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Abstract 
As basic building blocks of life, genes, as well as their products

 
(proteins), do not work independently. 

Instead, in order for
 
a cell to function properly, they interact with each other and

 
form a complicated 

network. Recently, many researchers agree that most of biological ambiguous questions might be easily 

being answered if a sophisticated modeling of the gene regulatory network (GRN) was constructed.  

Also, GRN was used to help understanding disease ontology and reducing the cost of drug 

development. During the last decade, many GRN inference algorithms that are based on microarrays 

data have been developed to unravel the complexity of gene regulation. One of the major problems 

with microarrays is that a dataset consists of relatively few time points with respect to a large number 

of genes. The dimensionality and high degree of noise are interesting problems in GRN modeling. In 

this paper we proposed a new integrated algorithm to overcome these problems. Our software show 

good performance comparable to previous methods and many of produced edges have evidence in the 

literature data.  The proposed method was applied to time series gene expression data of 

Saccharomyces Cerevisiae and could potentially be applied to other networks in yeast as well as higher 

organisms.   

 

1. Introduction 
       One of the main research areas of bioinformatics is functional genomics; which focuses on the 

interactions and functions of each gene and its products (mRNA, protein) through the whole genome 

(the entire genetics sequences encoded in the DNA and responsible for the hereditary information). In 

order to identify the functions of certain gene, we should be able to capture the gene expressions which 

describe how the genetic information converted to a functional gene product through the transcription 

and translation processes. Functional genomics uses microarrays technology to measure the genes 

expressions levels under certain conditions and environmental limitations. In the last few years, 

Microarray has become a central tool in system biology; consequently, the corresponding data analysis 

becomes one of the important work disciplines in bioinformatics. 

The major goal of system biology is to understand how genes and its products interact to regulate cell 

cellular process. To achieve this goal it is necessary to reconstruct the gene regulatory networks (GRN) 

which help us to understand the working mechanisms of the cell in patho-physiological conditions. The 

structure of the GRN can be described as a wiring diagram that shows the direct and indirect influences 

on the expression of a gene and that describes which genes, in turn, can be regulated by such a gene 

through its translated protein or transcribed RNA product [1]. 

Within the last few years, a number of sophisticated approaches for the reverse engineering of cellular 

networks from gene expression data have been emerged. This may include Boolean networks[2], 

Bayesian networks[3], association networks[4], linear models[5], and differential equations[6]. 

A broad overview of the steps involved in the modeling of GRN is shown in Figure 1. The first step 

start with the question biologist required to be answered. For example, which genes are involved in 

controlling the cell cycle[7] and which genes are showed a similar drastic response to the 

environmental changes[8]. The next step is to prepare appropriate experiments relative to biological 

question. Next is the extraction of the gene expression matrix (rows are genes and columns are the 

different experiments or cells) from the microarray experiments using image processing techniques. 

Removing of non-informative genes and conditions, normalization and data denoising are described in 

the preprocessing step. The next step is the partitioning of the data set in to small overlapped biclusters. 
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In learning step the produced biclusters were learned using the reverse engineering approaches to 

produce the corresponding subnetworks i.e each bicluster produce one subnetwork. Learning step will 

be followed by integration of the generated subnetworks to produce the whole network. Assessment the 

performance of the resultant network using existing interactome databases and literature databases is 

performed in the validation step. Last step is that the generated validated network will open new 

hypotheses which need to be verified. For more details about these steps, the reader could referee to[9].  
The reconstruction of gene networks is in general complicated by the high dimensionality of high-

throughput data, i.e. a dataset consists of relatively few time points with respect to a large number of 

genes. Together with observational noise, these complications impose a limit on the reconstruction of 

gene network. In this study we propose a new algorithm to reduce data noise using spectral subtraction 

and data dimension using biclustering algorithms. 

 

 
 

Fig. 1. Basic Steps involved in GRN construction 

2. Methodology 

2.1. Data Acquisition 
 The microarray data used in this work is a well-known dataset of yeast microarray gene expression 

provided by Spellman et al.[7], which can downloaded from Stanford Microarray Database 

http://smd.stanford.edu. The Spellman dataset consists of four synchronization experiments (alpha 

factor arrest, elutriation and arrest of CDC15 and CDC28 temperature-sensitive mutants) which were 

performed for a total of 73 microarrays during cell-cycle.  

2.2. Data Prepossession 
Measurements of microarrays may be biased by diverse effects such as efficiency of RNA extraction, 

reverse transcription, label incorporation, exposure, scanning, spot detection, etc. This necessitates the 

preprocessing of microarrays prior to data analysis. The datasets used in this work have been already 

preprocessed for background correction and normalization. In addition, further preprocessing steps 

should be applied for data refinement. In this paper, we applied the commonly used preprocessing such 

as gene filtration and missing value imputation[9, 10]. 

2.3. Data Denoising 
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For data cleaning, we developed a new denoising algorithm for further preprocessing and refinement. 

The proposed algorithm is an adaptive signal-preserving technique for gene expression data based on 

spectral subtraction. The new technique uses the uncorrelatedness of the random noise and the 

deterministic components of the signal to separate the two in the original power spectrum. 

Figure 2 is a block diagram for the proposed denoising method. We will consider a model that is 

composed of the sum of one deterministic component d(t) incorporating both the true gene expression 

signal and the experimental noise and an uncorrelated stochastic component n(t). That is: 

s(t) = d(t) + n(t) 

Since these two component are assumed to be independent, the corresponding power spectra are related 

by 

Pss(w)=Pdd(w)+Pnn(w) 
where cross terms vanish because the two components are assumed uncorrelated. Hence, an estimate of 

the power spectrum of the deterministic component takes the below form[11] 

Pdd(w)=Pss(w)-Pnn(w) 

That is, the signal power spectrum is obtained by spectral subtraction of the noisy signal and noise 

power spectra. In order to compute the deterministic signal component from its power spectrum, the 

magnitude of the Fourier transform can be obtained as the square root of the power spectrum. The 

problem now becomes that of reconstructing the signal using magnitude only information about its 

Fourier transform. Several techniques can be used to do that. The one used for this paper relies on an 

estimate obtained from the phase of the Fourier transform of the original signal S(w) . Hence, the 

Fourier transform of the processed signal Sd(w)can be expressed as 
))((

)()(
wsphasej

ddd ewpwS =  

The enhanced deterministic signal sd(t) is then computed as the real part of the inverse Fourier 

transformation of this expression. 

The following are the steps needed to implement the spectral subtraction denoising procedure in 

practice. 

Step 1) Compute the variance of the gene expression values of each gene. Averaging the estimate from 

all time points to obtain the noise power spectrum level. 

Step 2) Compute the Fourier transform of the gene time course and save the phase and magnitude parts 

of the result separately. 

Step 3) Compute the original power spectrum of this time course using the periodogram method as the 

square of the magnitude of the Fourier transform in Step 2. 

Step 4) Compute the denoised power spectrum by subtracting the noise power spectrum from Step 1. 

Observe any scaling factors that are introduced by the Fourier transform definition before performing 

the subtraction in addition to the factor α in (5) (use a default value of α =1). 

Step 5) Compute the denoised signal Fourier transform as the square root of the denoised power 

spectrum from Step 4 multiplied by the phase retained in Step 2. 

Step 6) Compute the denoised time course as the real part of the result of Step 5. 
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Fig. 2. Spectral Subtraction Denoising Algorithm Block Diagram 

 

2.4. Data Partitioning 
   Clustering algorithms [12-14] were used to reduce data dimension. This is based on the assumption 

that genes which show similar expression patterns are co-regulated or part of the same regulatory 

pathway. But unfortunately, this is not always true. There are two limitations obstacle using clustering 

algorithms with microarrays data. First, all conditions are given equal weights in the computation of 

gene similarity; whereas, most conditions do not contribute information but instead increase the amount 

of background noise. Second, each gene is assigned to a single cluster, whereas in fact genes may 

participate in several functions and should thus be included in several clusters[15]. 

A new modified clustering concept to uncover processes that are active only over some but not all 

samples emerged which is called biclustering. A bicluster is defined as a subset of genes that exhibit 

compatible expression patterns over a subset of conditions[16]. 

During the last ten year, many biclustering algorithms have been proposed (see[17] for a survey), but 

the important questions are: which algorithm is better? And do some algorithms have advantages over 

others? 

Generally, comparing different biclustering algorithms is not straightforward as they differ in 

strategies, approaches, time complexity, number of parameters and prediction ability. They are strongly 

influenced by user-selected parameter values. For these reasons, the quality of biclustering results is 

also often considered more important than the required computation time. Although there are some 

analytical comparative studies to evaluate the traditional clustering algorithms [18-20], for biclustering, 

no such extensive comparison exist even after initial trails have been taken. At the end, biological merit 

is the main criterion for evaluation and comparison between the various biclustering methods. 

We have developed a comparative tool BicAT-Plus[21] that includes the biological comparative 

methodology and to be used as an extension to the BicAT program[22]. BicAT-Plus and its manual can 

be downloaded from the below two links: 

http://home.k-space.org/BicAT-plus.zip and http://home.k-space.org/Bicat-plus-manual.pdf. 

BicAT is a java biclustering toolbox which contains five biclustering (XMOTIF, ISA, OPSM, BIMAX, 

CC) and two traditional clustering algorithms (K-means and HCL). 

For more details about BicAT-Plus the reader could refer our previous paper[21]. 

2.5. Network Generation 
Many reverse engineering approaches to learn cellular networks from gene expression data have 

emerged. 

Bayesian networks (BN) which were first used by Friedman et al~[3] has been widely used because of 

solid basics in statistics. Also BN able to handle missing data and permit the incomplete knowledge 

about the biological system. There are two important components to represent BN, the qualitative part 

which is called the directed acyclic graph (DAG) and the quantitative part which is the conditional 

probability of children given its parents. The popular approach to find the best DAG is to search the 
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DAG space and find the DAG which has the best score. Due to huge DAG space we have to use the 

heuristic searches. k2 algorithm, Greedy Search, Genetic Algorithm and Greedy Hill Climbing are the 

popular search algorithms. The common objective of these algorithms is how to reduce the search 

space. 

In this step, we first learn the biclusters produced from the previous step using Greedy Hill Climbing 

search algorithm and BDe Scoring Function implemented in Biolearn [23] at Department of Biological 

Sciences, Columbia University. For examples, for the 219 biclusters generated by ISA algorithm (See 

Table 1), learning these biclusters will produce 219 subnetworks. Integrating or merging these 

subnetworks produces the whole network from ISA algorithm. 

 

2.6. Network Analysis and Validation 

   Now after inferring the interactions between genes, how to assess if these relationships are 

biologically exists. It is consuming time and money to experimentally validate the full set of 

predictions. During the last decay the interaction databases are growing exponentially. It was reported 

more than 230 web-accessible biological pathway and network databases www.pathguide.org. These 

large databases are very promising to assist the GRN inference and to validate the inferred networks. 

These interaction databases use different identifiers to identify the same gene (GI, SwissProt, internal 

identifiers, etc.) which is requiring the resolution of synonymous names/IDs across databases. So, we 

want to integrate molecular interactions and other types of high-throughput data from different public 

databases to build biological networks automatically. For this purpose we used BioNetBuilder [24] 

which is an open-source client-server Cytoscape plug-in that offers a user-friendly interface to create 

biological networks integrated from several databases. For example, BioNetBuilder client-server [24] 

retrieved for S. Cerevisiae more than 100,000 interactions  from different databases as follows:  

(BIND,16244);(BioGrid,99485);(DIP,17465);(IntAct;14331);(Interologger,5395); 

KEGG,5478);(MINT,11907); numbers here represent the number of  interactions per each 

corresponding database. 

Although the network retrieved by BioNetBuilder is still incomplete we consider it as gold standard 

network which we will compare with. 

In addition, we have to compare our algorithm's performance via previous methods. In this paper we 

compare our algorithm with Friedman algorithm. Friedman[3] developed a new framework for 

discovering interactions between genes based on multiple expression measurements which are capable 

of discovering causal relationships, interactions between genes other than positive correlation, and finer 

intra-cluster structure. He applied his approach to the dataset of Spellman et al.[7], containing 76 gene 

expression measurements of the mRNA levels of 6177 S. cerevisiae ORFs. Friedman network is 

available from http://www.cs.huji.ac.il/ nirf/GeneExpression/top800/. 

As usual, receiver operator characteristic (ROC) curve and precision recall (PR) curves are commonly 

used for binary decision problems. We used the DREAM2 [25] evaluation script to compute area and 

ROC and PR curves. We have to define some important terms as follows: 

TP: Number of edges present in the gold network and in the predicted network. 

FP: Number of edges not present in the gold network but included in the predicted network.  

FN: Number of edges present in the gold network but not in the predicted network. 

TN: Number of edges not present in the gold network and also not included in the predicted network. 

Definition of TPR, FPR, Recall and Precision could be found in [26]. 

 

3. Results and Discussion 
By applying our software to the Spellman data set we could summarize the produced results in the 

following steps: 

1- We applied KNN imputation algorithm[10] to Spellman dataset in order to substitute the 

missing data point with the nearest values. 

2-  All data set's genes that do not show significance changes were removed. 

3-  We applied spectral subtraction denoising algorithm to the dataset. 

4-   Using BicAT-plus toolbox [21] we applied the six biclustering algorithms (ISA[27], CC[28] 

,MSBE[29], Bivisu[30], OPSM[31], SAMBA[32]) and one traditional clustering algorithms 
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(k-means[33]) to the Spellman dataset. The total number of produced biclusters/clusters is 683 

and its statistics is shown in Table 1. 

5- We run Greedy Hill Climbing search algorithm implemented in Biolearn program[23] to these 

biclusters and produced 683 subnetworks. 

6- These subnetworks were integrated to generate the whole gene network per each biclustering 

algorithm. Edges count of these networks is shown in Table 2. If we merged the edges from 

all the biclustering/clustering algorithms, we produced a big network contains 5440 unique 

edges. We refer to this network as ALL network. Also In the bottom of this table is the number 

of edges of Friedman network.   

 

  Table 1 

Number of output biclusters when applied BicAT-plus toolbox() to Spellman[7] dataset 

Biclustering 

Algorithm 

Number of produced 

Biclusters 

ISA 219 

OPSM  12 

CC 100 

Bivisu 100 

SAMBA 52 

K-means 100 

 

Table 2 

Number of Network Edges Generated by learning biclusters shown in Table 1 using Biolearn program 

[23]. 

Biclustering Network Number of Edges 

ISA 2258 

OPSM  220 

CC 590 

Bivisu 1515 

SAMBA 1611 

K-means 380 

ALL Total Number 

of unrepeated Edges 

5440 

Friedman 947 

 

 

Figure 3 shows the performance of the biclustering networks via the gold network retrieved by 

BioNetBuilder[24] and Friedman network[3]. 

Inspecting Figure 3, we reveal that neither the generated networks from different bicluster algorithms 

nor the ALL network perform well. 

There is an important note to be considered when interpreting the results of this comparison. First, the 

interactions documented are either physical or genetic. This implies that they may not be direct 

interactions. The precision may be lower than the actual precision since links maybe missing in the 

interactome databases; and the recall may be lower than the actual recall in part because some of the 

links reported in the interactome databases may be indirect rather than the direct[34]. Second, some 

presently unsupported edges in the constructed network may find experimental evidence in the future. 

Therefore, these unsupported edges are not necessarily false ones[35]. 

For the above reasons, the False Positive (FP) edges could be considered as True Positive (TP) if it has 

evidence in the interaction databases (gold network). for example if the inference network include edge 

between gene1 and gene3 which does not exists in gold network and if these two genes connected 

indirectly via another intermediate gene like gene2 we can now consider the edge between gene1 and 

gene3 as true positive edge. 
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Figure 4 shows the networks performance improvement after taking into consideration the above 

evaluation modification. Furthermore they show how almost the false positive edges in these networks 

have evidence in the gold network. 

Also it should be mentioned that as we expected the sparseness nature of gene regulatory network, 

make using biclustering techniques(ISA, SAMBA, Bivisu) outperform the performance of the 

Friedman network. This will open the usage of biclustering algorithms to overcome the problem of 

dimensionality in the GRN inference problem. 

 

 
 

Fig. 3. ROC and PR Curves of Different Biclustering Networks 
 

 
 

Fig. 4 ROC and PR Curves of Biclustering Networks using Modified Evaluation Methodology 
 

4. Conclusions 

The increasing development of high throughput technology like microarray, promotes researchers to 

study the complexity of gene regulatory network (GRN) in biological cells. GRN inference algorithms 

have much impact in drug development and in understanding disease ontology. Many GRN inference 

algorithms that are base on genome-wide data have been developed to unravel the complexity of gene 

regulation. Transcriptomic data measured by genome-wide DNA microarrays are traditionally used for 

GRN modelling. This is because RNA molecules are easily accessible in comparison to proteins and 

metabolites. One of the major problems with microarrays is that a dataset consists of relatively few 

time points with respect to a large number of genes. The dimensionality and high degree of noise are 

interesting problems in GRN modelling. The most common and important design rule for modelling 

gene networks is that their topology should be sparse. This means that each gene is regulated by only a 

small number of other genes. In this work a new gene regulatory network (GRN) construction system 

from microarray large dataset and prior biological information was proposed. As we expected the 

sparseness nature of GRN make biclustering techniques to show significance results compared to 

Friedman network[3]. In this paper we show the impact of using biclustering algorithms in GRN 

construction. A sophisticated filtration procedure (data filtration, missing values imputation, 

normalization, discretization) were used to reduce the number of expression profiles to some subset 

that contains the most significant genes. Also, we used our novel denoising method (Spectral 
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Subtraction) which accurately may account for the low SNR and able to suppresses random noise or 

removes some of its components. It is clear from comparison SS with previous denoising methods like 

Multi-Wavelet that the spectral subtraction denosing method outperforms the Multi-Wavelet method 

and offering a substantial improvement of the SNR. Also, The Biclustering comparison toolbox 

(BicAT-Plus) implemented in this paper confirms that the bicluster and cluster algorithms can be 

considered as integrated modules; there is no certain algorithm that can recover all the interesting 

patterns, what algorithm A success to recover in certain data sets, Algorithm B might fail, and vice 

verse. We can identify the highly enriched bi/clusters of the whole compared algorithms, integrating 

them to solve the dimensionality reduction problem of the gene regulatory network construction. 

Surprisingly, the generated networks from this study shows sufficient accuracy when comparing it via 

previous works and existing biological databases like BIOGRIDE.  
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