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ABSTRACT  

Several authors have shown that it is possible to reconstruct exactly a sparse signal from a fewer linear 

measurements, this method known as compressed sensing (CS). CS aim to reconstruct signals and images from 

significantly fewer measurements. With CS it‟s possible to make an accurate reconstruction from small number of 

samples (measurements).  Doppler ultrasound is an important technique for non-invasively detecting and 

measuring the velocity of moving structure, and particularly blood, within the body. Doppler ultrasound signal has 

been reconstructed with CS by using random sampling and non-uniform sampling via ℓ1-norm to generate 

Doppler sonogram. The result show that the recovered signals with non-uniform sampling are the same as the 

original signal, there is a loss of very small peaks, when random sampling used for recovering the signals, there is 

no significant different between the original signal and reconstructed one when we used more than 85% of the 

data, when less than 85% of the data used, the reconstructed signals and the original signal are different. The 

sonograms generated from the reconstructed signals with random and non-uniform sampling are same as the 

original one, but there are some losses in contrast. The error of the reconstructed images was calculated, the result 

shows that the error in the image decreased with increasing the number of samples. 

Keywords: compressed sensing; sparsity; Doppler ultrasound; 𝓁1-norm; non-uniform sampling; signal & image 

processing; random sampling. 

I. INTRODUCTION 

Signal acquisition and reconstruction are a heart of signal processing, and sampling theorems provide the 

bridge between the continuous and the discrete-time worlds. The traditional approach of reconstructing signals or 

images from measured data follows the well-known Shannon sampling theorem [1, 2, 3] which states that the 

sampling rate must be twice the highest frequency. Similarly, the fundamental theorem of linear algebra suggests 

that the number of collected samples (measurements) of a discrete finite-dimensional signal should be at least as 

large as its length to ensure reconstruction. This principle underlies most devices of current technology, such as 

analog to digital conversion, medical imaging or audio and video electronics. The novel theory of compressed 

sensing (CS) also known under the terminology of compressive sensing, compressive sampling or sparse recovery 

provides a fundamentally new approach to data acquisition which overcomes this common wisdom. It predicts 

that certain signals or images can be recovered from what was previously believed to be highly incomplete 

measurements (information). 

 Compressed sensing is a new sampling theory that uses a fixed set of linear measurements together with a 

non-linear recovery process. In the last few years, an alternative theory of compressive sampling has emerged 

which show that the super-resolved signals and images can be reconstructed from far less data/measurements than 

what is usually considered necessary [4, 5]. To work with a low number of measurements, compressed sensing 

theory requires the sensed signal to be sparse in a given orthogonal basis and the sensing vectors to be incoherent 

with this basis. The theory of compressed sensing has been proposed by Candes and Tao [6, 7] and Donoho [8, 9]. 

From general viewpoint, sparsity and, more generally, compressibility has played and continues to play a 

fundamental role in many fields of science. Sparsity leads to efficient estimations, efficient compression and 

dimensionality reduction and efficient modeling [5, 10]. There are two main components of compressed sensing; 

the sampling strategy and the reconstruction algorithm [11]. Sampling involves measuring a quantity at regular 

intervals; the concept of sampling in compressed sensing is much more general. Sampling in compressed sensing 

consists of making random linear projection of the signal into a low dimensional space. The difference between 

conventional sampling and compressed sensing is that the reconstruction operator is nonlinear. Essentially these 

select the significant for some sparse representation and then calculate the least square approximation using the 

associated basis functions. Many theories of compressed sensing [12, 13, 14] have concentrated on proving that 

the near best performance is possible by using either a convex relaxation that boils down to solving a linear or 
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quadratic program or greedy algorithms that interactively select the coefficients in a greedy way one at a time or 

in groups. 

In this paper we used a Doppler (dopplersignal1.mat) spectrum data to reconstruct the Doppler spectrum by 

using CS instead of using the traditional approach of signal or image reconstruction. The signal will be 

reconstructed by using two different methods, by using random (uniform) sampling and non-uniform sampling 

methods, then the Doppler spectrum signal reconstructed by using a few numbers of measurements instead of 

using all numbers of measurements 

II. PRINCIPLE OF DOPPLER ULTRASOUND 

The basis of Doppler ultrasonography is the fact that reflected / scattered ultrasonic waves from a moving 

interface will undergo a frequency shift the magnitude and the direction of which will provide information 

regarding the motion of this interface. Doppler instruments generate either continuous wave (CW) or pulsed wave 

(PW) ultrasound. Other type of ultrasound wave such as shear or surface waves are rarely applied in medical 

ultrasonic‟s. Shear wave is strongly attenuated in soft tissue. From the point of view of Doppler techniques, the 

parameters that describe a wave, i.e., amplitude, frequency and phase, are important. Frequency and phase are 

more important for Doppler methods since the velocity of blood is obtained from the shifts in frequency and 

changes in phase of scattered wave [15]. The Doppler ultrasound is an important technique for non-invasively 

detecting and measuring the velocity of the moving structures, and particularly blood within the body, and is 

becoming indispensable tool in many diagnostic situations. The developments in Doppler technology have led to a 

vast increase in the number of non-invasive blood velocity investigations carried out in all area of medicine.   

Nowadays there is a range of methods available for obtaining a pictorial record of a Doppler shift signal of, 

which is the best and most commonly used in real-time spectral analysis. The output of the spectral analyzer is 

usually represented as a sonograms, shown in figure 1. The horizontal axis represents time (t), the vertical axis 

frequency (f), and the intensity at co-ordinates (t, f). Both time-varying maximum frequency and mean frequency 

envelopes may also be extracted from the output of the analyzer. The maximum frequency envelope, or outline of 

the Doppler spectrum versus time, is the most commonly used parameter for Doppler waveform analysis, while 

the intensity-weighted mean frequency envelope is mostly common used for computing blood flow velocity and 

volumetric flow. 

 
Fig. 1: Doppler Sonograms, created by using Doppler data   

III. DOPPLER SPECTROGRAM  

The Doppler shift frequency is proportional to velocity, and under ideal uniform sampling conditions the 

power in a particular frequency band of the Doppler spectrum is proportional to the volume of blood moving with 

velocities that produce frequencies in that band, and therefore the power Doppler spectrum should have the same 

shape as velocity distribution plot for the flow in the vessel. The variation in the shape of the Doppler power 

spectrum as a function of time is usually presented in the form of sonograms shown in figure 1 [15, 16]. 

Spectral Doppler ultrasound velocimetry involves systematic analysis of the spectrum of frequencies that 

constitute the Doppler signal. The Doppler frequency shift signal represents the summation of multiple Doppler 

frequency shifts backscattered by millions of red blood cells, which represent a bout 45% of the volume of blood. 

The Doppler signal is processed in sequential steps, consisting of reception and amplification, demodulation and 

determination of directionality of flow, and spectral processing [15, 17, 18]. The returning signals are first 

received and amplified by radiofrequency (RF) receiving device. The amplified signals contain of Doppler-shifted 

frequencies and carrier frequency, extracting carrier frequency from Doppler-shifted frequencies known as 

demodulation. There are various methods of demodulation [15, 17]. Qadrature sampling is needed to differentiate 
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between flow toward the transducers (positive Doppler shift) and flow away from transducers (negative Doppler 

shift). The resulting signal consists of not only Doppler frequency shift, but also low-frequency/high-amplitude 

signal and high-frequency noise. Applying high-pass filter will eliminates the extrinsic low-frequency component 

of Doppler signals, and low-pass filter allows frequencies only below a certain threshold to pass, thereby 

removing any frequencies higher than that level. 

The above steps generate demodulated and filtered Doppler frequency shift signals display as a complex, the 

variation of amplitude over time shown in figure 2. Spectral analysis coverts this waveform to an orderly array of 

constituent frequencies and corresponding amplitudes of the signal. The amplitude approximately represents the 

number of scatterers traveling at a given speed and is known as the power of the spectrum. A full spectral 

processing that provides comprehensive information on both the frequency and its average power content is called 

then power-spectrum analysis. Various approaches are used for spectral processing [19, 20]. There are numbers of 

factors that distort the power spectra and which may limit the accuracy with which the velocity distribution in a 

vessel can be determined. Under ideal sampling conditions the Doppler spectrum would have same shape as 

histogram of the velocity distribution of the erythrocytes within the Doppler sample volume [15]. 

 
Fig. 2: demodulated Doppler signal prior to spectral processing.   

IV. SPARSITY  

Many natural signals have concise representation when expressed in a convenient basis. Roughly speaking one 

compresses the signal by simply keeping only the largest coefficients [21]. The problem of finding the sparsest 

representation or approximation in terms of the given dictionary turns out to be significantly harder than in the 

case of sparsity with respect to bases where the expansion coefficients are unique. Indeed, in [22, 23] it was 

shown that the general ℓ0-problem of finding the sparsest solution of undetermined system is „NP-hard‟. Greedy 

strategies such as Matching Pursuit algorithms [24] and ℓ1- minimization [8, 25, 26] were subsequently 

introduced as tractable alternatives. Sparsity is a fundamental modeling tool which permits coefficient 

fundamental signal processing [13]. 

V. COMPRESSED SENSING 

Sparse signal can be approximately reconstructed efficiently from small number of non-adaptive linear 

measurements. This process is known as compressed / compressive sensing (CS). CS is an emerging method in 

computational signal processing. CS was first proposed in literature of information theory and approximation 

theory [8, 26]. In CS a few numbers of measurements of the signal samples will be considered to reconstruct the 

signal. This signal can be reconstructed with a good accuracy from these measurements by a non-linear procedure. 

Many authors [6-9, 27, 28, 29, 30, 31] have proposed the idea of acquiring signal in a compressive form. K-space 

signal and closely approximate compressible signals can be exactly recovered with high probability via the ℓ1 

optimization [8, 26]. Convex optimization problem that conveniently reduces to a linear program known as basis 

pursuit [8, 12, 26] whose computational complexity is a bout O(N3). 

VI. SIGNAL RECOVERY  

Doppler (dopplersignal1) data from H. Torp experiment which has a length of 2032 were used to reconstruct 

Doppler spectrogram. MATLAB program was used to generate Doppler spectrum. All CS reconstructions were 

carried out in Matlab using the non-linear conjugate gradient methods. The Optimization based on ℓ1-norm was 

used to recover exactly the Doppler signal. Two different Matlab code (methods) were used. In the first method 

we used random (uniform) sampling to reconstruct the Doppler signal by using different size of data, between 

80% - 5% of all data to get the recovered signal, which is used to generate Doppler spectrogram. In the second 

method non-uniform sampling was used to get recovered Doppler signal by using same size of data as in the first 

method to generate Doppler spectrogram. The file dopplersignal1.mat was loaded into Matlab. iq represent Nx1 
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vector (Amplitudes), the transpose of iq is x 1xN vector and t is the time. The coefficient matrix A of size KxN 

generated from a random/non-uniform sparse model, the generated signal described as: f = A x, the noise z added 

to the signal. 

For each CS sparse signal we obtain the measurements f = A x and calculate estimated signal using ℓ1-norm. 

Different numbers of measurements (5%, 20%, 40%, 60%, 80%) were used to generate the recovered signal; 

above all these measurements all data (100%) were used, the recovered signals are shown in figures 3, 4, and 5. 

The reconstructed signals were used to generate Doppler spectrum‟s shown in figure 6 and 7, then the error from 

each reconstructed image was calculated, the results are shown in figures 8 and 9. 

VII. RESULT & DISCUSSION  

The recovered signals results were shown in figures 3 - 5. The signal with length of 2032 and various numbers 

of measurements (128, 400, 813, 1219, 1625 and 2032, represent 5%, 20%, 40%, 60%, 80%, and 100%) were 

used to recover the signal. From figures 2 and 4, there is a small difference between the original signal and the 

reconstructed signals, the difference decreases with increasing the number of samples. When 100 % of data were 

used, the reconstructed signal is the same as the original signal; the reconstructed signal by using all data is shown 

in figure 3. 
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Fig. 3: Exact reconstructed signal with non-uniform sampling by using all data 
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(a) 80 % 
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(b) 60 %  
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(c) 40 % 
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(d) 20 % 
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Fig. 4: Exact reconstructed signal with non-uniform sampling by using (a) 80 % of the data, (b) 60 % of the data, (c) 40 

% of the data, (d) 20 % of the data, (e) 5 % of the data.     

Figure 5 shows random sampling reconstructed signal, the result shows that there are big differences between 

the reconstructed signals and the original signal in figure 2. This variation decreased with increasing the number 

of samples. When all the data were used the resulting signal it is the same as the original signal. 
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(a) 80 % 
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(c) 40 % 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-4000

-2000

0

2000

Real & Imaginary Parts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-4000

-2000

0

2000

orignal signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1000

-500

0

500

Reconstructed Signal

 
(d) 20 % 
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Fig. 5: Exact reconstructed signal with random sampling by using (a) 80 % of the data, (b) 60 % of the data, (c) 40 % of 

the data, (d) 20 % of the data, (e) 5 % of the data. 

The original sonograms shown in figure 1 (shows the original Doppler sonograms); and the recovered 

sonograms signals were shown in figures 6 and 7 (by using non-uniform and random sampling). From the result 

we get exact recovery Doppler sonograms, but some loss of the low-contrast features in the uniform density. 

There is loss of image features for all the recovered signals (even by using all data for reconstruction). 
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(a) 80 % 

 
(b) 60 % 

 
(c) 40 % 

 
(d) 20 % 

 
(e) 5 % 

Fig. 6: Exact reconstructed sonograms images from recovered signals via ℓ1 norm with non-uniform sampling by using; 

(a) 80 % of the data, (b) 60 % of the data, (c) 40 % of the data, (d) 20 % of the data, (e) 5 % of the data. 

 
(a) 80 % 

 
(b) 60 % 

 
(c) 40 % 

 
(d) 20 % 

 
(e) 5 %  

Fig. 7: Exact reconstructed sonograms images from recovered signals via ℓ1 norm with random sampling by using; (a) 80 

% of the data, (b) 60 % of the data, (c) 40 % of the data (d) 20 % of the data, (e) 5 % of the data. 
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Figures 8 and 9 shows the error from the reconstructed images with non-uniform sampling and random 

sampling, respectively, the error is decreasing by increasing the number of samples; the reconstructed image with 

low number of samples has higher error. Comparing the error from non-uniform sampling and the error from 

random sampling, the error in the reconstructed sonograms by non-uniform sampling is less than the error of the 

reconstructed sonograms by random sampling.  

 
Fig. 8: Error of the reconstructed sonograms from non-uniform sampling by using; (a) 80 % of the data, (b) 40 % of the 

data, (c) 5 % of the data 

 
Fig. 9: Error of the reconstructed sonograms using random sampling by using; (a) 80 % of the data, (b) 40 % of the data, (c) 

5 % of the data 

VIII. CONCLUSION 

  The results show that the sampling is not the only way to acquire signals. When the signals of Doppler 

ultrasound spectrum are compressible or sparse it can be more efficient and streamlined to employ random 

(uniform) / non-uniform measurement and optimization to acquire only the measurement needed. The ability to 

reconstruct signals from very few measurements is important in signal processing. This paper describes the 

reconstruction of Doppler ultrasound signal by using CS measurement (random sampling and non-uniform 
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sampling). With CS it‟s possible to use a very few number of measurements to reconstruct the signal in case of 

using a full data to reconstruct the signal. Applying CS to Doppler ultrasound spectrum is successful and gives a 

good result; the reconstructed sonograms are exactly same as the original (from random and non-uniform 

sampling). When the error of the reconstructed sonograms was calculated, the error is very low when non-uniform 

sampling used and decreased with increasing the number of samples used for reconstruction in both random and 

non-uniform sampling. Much greater performance and quality of spectrogram are expected by improving the 

Matlab code (used to recover the spectrogram signal) and using different methods of CS. 
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