conventional gridding. Non-linear conjugate gradient reconstruction using (c) non-random radial k- space, 
random radial k-space with (d) variance = 0.5, (e) variance = 1, (f) variance = 2, (g) linearly increasing variance 
in the range [0.5, 2], h) linearly increasing variance in the range [0.5, 2.75]. The dashed rectangle surrounds the 
smallest ellipses which exhibit a better resolution with variance increasing.   

(a) (b) (c) 

(d) (e) (f) 

(h) (g) 
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Figure 3. Cardiac image reconstruction with 8-fold acceleration. (a) Original image. (b) Image reconstructed 
using conventional gridding. Non-linear conjugate gradient reconstruction using (c) non-random radial k- space, 
random radial k-space with (d) variance = 0.5, (e) variance = 1, (f) variance = 2, (g) variance = 3. 

 
 
 

 
Figure 4. Cardiac image reconstruction at 10-fold acceleration. (a) Original image. (b) Image reconstructed using 
conventional gridding. Non-linear conjugate gradient reconstruction using (c) non-random radial k- space, 
random radial k-space with (d) variance = 0.5, (e) variance = 1, (f) variance = 2, (g) variance = 3. 
 


