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Abstract 
 

Preprocessing of microarray data might influence the precision of any further calculations based on these raw data.  

Important procedures should be considered, concerning preprocessing microarray data. This involves background 

correction, normalization, and detection of faulty spots from microarray data prior to analysis. In this study various 

methods for normalization and background correction were applied to a set of twenty samples presenting thyroid 

papillary cancer tissues versus patient-matched adjacent non-tumor thyroid tissues, in a trial to stand over the impact 

of preprocessing on the analysis results. To assess our results, we employed classification techniques to analyze the 

data after being preprocessed. This emphasizes the impact of preprocessing microarray data on gene expression 

analysis. Another challenge is to combine lists coming from different sources and platforms, for example different 

microarray chips, which may or may not be directly comparable otherwise. This is one of the major strengths of 

rank-based aggregation. Work is under way in this study to use genetic algorithm in the context of meta-analysis of 

several microarray cancer studies on liver where the goal is to determine the combined set of genes indicative of the 

cancer status. Genetic algorithm is applied to a set of sixty one samples presenting hepatitis C, another set of ten 

normal liver tissue samples, and a set of twenty seven liver cancer (primary tumor), in an attempt to predict 

biomarkers for progression towards hepatocellular carcinoma (liver cancer) in hepatitis C virus patients. 

 

 

1. Introduction 

 
Microarray technology offers a powerful tool for modern biomedical research. Using microarrays, 

expression levels of thousands of genes can be measured simultaneously. Two technologies are widely employed: 

high-density oligonucleotide- based chips produced by Affymetrix (Lockhardt et al., 1996) and cDNA microarrays, 

which are microscope slides spotted with thousands of cDNA fragments. In both cases the arrays are hybridized to 

fluorescent-labeled cDNAs generated by reverse transcription of RNA isolated from the cell sample or tissue under 

investigation. In standard terminology, the cDNAs spotted onto the arrays are called probes, and those in the 

samples are called target genes. cDNA microarrays generate one- or two-channel data. In two-channel use, the 

arrays are hybridized to a mixture of two samples, each labeled with a different dye (Cy3 and Cy5). In one-channel 

use, each array is hybridized to a single sample, labeled with a single dye. The arrays are laser-scanned at the 

wavelength(s) appropriate to the dye(s) used, and the images are processed to extract data for analysis. In one 

channel studies, these usually consist of a measure for the spot intensity and its local background, for each spot on 

the array. In two-channel studies, this is available for both dyes. 

Measurements of microarrays may be biased by diverse effects such as efficiency of RNA extraction, 

reverse transcription, label incorporation, exposure, scanning, spot detection, etc. Furthermore, there are systematic 

effects due to characteristics of the array, such as effects of different probes (i.e. cDNAs or oligos), spotting effects, 

region effects, pin effects, etc... Gene activity estimation has an impact on subsequent data analysis and 

interpretation. If the gene‟s measured activity is not due to the activity itself, subsequent analysis using this 
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erroneous estimate will, of course, be misleading. Before analysis, the spot intensities are corrected for the 

background intensities. The background-corrected spot intensities reflect the abundance of the corresponding target 

genes in the samples. Although, there are many methods for the background correction, the results of their 

application are nor very similar. However, often the relation is not that of simple proportionality: the signals may be 

distorted in various ways. The process of correcting for bias prior to analysis is called normalization. The purpose is 

to promote uniformity within arrays and reproducibility between arrays. Normalization has profound effects on 

subsequent analysis, irrespective of the methodology used. Failure to normalize appropriately will generally lead to 

misleading conclusions. 

A multitude of cancer mRNA profiling studies has stratified certain types of cancer and defined gene sets 

that correlate with outcome. These studies have resulted in plans for prospective application of nucleic acid–based 

tests to select patients that do not need further therapy after their primary resection. However, the number of genes 

used to predict patient outcome or define tumor subtypes by RNA expression studies is variable, non-overlapping, 

and generally requires specialized technologies. Immunohistochemical studies can be done with many fewer 

markers, but suffer from the inherent flaw of subjective analysis and variable reproducibility. Thus, it would be ideal 

if the familiarity and streamlined nature of immunohistochemistry could be combined with the rigorously 

quantitative and highly specific properties of nucleic acid–based analysis to predict patient outcome. This can be 

achieved using genetic algorithm-based objective quantitative analysis of tissue microarrays toward the goal of 

discovery of a minimal number of markers with maximal prognostic or predictive value that can be applied to the 

conventional formalin-fixed, paraffin-embedded tissue section [1]. 

 

2. Background Correction 
 

The most common method of background correction is the subtraction method. The usual assumption of 

two-color microarray data; with red and green dyes; is that the background signals, Rb and Gb, are additive to the 

true signals, R and G on the raw intensity scale. Given the observed foreground intensities, Rf and Gf, this allows 

the true signal to be estimated by subtraction, such that R = Rf - Rb and G = Gf - Gb. Because of the very wide 

range of intensities, the corrected intensities are then used to form the log-ratio, M, and average log intensity, A for 

each spot.  

Most image analysis programs return „local‟ background intensities, obtained from the mean or median of 

the pixel intensity values surrounding each spot. Local background is arguably an unbiased estimate of the local 

non-specific signal, so subtracting it from the foreground intensity gives in principle an unbiased estimator of the 

true signal due to hybridization. Although well motivated, this traditional approach produces corrected intensities 

with undesirable statistical properties. It produces negative intensities whenever the background intensity is larger 

than the foreground intensity, leading to missing log-ratios, sometimes for a substantial proportion of probes on an 

array. Even when not missing, the log-ratios are highly variable for low intensity spots [2].  

In the Kooperberg‟s method, a Bayes model is used to solve the problem with negative background 

corrected spots. Relying on the prior knowledge that the true spot intensity should be non-negative, the posterior 

distribution of the true spot intensity is calculated. Thereby not only negative spots, but also spots with intensities 

slightly above background, are estimated more accurately .This model involving a convolution of normal 

distributions to background, adjusts the signal from each spot. Observed foreground and background mean 

intensities and their standard deviations, along with the number of foreground and background pixels for each spot 

in a given channel are used in this model. Numerical integration is applied to obtain the expected value of the true 

signal in each channel for each spot [3].  

A simpler strategy to avoid negative intensities is suggested by Edwards (2003), who adjusts the 

foreground intensities by subtracting the background when the difference between the foreground and background is 

larger than a small threshold value. When the difference is less than the threshold, subtraction is replaced by a 

smooth monotonic function. This method is applied with local median background estimates from Genepix.  
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The normexp method is based on the same normal plus exponential convolution model. This model has 

been used to background correct Affymetrix data as part of the popular RMA (Robust Multi-array Analysis) 

algorithm [4]. Where, RMA summarizes probe intensities for each probe set, using an effective expression measure 

motivated by a log scale linear additive model. Two changes have been made to the method for use with two-color 

arrays. First, the convolution model is fitted to the background subtracted signals for each channel separately. 

Second, the kernel density parameter estimation method used in RMA has been replaced by maximum-likelihood 

estimation, which is more sensitive to the true parameter values. In order to make maximum likelihood numerically 

feasible, a saddle-point approximation is used to simplify the mathematical form of the likelihood function. GenePix 

data was also corrected using this model [2].  

A slight variation on the normexp method is to add a small positive offset, k, to move the corrected 

intensities away from zero. This is a simple variance-stabilizing technique. It should reduce the variation of the low 

intensity M-values, since log2 [(R + k)/ (G + k)] will be close to 0 for R and G both small relative to k. The use of 

an offset is effective here because normexp produces corrected intensities which are positive but may be close to 

zero [2].  

The variance stabilization method (VSN) of Huber et al. (2002) [5] calibrates the data from each channel 

between arrays and uses a generalized arcsinh transformation of the data instead of the logarithm. The arcsinh 

function is defined for negative values, which ensures negative corrected signals can be handled. At high intensities, 

the arcsinh transform is equivalent to the regular log-ratio, whereas at low intensities it is close to the difference 

between the transformed intensities. As it transforms the data to have equal variance for all intensities, this 

transformation tries to adjust for effects that are often observed after background subtraction (i.e. high variance for 

lowly expressed genes). VSN can be used with cDNA or affymetrix data, and is advisable if unstable results with 

lowly expressed genes are observed.  

In contrast to the other presented methods, VSN operates on all the arrays together rather than for each 

array separately, and background corrects and normalizes the intensity data in one operation. For all other methods, 

a separate normalization step is required. 

 

3. Normalization 
 

Normalization is essential to compare the varying conditions of microarray experiments. While there are 

several methods for normalization, the choice of which method gives the best results really depends on local 

settings. During array spotting, different types of controls are used. This involves: negative controls, spiked in 

controls, and housekeeping genes. They enable to observe possible problems with the hybridizations. Whenever 

possible normalization on the majority of genes or using a sufficiently large number of non-differentially expressed 

controls are recommended to normalize the data. 

Transforming the microarray intensities using the logarithmic (log2) scale should roughly adjust the 

variance to be the same for all intensities. Differences of log2 intensities reflect the log2 ratios for comparison. 

Loess smoothing, also known as local regression is a technique for fitting smooth non-linear functions of a 

set of predictor variables to a continuous response variable. In the one-dimensional case, given a set of (x, y) values, 

the method fits a smooth function of x to y. In the two dimensional case, given a set of (x, y, z) values, it fits a 

smooth function of x, y to z. The procedure is quite complex [6]. A window of neighboring points about each x (or 

(x, y) in the two dimensional case) is defined. Within the window, robust regression techniques are applied, in which 

observations are down-weighted the further they are from x. Observations outside the window are excluded. A 

smoothing parameter α is used to size the window, by specifying the proportion of data to be included. The wider 

the window, the smoother the curve obtained. This type of normalization is most commonly used for two-color 

arrays.  

The concept of quantile is also used for normalization. It is based on the rationale behind the QQ-plots 

where the quantiles (i. e. the sorted measurements or values) of a data set X is plotted against the quantiles of 

another data set Y. If X and Y both come from the same distribution then their QQ-plot approximately shows a line 
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along the diagonal. However, in the case of probe level intensities the quantiles of two arrays usually do not lie on 

the diagonal even though their true underlying expression values are (or at least should be) identically distributed in 

replicate samples. One could argue that the respective distribution functions were transformed during the microarray 

experiment due to technical reasons. In order to regain a common distribution, one simply could project the 

quantiles onto the diagonal of the QQ-plot. This method is recommended to correct for relative intensity bias, on 

grounds of computational efficiency [6], [7]. 

 

4. Rank Aggregation 

 

Microarray cancer studies often attempt to identify genes related to a specific cancer. Their most common 

output is a list of genes ordered by corresponding p-values. Different studies, even the ones analyzing the same 

cancer type (i. e liver cancer), almost never produce identical gene lists. Meta-analysis of multiple microarray 

studies is difficult, especially if different experimental platforms have been used. Rank aggregation, however, avoids 

the issue of multiple experimental conditions by dealing with the final product: the ordered list of genes.  

The goal of rank aggregation is to combine these lists into the overall top-k gene list which hopefully 

would be more accurate than any individual list by itself. The genetic algorithm performs reasonably well for the 

aggregation problem but one has to be careful with the selection of important tuning parameters which control the 

rate of the learning process [1]. 

To cast the rank aggregation in the framework of an optimization problem, we first need to define the 

objective function. In this context, we would like to find a “super”-list which would be as “close” as possible to all 

individual ordered lists simultaneously. This is a natural requirement and the objective function, at least in its most 

abstract form, is very simple and intuitive. The idea is to find 
 which would minimize the total distance between 

 and Li‟s 
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Where   is a proposed ordered list of length k = |Li|, w i is the importance weight associated with list Li, d 

is a distance function and Li is the i
th

 ordered list. Selecting the appropriate distance function d to measure the 

“distance” between ordered lists is very important. One of the most popular ones is Spearman‟s footrule distance. 

The Spearman‟s footrule distance between Li and any ordered list   can be defined as 
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Where r
Li 

(A) is the rank of A in the list Li (1 means “best”) if A is within the top k, and be equal to k + 1, 

otherwise; r


(A) is defined likewise. 

 

5. Data Analysis 
 

The data set used in this study with preprocessing methods was downloaded from: 

http://www.ncbi.nlm.nih.gov/geo. The dataset includes twenty samples presenting thyroid papillary cancer tissues 

versus patient matched adjacent non-tumor thyroid tissues (GEO accession: GSE3950). The datasets for applying 

rank aggregation were downloaded from Stanford microarray database. It include a hundred and one samples 

representing hepatitis C, another ten normal liver tissue samples, and twenty seven liver cancer samples (primary 
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tumor) .The images have been analyzed using GenePix. GenePix results data are saved as GPR files in Axon Text 

File (ATF) format. A Results‟ file contains general information about image acquisition and analysis, as well as the 

data extracted from each individual feature.  

The above mentioned methods of background correction and normalization were implemented using R 

limma package and were applied on the first dataset representing thyroid papillary cancer tissues acquired by 

genepix from cDNA microarrays spotted by a total of 16200 genes. To assess the impact of preprocessing, we tried 

to extract the genes having higher differential expression. Gene selection was done using Fisher discriminate 

analysis (FDA).FDA is a simple algorithm applied mainly to reduce the dimensionality of the data thus outputting 

the most discriminate features (genes expression levels), according to the value of the Fisher factor j given by: 

 

21
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21 )(
)(



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Where, μ1, σ1 and μ2, σ2 are the means and variances of the two classes; normal and tumor sets respectively. 

It is clear from (3) that, J has a higher value when the feature value differs greatly in the two classes and vice versa. 

Using the cross validation approach, we trained and tested the system using the available dataset. The simple 

Euclidian distance classifier, as a supervised classifier was used to classify the data as belonging to normal or tumor 

tissue. 

The work in progress now, is to apply rank aggregation techniques to develop biomarkers for progression 

towards hepatocellular carcinoma in hepatitis C virus patients. The predicted biomarkers will be validated using 

classification techniques. In this perspective, we are using an R RankAggreg package available through CRAN 

(http://cran.r-project.org/web/packages/RankAggreg/) which provides two different algorithms for rank aggregation: 

the Cross-Entropy Monte Carlo algorithm (CE) and the Genetic algorithm (GA). Genetic algorithm is applied on the 

datasets mentioned earlier representing liver cancer, normal liver, and hepatitis C virus liver tissues. 

  

6. Results and Discussion 
 

When applying the six methods for background correction discussed earlier, we have obtained the MA-

plots which represent M versus A, where M are the differences between corresponding gene expression values and 

A are their averages. Figure 1 shows the MA-plots of one patient notated by N1. It is obvious that some background 

correction methods produce M-values which are much more variable than others, and this fanning is most apparent 

at low A-values. The striking feature of Figure 1 is that the background methods with less variable M-values also 

give compressed ranges of A-values. The most extreme is VSN, for which the A-values start at nearly 8 rather than 

at 0. 
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Figure1. MA-plots obtained using different background correction methods on the same patient sample N1: 

(a) subtraction, (b) normexp+offset, (c) kooperberg, (d) Edwards, (e) VSN and (f) normexp. 

 

Normalization methods may be broadly classified into methods which normalize the M-values for each 

array separately (within-array normalization) and methods which normalize intensities or log-ratios to be 

comparable across arrays (between-array normalization). An important issue to consider before normalizing between 

arrays is how background correction has been handled. For between-array normalization to be effective it is 

important to avoid missing values in log-ratios which might arise from negative or zero corrected intensities. Figure 

2 is a boxplot of the whole dataset including normal samples denoted by N1, N2,…..and tumor samples denoted by 

T1, T2,………It shows the result of  using „quantile‟ normalization after normexp+offset (offset=50) background 

correction. A feature which distinguishes most of the between-array normalization methods from within-array 

normalization is the focus on the individual red and green intensity values rather than merely on their log-ratios. 

These methods might therefore be called individual channel or separate channel normalization methods. Density plot 

displays smoothed empirical densities for the individual green and red channels on all the arrays. Without any 

normalization there is considerable variation between both channels and between arrays as illustrated in Figure 3. 

Applying quantile normalization to the A-values makes the distributions essentially the same across arrays as well as 

channels.
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Figure2. (a) box-plot of M-values of background-corrected dataset before quantile normalization, (b) box-plot 

of M-values of background-corrected dataset after quantile normalization. 

 

Figure3. Red and Green densities of the whole dataset: (a) before applying quantile normalization, (b) after 

applying quantile normalization

 

 

 

 

To assess the influence of preprocessing techniques on the analysis of differential gene expressions, 

applying all discussed methods for background correcting and normalization, we have imposed the resulting 

preprocessed data, represented in M-values for all samples, to diagnostic analysis. Before applying any of the 

preprocessing techniques, the classification attained 75% precision. The results of different combinations of 
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preprocessing methods, feature extraction, and classification techniques are shown in Table 1. By going through the 

different background correction techniques and exploring their results in previous studies [2], [8], [9]; they were 

ordered from low to high offset as: standard subtraction, kooperberg, Edwards, normexp, VSN, and normexp+offset. 

In this study and according to Figure 1, one can notice slight difference in ordering the methods from low to high 

offset: standard, normexp, Edward, normexp+offset, kooperberg, and VSN. The higher offsets show low 

classification results. The normexp, normexp+offset, and Edwards methods give high classification precision and 

VSN gives unexpectedly low precision at high intensities. It is also interesting to note that normexp+offset appears 

to give the best stabilization of the variance as a function of intensity even beating VSN, which is explicitly 

designed to stabilize the variance [2]. 

 

 

Table1. Performance of the preprocessing algorithms 

 

Background correction 

method 

Sensitivity Specificity Overall accuracy 

Standard 80% 75% 78% 

Normexp 80% 100% 90% 

Edwards 80% 90% 85% 

Normexp+offset 70% 100% 85% 

Kooperberg 90% 80% 85% 

VSN 80% 70% 75% 

 

7. Conclusion 
 

Gene expression analysis using cDNA microarrays is a multi-step procedure. Preprocessing is an important 

part of this procedure. Its purpose is to establish a single, potentially background corrected, and normalized 

expression value per gene on the same chip and from other chips of the experiment. Considering the output results 

most of the background correction methods used namely normexp, normexp+offset, Edwards, and Kooperberg 

noticeably improved the classification precision of the data. One should also take notice of the effectiveness of the 

quantile normalization in making the overall intensities distributions almost the same across all arrays.  

 

8. References 

 
[1] Vasyl Pihur, Susmita Datta and Somnath Datta: “RankAggreg, an R package for weighted rank 

aggregation”. BMC Bioinformatics , doi:10.1186/1471-2105-10-62, 2009. 

[2] Matthew E. Ritchie, Jeremy Silver, Alicia Oshlack, Melissa Holmes, Dileepa Diyagama, Andrew Holloway 

and Gordon K. Smyth: “A comparison of background correction methods for two colour microarrays”. 

Bioinformatics, Vol. 23 no. 20, pp. 2700– 2707, 2007. 

[3] Kooperberg C, Fazzio T, Delrow J, Tsukiyama T: “Improved background correction for spotted DNA 

microarrays”. Journal of Computational Biology, 9, pp. 55– 66, 2002.  

[4] Rafael A. Irizarry, Benjamin M. Bolstad, Francois Collin, Leslie M. Cope, Bridget Hobbs and Terence P. 

Speed: “Summaries of Affymetrix GeneChip probe level data”. Nucleic Acids Research, Vol. 31 no. 4 e15, 

2003.  

[5] Wolfgang Huber, Anja Von Hydebrecke, Holger Sultmann, Annemarie Poustka and Martin Vingron: 

“Variance stabilization applied to microarray data calibration and to the quantification of differential 

expression”. Bioinformatics, Vol. 18, pp. S96–S104, 2002.  



 

 Academy of Scientific Research and Technology  

27
th

 National Radio Science Conference 

Faculty of Electronic Engineering, Menoufia Univ., Menouf, Egypt 

16-18 March 2010 

 

 

  

 

 

[6] David Edwards: “Non-linear normalization and background correction in one-channel cDNA microarray 

studies”. Bioinformatics, Vol. 19 no. 7, pp. 825–833, 2003.  

[7] Johannes M. Freudenberg: “Comparison of background correction and normalization procedures for high-

density oligonucleotide microarrays”. Leipzig Bioinformatics Working Paper, Interdisciplinary Centre for 

Bioinformatics, No. 3, ISSN 1860 – 2746, 2005. 

[8] Anders Bengtsson and Henrik Bengtsson: “Microarray image analysis: background estimation using 

quantile and morphological filters”. BMC Bioinformatics, pp.7 – 96, 2006. 

[9] Wotao Yin, Terrence Chen, Xiang Sean Zhou and Amit Chakraborty: “Background correction for cDNA 

microarray images using the TV+L1 model.” Bioinformatics, 2005. 


