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ABSTRACT 
 
Functional magnetic resonance imaging (fMRI) is a technique that is sensitive to correlates of neuronal activity. The 
application of fMRI to measure functional connectivity of related brain regions across hemispheres (e.g. left and right 
motor cortices) has great potential for revealing fundamental physiological brain processes. Primarily, functional 
connectivity has been characterized by linear correlations in resting-state data, which may not provide a complete 
description of its temporal properties. In this work, we broaden the measure of functional connectivity to study not only 
linear correlations, but also those arising from deterministic, non-linear dynamics. Here the delta-epsilon approach is 
extended and applied to fMRI time series. The method of delays is used to reconstruct the joint system defined by a 
reference pixel and a candidate pixel. The crux of this technique relies on determining whether the candidate pixel 
provides additional information concerning the time evolution of the reference. As in many correlation-based 
connectivity studies, we fix the reference pixel. Every brain location is then used as a candidate pixel to estimate the 
spatial pattern of deterministic coupling with the reference. Our results indicate that measured connectivity is often 
emphasized in the motor cortex contra-lateral to the reference pixel, demonstrating the suitability of this approach for 
functional connectivity studies. In addition, discrepancies with traditional correlation analysis provide initial evidence 
for non-linear dynamical properties of resting-state fMRI data. Consequently, the non-linear characterization provided 
from our approach may provide a more complete description of the underlying physiology and brain function measured 
by this type of data. 
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1. INTRODUCTION 
 
Functional magnetic resonance imaging (fMRI) is a technique that is sensitive to correlates of neuronal activity, and is 
often used to obtain localized maps of brain function corresponding to a controlled psychological experiment. 
Connectivity studies, however, aim to understand the brain as a distributed system and are important for exploring brain 
function and physiology. Within functional neuroimaging, functional connectivity has been characterized through 
spatiotemporal correlations between spatially distinct regions of the brain1,2.  Biswal et al. used the low frequency (< 0.1 
Hz) component of baseline (or resting state) data to demonstrate that the left and right motor cortexes were correlated3. 
Lowe4 subsequently expanded this work, finding correlations to the motor cortex, visual cortex, and amygdala using 
slower acquisition rates. Here we will use the motor cortex as an example since it is convenient to study in terms of 
experimental ease and anatomic separation. 
 
Primarily, functional connectivity has been characterized by linear correlations in resting-state data, which may not 
provide a complete description of its temporal properties. In this work, we broaden the measure of functional 
connectivity to study not only linear correlations, but also more general deterministic coupling arising from both linear 
and non-linear dynamics. We are encouraged by the fact that the field of nonlinear dynamics has made large 
contributions to the characterization of many biologically derived signals such as EEG, ECG, and respiratory 
movement5-11. The goal of these studies is often to evaluate evidence for low dimensional chaotic behavior in distinction 
from a stochastic model. Commonly, this is done by evaluating the system in terms of predictability or invariant 
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features (e.g., correlation dimension or Lyapunov exponents)12. These approaches rely on reconstructing the dynamical 
system from multiple independent measures or, more commonly, from a single measured time series. Such studies are 
particularly challenging in fMRI since we typically work with relatively short and noisy time series. Furthermore, the 
computational load of these studies, the number of algorithmic free parameters, and the large quantity of spatial 
locations make traditional measures such as correlation dimension and Lyapunov exponents extremely challenging. 
Still, one recent study was successful in generating multivariate ensemble estimates of the correlation dimension across 
tasks of varying complexity13.  
 
Here, we examine the potential utility of a nonlinear dynamics technique in characterizing functional connectivity. We 
do so using a bivariate implementation of the delta-epsilon method11,12, which, in contrast to most nonlinear methods, 
has the conservative goal of obtaining evidence for determinism rather than a complete characterization of the 
underlying dynamical system. The general approach is to distinguish deterministically coupled resting state fluctuations 
from random fluctuations. Here, an extension of the delta-epsilon approach is applied to fMRI data to evaluate whether 
a time course of a candidate pixel provides additional information concerning the time evolution of a reference pixel 
time series. As in many correlation-based connectivity studies, a fixed reference pixel is used. Every brain location is 
then used as a candidate pixel to estimate the spatial pattern of deterministic coupling with the reference. 
 
An important consideration for this work is the issue of physiological noise in fMRI, which arises from cardiac 
pulsation, respiratory movements, and vasomotor activity. These noise contributions are important because their 
strength is often comparable to that of the BOLD response. Spectral analysis of fMRI time series has implicated 
respiratory and cardiac frequencies as the largest contributors to the signal, with complicated and spatially varying 
contributions14-16.  Hu et al.14 have proposed a retrospective technique in which cardiac and respiratory effects are 
recorded during the fMRI experiment and later linearly regressed out of the data. Biswal and Mitra have focused on 
frequency domain filtering techniques15,16. Somewhat more elusive has been the contribution by vasodilation. This 
effect seems to contribute power at the 0.1 Hz range15,16 however the strength and bandwidth is not consistent over 
space or time. Here we have not considered the delta-epsilon approach on physiologically corrected or otherwise 
corrected data. This is a complicated issue in nonlinear dynamics studies17. We do however begin to address the issue of 
physiological noise by using cardiac and respiration signals as embedding references in addition to jointly embedding 
these signals with a motor seed pixel. 
 

2. THEORY 
 
The delta-epsilon approach was developed to study non-linear dynamical systems from short, low SNR time series11,12, 
which are desirable properties for fMRI analysis. Here we use the bivariate formulation of the delta-epsilon technique11 
to examine deterministic coupling between a fixed time series and multiple “candidate” time series consisting of all 
measured brain locations. This technique relies on determining whether the candidate pixel provides additional 
information concerning the time evolution of the reference. We independently considered three signals as the fixed 
reference. Primarily we used a “seed” pixel from the motor cortex. This is analogous to conventional, correlation-based 
functional connectivity studies. In addition we examined cardiac and respiration signals as fixed. Further we have 
examined the multivariate embedding of seed, cardiac, and respiration as a reference to examine the joint system’s 
coupling to each candidate pixel time series. In the following subsections, we discuss the various components of the 
bivariate delta-epsilon technique, including generation of an appropriate image representation of results.  

2.1. Phase-space reconstruction 
The method of delays is used to reconstruct the joint system defined by a reference time series x(t) and a candidate pixel 
time series y(t). The joint phase space is, 
 

Q(t) = {x(t),x(t-τ),x(t-2τ),…,x(t-(m-1)τ),y(t),…,y(t-(n-1)τ)},    (1) 
 
where m and n are the respective embedding dimensions of x(t) and y(t), and the joint space has dimension m+n. Note 
that in this bivariate case (and in general multivariate extensions) this is a hybrid approach between pure reconstruction 
using delays and pure reconstruction using multiple independent measurements. See Cao18, Abraham19, Albano20 for 
different perspectives on the phase-space reconstruction problem. 
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2.2. Delta-epsilon calculation 
Within the phase space, the delta-epsilon method looks at pairs of times (pre-images) and their future states (images). 
As an example for m=n=2, we would consider the phase space points {x(ti),x(ti-τ),y(ti),y(ti-τ)} and {x(tj),x(tj-τ),y(tj),y(tj-
τ)} with their images x(ti+1) and x(tj+1) for times i and j respectively. If the system has deterministic properties, we 
would expect small distances between pre-images (δ) to result in small average distances between images (ε). 

2.3. Surrogate data and significance 
To obtain estimates of significance, we generate surrogate data by randomly permuting the y(t) contribution to the phase 
space (keeping coordinates together, but randomizing their temporal order). We obtain a statistic,  
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where ε*(r) and σ*(r) are average image distance and standard deviation of the surrogate data, respectively. As 
described by Kaplan12, we use a cumulative ε as the average image distances for δ < r. 
 

2.4. Bivariate mapping procedure 
For our application we fix x(t) and obtain S(r) estimates for every brain location. To display results as an image, the S(r) 
for each pixel must be reduced to a single statistic. We considered taking the mean and max of S(r), and found maps 
generated by calculating the mean. In addition, restricting consideration to rmin <  r  < rmax was found to be beneficial. 
 

3. METHODOLOGY 
 
The general goals of this study were to i) assess the appropriateness of the bivariate delta-epsilon method for resting 
state connectivity studies, ii) look for discrepancies between linear correlation methods and the delta-epsilon method, 
and iii) evaluate the contribution of physiologic noise to the bivariate delta-epsilon technique. Common to the 
methodologies examining each of these issues was that a fixed time series was jointly embedded with the time series of 
each individual brain pixel, giving a pixel-specific assessment of delta-epsilon coupling. In this case, the fixed time 
series was either a seed pixel from the data itself, or an external measurement of hear-beat or respiration. Seed pixels 
were chosen from a separate motor experiment performed during the same imaging session, as is commonly done in 
conventional cross-correlation based functional connectivity studies. 
 

3.1. Suitability for functional connectivity 
Two oblique, axial, EPI slices through the primary motor cortex were imaged. Resting state data were collected from a 
single subject for eight minutes on a 3T Siemens Magnetom Trio (TR/TE = 200/32 ms, voxel size=3.4×3.4×5 mm3). 
The subject then performed a sequential finger opposition task performing 20 s each of left-hand, right-hand, and rest. 
This series was repeated 4 times (for a total of 4 min.), using the same parameters image acquisition parameters. For the 
finger opposition data, a t-test of right hand vs. rest was performed to obtain a reference pixel. This location became the 
x(t) for the delta-epsilon method, which was performed on the resting state data using m=n=2, and τ set to 10 time 
samples, corresponding to the first minimum of the autocorrelation function of x(t). 
 

3.2. Discrepancies between linear correlation and delta-epsilon 
Resting state data consisted of nine axial, EPI slices, ranging from the top of the head to the base of the corpus callosum 
in a single subject on a 3T Siemens Magnetom Trio (TR/TE = 750/35 m, slice gap = 7.5 mm voxel size=3.4×3.4×5 
mm3), giving 1024 time measurements in 12.8 min. The slice showing the best motor activation pattern from a separate 
bimanual finger opposition task, was chosen for our study. A seed pixel was also obtained from the motor task. For the 
delta-epsilon method, the initial 10 images were discarded, m=n=2, τ = 1. 
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3.3. Contribution of physiologic noise 
Resting state data consisted of five axial, EPI slices, ranging from the top of the head to just above the corpus callosum 
on a 3T Siemens Trio (TR/TE = 750/35 ms, slice gap = 5 mm voxel size=3.4×3.4×5 mm3), giving 1120 time 
measurements in 14 min. The slice showing the best motor activation pattern from a separate bimanual finger 
opposition task, was chosen for our study. A seed pixel was also obtained from the motor task. For the delta-epsilon 
method, the initial 10 images were discarded, m=n=2, τ = 1. During the fMRI scanning session, the subjects’ 
respiratory and cardiac rhythms were recorded using a physiological monitoring unit (In Vivo Research, Orlando, FL) 
connected to a data acquisition board. In-house code sampled the physiological rhythms at a sampling rate of 200 Hz, 
triggered by the start of the MRI scans. This experiment was repeated in two subjects. Since the sampling time for the 
fMRI data is 750 ms (i.e., sampling frequency = 4/3 Hz), rapid heart rate and respiration will be present in an aliased 
form within the fMRI signals. To account for this aliasing effect, physiologic recordings were downsampled to the 
fMRI acquisition rate, without prior low-pass filtering14,15. 
 

4. RESULTS 
 
The right motor pixels from the finger opposition task are shown in Fig. 2(a). One of these pixels was chosen as the 
reference pixel, and the results of the delta-epsilon method in the resting task are also shown in Fig. 2(a). Fig. 2(b) 
shows S(r) for the seed pixel and from the delta-epsilon results in Fig. 2(a). Note that the delta-epsilon method was 
performed at every spatial location, but the left motor region (surrounding the reference pixel) has lower significance 
results than the right motor region (see Fig 2C). One explanation is the fact that the reference pixel, when combined 
with itself, adds no addition predictive information. It follows that pixels in its neighborhood may also exhibit 
similarities to the reference that they too contribute little extra information. 
 
Figure 3 shows an example of a pattern emerging from a delta-epsilon result where none is present in the corresponding 
correlation analysis. Unfortunately, physiological signals were not collected for these data. Looking at the power 
spectrum, however, illustrates a relatively flat spectrum, perhaps colored by physiology at 0.2 Hz. This is a prime 
example of data that appear to represent noise from the perspective of traditional linear analysis that nonetheless 
demonstrate deterministic properties. We want to avoid over-interpreting this result, though. Currently we are searching 
for a systematic means of discovering other such time series. 
 
Figures 4, 5, and 6 illustrate results for subject 1 in the study of physiological noise. In Fig. 4, the results show some 
similarity between seed pixel delta-epsilon and cross-correlation results. For the cardiac delta-epsilon result, few pixels 
show significance, but those that do tend to fall, plausibly, along the midline. No corresponding pattern is found for the 
cardiac correlation map. For respiration, the delta-epsilon pattern looks surprisingly similar to the seed pixel pattern. For 
the correlation map, pixels along the edges tend to be most affected. This correlation pattern corresponds well to results 
in the literature (e.g. Kruger21). The power spectra of each of the three reference time series are  shown in Fig. 5. All 
three have the greatest proportion of their power centered at 0.1 Hz or lower. Thus cardiac and respiration contributions 
for this subject are overlapping the low frequency spectral bands, which would normally be attributed to resting state 
connectivity. Finally Fig. 6 shows the result of jointly embedding the motor seed pixel, cardiac, and respiration as the 
delta-epsilon reference. The result looks very similar to the respiration map in Fig. 4, with perhaps the addition of the 
supplemental motor area in the center region. 
 
Figures 7, 8, and 9 correspond to Figs. 4, 5, and 6, but for subject 2. In this case the dominant frequencies for the down-
sampled physiologic signals are distinct from the motor seed pixel as well as from themselves (Fig. 8). There is also 
good correspondence between delta-epsilon maps and correlation maps in Fig. 7. Cardiac maps show a large amount of 
agreement, even though, correlation values are very low and delta-epsilon significances are reasonably high. For this 
subject, there seems to be little contribution from the respiration signal. The results for subject 2 differ from subject 1 in 
that the seed pixel map is relatively clean, while the respiration map is noisy with very low average significance levels. 
The joint embedding of seed and physiology, though, produces a noisy, low-significance map. It is surprising that this 
does not produce some combination of the stronger seed or cardiac maps as in subject 1. One explanation for this may 
be the delta-epsilon algorithm’s reliance on exceptional events (relying on close distances in the phase space); the 
inclusion of the apparently weak and noisy respiration information may increase distances in the phase space, 
decreasing our chance of observing such fine detail. This issue needs to be explored further. 

230     Proc. of SPIE Vol. 5369



 
One possible outcome of jointly embedding the seed pixel time series and physiological signals is that contra-lateral 
connectivity could be examined while simultaneously suppressing contributions from physiology. This is based on the 
observations in Fig. 2 that seed pixels tend to have lower delta-epsilon results. Although we have obtained very 
different results in Figs. 6 and 9, both seem to illustrate that this joint embedding approach, by itself is not well suited to 
improving measures of resting state connectivity (by suppressing physiologic artifacts). For this to work, the 
contribution of these effects would have to be spatially and temporally uniform in their contribution to the pixel 
dynamics. Our results, however, give encouraging evidence for using this as a tool to examine physiology and point to 
the feasibility of correcting for physiology based on nonlinear dynamics prediction techniques on a pixel-by-pixel basis. 
 
The results from subjects 1 and 2 indicate that there is, in general, a fair amount of similarity between correlation maps 
and delta-epsilon maps (using a motor seed pixel). The differences in the results, however, are the most intriguing 
aspect of this work in that they give evidence for the strengths and shortcomings of each approach. If a pixel is detected 
through correlation analysis, and not in delta-epsilon procedure, this could mean that SNR was too poor, too few time 
samples were acquired, the parameters leading to the joint embedding were sub-optimal, or that the surrogate data and 
statistical test were inappropriate or lacked power. In cases where pixels are found via delta-epsilon that are not 
explained by linear correlation, we have good candidates for pursuing further characterization in terms of non-linear 
dynamics. An example of this is illustrated in Fig. 3, where a structured map is produced by the delta-epsilon approach 
using a time series that, through spectral analysis and cross correlation techniques appears to be highly noisy. 
 

5. CONCLUSIONS 
 
A new approach to analyzing functional connectivity data based on nonlinear dynamical modeling is presented. The 
new method complements the conventional correlation analysis and provides an insight to aspects of the process that are 
valuable to better understanding of the underlying processes. Our results indicate that bilateral connectivity results can 
be obtained, often emphasizing the motor cortex contra-lateral to the reference pixel, demonstrating the appropriateness 
of this approach for functional connectivity studies. In addition, discrepancies with traditional correlation analysis 
provide initial evidence for non-linear dynamical properties of resting-state fMRI data. Thus the non-linear 
characterization provided from our approach may provide a more complete description of the underlying physiology 
and brain function measured by this type of data. Finally the bivariate delta-epsilon technique was able to show 
coupling between physiological signals and fMRI data. 
 
Further work is needed to examine several issues including the dependence on TR and number of samples, which affect 
SNR and experiment duration. We are also examining disciplined methods for constructing the joint, hybrid phase space 
in terms of τ and embedding dimensions. Further, it should be possible to avoid the use of surrogate data estimates for 
each candidate pixel by instead using the distribution of results from all brain locations. Finally more subjects, of 
various basal cardiac and respiration levels are needed to study physiological effects presented here. 
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Fig. 1. Pseudo code for bivariate delta-epsilon functional connectivity studies. 
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x=getSeedPixel();
foreach y=1:n_brainLoc {

phaseSpace=constructPS(x,y);
de = δ-ε(phaseSpace);
foreach i=1:N {

surrogatePS=surPhaseSpace(de);
s_de[i]= δ-ε(surrogatePS);

}
S=compare(de,s_de);
//(mean significance across radius)

deMap(brainLoc)=mean(S); 
}

Pseudocode

x=getSeedPixel();
foreach y=1:n_brainLoc {

phaseSpace=constructPS(x,y);
de = δ-ε(phaseSpace);
foreach i=1:N {

surrogatePS=surPhaseSpace(de);
s_de[i]= δ-ε(surrogatePS);

}
S=compare(de,s_de);
//(mean significance across radius)

deMap(brainLoc)=mean(S); 
}

Pseudocode

ε*(r) 
σ*(r)

average image distance
standard deviation of surrogate data
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Fig. 2. Demonstration of delta-epsilon and significance estimates from surrogate data. 

 
Fig. 3. Discrepancies between linear correlation and delta-epsilon. 
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Fig. 4. de and correlation results using seed pixel, downsampled cardiac data and downsampled respiration data. 

 
Fig. 5. Power spectral densities of seed pixel, and downsampled respiration and cardiac signals for Subject 1. 
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Fig. 6. Joint embedding of motor seed pixel and downsampled respiration and cardiac signals for Subject 1. 

 

 
Fig. 7. de and correlation results using seed pixel, downsampled cardiac data and downsampled respiration data. 
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Fig. 8. Power spectral densities of seed pixel, and downsampled respiration and cardiac signals for Subject 2. 

 

 
Fig. 9. Joint embedding of motor seed pixel and downsampled respiration and cardiac signals for Subject 2. 
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