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Abstract: Blood cells carry important information that can be used to represent a person’s current
state of health. The identification of different types of blood cells in a timely and precise manner is
essential to cutting the infection risks that people face on a daily basis. The BCNet is an artificial
intelligence (AI)-based deep learning (DL) framework that was proposed based on the capability
of transfer learning with a convolutional neural network to rapidly and automatically identify the
blood cells in an eight-class identification scenario: Basophil, Eosinophil, Erythroblast, Immature
Granulocytes, Lymphocyte, Monocyte, Neutrophil, and Platelet. For the purpose of establishing the
dependability and viability of BCNet, exhaustive experiments consisting of five-fold cross-validation
tests are carried out. Using the transfer learning strategy, we conducted in-depth comprehensive
experiments on the proposed BCNet’s architecture and test it with three optimizers of ADAM, RM-
Sprop (RMSP), and stochastic gradient descent (SGD). Meanwhile, the performance of the proposed
BCNet is directly compared using the same dataset with the state-of-the-art deep learning models of
DensNet, ResNet, Inception, and MobileNet. When employing the different optimizers, the BCNet
framework demonstrated better classification performance with ADAM and RMSP optimizers. The
best evaluation performance was achieved using the RMSP optimizer in terms of 98.51% accuracy
and 96.24% F1-score. Compared with the baseline model, the BCNet clearly improved the prediction
accuracy performance 1.94%, 3.33%, and 1.65% using the optimizers of ADAM, RMSP, and SGD,
respectively. The proposed BCNet model outperformed the AI models of DenseNet, ResNet, Incep-
tion, and MobileNet in terms of the testing time of a single blood cell image by 10.98, 4.26, 2.03, and
0.21 msec. In comparison to the most recent deep learning models, the BCNet model could be able to
generate encouraging outcomes. It is essential for the advancement of healthcare facilities to have
such a recognition rate improving the detection performance of the blood cells.

Diagnostics 2022, 12, 2815. https://doi.org/10.3390/diagnostics12112815 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12112815
https://doi.org/10.3390/diagnostics12112815
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-7509-9354
https://orcid.org/0000-0001-8304-9261
https://orcid.org/0000-0001-5307-9582
https://orcid.org/0000-0002-8133-5501
https://orcid.org/0000-0003-0608-6661
https://orcid.org/0000-0001-5957-1383
https://orcid.org/0000-0002-4457-4407
https://orcid.org/0000-0002-2166-3191
https://doi.org/10.3390/diagnostics12112815
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12112815?type=check_update&version=2


Diagnostics 2022, 12, 2815 2 of 17

Keywords: blood cell; new BCNet framework; deep transfer learning; multi-class identification;
verification and validation

1. Introduction

Blood cancer, lung cancer, breast cancer, and colon cancer are just a few of the many
disorders for which microscopic image analysis plays a crucial role in diagnosis and early
detection [1,2]. Leukemia is another term for cancer of the blood [3]. This malignancy
begins in the bone marrow and manifests as an abnormal number or shape of white blood
cells (leucocytes) in the blood [4–6]. In 2020, it was estimated that 19.3 million people
have been diagnosed with cancer (18.1 million without nonmelanoma skin cancer) and
that nearly 10 million people would lose their lives to the disease [7]. Indeed, cancer is
responsible for one out of every six deaths around the world, especially in developing
nations, where cancer accounts for a staggering 70% of all fatalities [8]. It is anticipated that
there will be 1,918,030 new cancer cases and 609,360 cancer-related fatalities in the United
States in the year 2022. Out of these deaths, about 350 each day will be attributable to lung
cancer, which is the leading cause of cancer-related mortality. The Cancer Statistics Center
predicts that there will be 60,650 new cases of acute leukemia and 24,000 deaths from the
disease in 2022, with an incidence rate of 14.2 per 100,000 people and a mortality rate of
6.1 per 100,000 people over that time period [9]. Leukemia is a potentially fatal disease
that can be slowed or stopped with early treatment. As a result, the prompt diagnosis
and treatment of Leukemia is urgently required [10,11]. Hematological diagnosis relies
heavily on microscopic examination and the cell classification of blood [12,13]. Diagnosis
of hematological malignancies such as Acute Myeloid Leukemia (AML) begins with a
morphological analysis of leukocytes either from peripheral blood or the bone marrow [14]
Cytomorphology is especially important in the standard French-American-British (FAB)
categorization of acute myeloid leukemias [15]. The cytomorphological analysis of leuko-
cytes is a standard aspect of hematological diagnostic workup that has so far resisted
automation and is typically carried out by educated human professionals. Because of
the high degree of intra/inter-observer variation that is difficult to account for and the
scarcity of appropriately qualified experts, cytomorphological classification is a laborious
and time-consuming process [8].

Medical experts rely on the medical imaging modalities such as computed tomography
(CT), microscopic blood smear images, Magnetic Resonance Imaging (MRI), X-ray, and
ultrasound (US) to diagnose health challenges and assign treatment prescriptions [16,17].
Researchers and developers are able to deliver smart solutions for medical imaging di-
agnoses thanks to the AI-based potential functionalities of machine learning and deep
learning technologies [18–23]. Recently, several smart Computer-Aided Diagnosis (CAD)
models have been created to handle automatic medical diagnosis purposes. This is to
support the medical staff in performing a fast and accurate examination and diagnosis
results, especially during the epidemic or pandemic health situation. The haematologi-
cal examinations are a daily routine in any hospital or medical centre. The role of deep
learning CAD system is important in terms of automatically identifying the variety of the
patient’s haematological conditions with blood cancer or leukaemia. The microscopic blood
smear imagining technique is used for diagnosing leukemia by analyzing and identifying
the different blood cells [24]. In the pathology lab assessments, white blood cells’ (WBC)
classification and identification subclasses is attained. In addition, the lab examination of
leukocytes includes monocytes, lymphocytes, neutrophils, basophils, and eosinophils. To
identify the different types of blood cells in a rapid way and fulfil the physician’s require-
ments is a big challenge. Thus, AI technologies should interact and contribute by providing
smart examination solutions without user intervention. The need of AI smart solutions
motivates us to develop a novel schema of the CAD system based on the new BCNet deep
learning model.
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Recently, various investigations on blood cell classification using ML and Deep Learn-
ing have been carried out [3–6,25–28].There are a number of different optimization algo-
rithms that may be used for training deep neural networks, and the one that is chosen
can have an effect on how well the DL model functions. Many hyper-parameters can be
adjusted to improve the neural network’s performance. Every one of these factors affects
network speed in some way, but not all do so to the same extent. How well the algorithm
converges to a solution, or whether it explodes, could depend on the optimizer that has
been selected. Among the available optimizers are ADAM, RMSP, and SGDM. However,
the great majority of recent image classification efforts using the DL approach have relied
on the ADAM optimizer. To the best of our knowledge, no prior research has investigated
the impact of competing optimizers on DL’s efficacy. The main contributions of this study
are briefly summarized here:

• A deep learning schema of the CAD system based on the newly deep learning BCNet
is proposed in order to identify multiclass blood cells rapidly and automatically.

• The multiple class identification task is conducted in terms of improving the overall
classification performance.

• A comprehensive evaluation experiment is conducted to investigate the reliability and
feasibility of the proposed BCNet using multiple optimizers and different state-of-the-
art deep learning models such as DensNet, ResNet, Inception, and MobileNet.

The rest of the paper is organized in the following manner. Section 2 introduces the survey
of the latest related works. Section 3 explains in detail the technical schema of the proposed
BCNet. The assessment performance results are explained and discussed in Sections 4 and 5,
respectively. The findings of this study are discussed in the conclusion section.

2. Related Works

Several artificial intelligence models have been employed for over two decades to
recognize the different types of blood cells. Red blood cells (RBCs), platelets (PRBCs), and
white blood cells (WBCs) are the three basic types of blood cells; all three play important
roles in the human immune response [29–31].

Medical professionals can benefit from the use of ML and DL methods for WBC catego-
rization because it requires less work on their part and yields faster, more accurate results.
Variations in the ratio of neutrophils, eosinophils, basophils, monocytes, and lymphocytes
between healthy and diseased patients are readily apparent and play a significant role in
diagnosis [32]. The combinatory approach of machine learning and the deep learning-based
approach for the classification of WBC images were able to achieve 97.57% accuracy [33].
Changhun et al. proposed a W-Net model in a combination of CNN with RNN with DC-
GANs for image synthesizing later used for WBC classification, and attained an accuracy of
97% for a 5 class dataset [34]. César Cheuque et al. proposed the MLCNN detection of white
blood cell Faster RCNN used to extract Region of interest later with Mobilenet based model
is used to train the classification framework gained performance accuracy of 98.4% [35]. In
continuation Next BCNet [36] to address the blood cell classification for three classes via
transfer learning approach with ResNet18 as backbone model for learning and noted 96.78%
accuracy. A deep learning based AI framework artificial intelligence-based microscopy
image classifier for blood cell classification is proposed with transfer learning methods and
realized an accuracy of 98.6% [37]. Furthermore, Acevedo et al. in [32] used the HPBC
dataset to build their deep learning framework for classification of blood cells. Classifying
different types of blood cells is an important activity that aids hematologists in making
intelligent treatment decisions. Using the BCCD datasets, which are four-class datasets,
Liang et al. presented a combination of RNN and CNN models to classify blood cells. These
models included Inception-v3, ResNet-50, and Xception networks, and were then merged
with an LSTM block to achieve the classification [38]. A transfer learning strategy was
proposed by Acevedo et al. with the purpose of automating the classification of blood cells.
They have utilized the VGG-16 and Inception-V3 as feature extractors in conjunction with
the SVM and SoftMax as classifiers for the eight different types of balanced and imbalanced
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human peripheral blood cells (HPBC). They obtained the data using the CellaVision equip-
ment, and they determined that the classification accuracy was 96.2% [32]. For the purpose
of classifying WBC, Almezhghwi et al. have implemented several distinct kinds of Deep
CNN models, including VGG, ResNet, and DenseNet, on the datasets provided by LSIC.
Neutrophils, eosinophils, lymphocytes, monocytes, and basophils are the several types of
white blood cells that make up the WBC. Data augmentation is accomplished by the utiliza-
tion of transformation strategies, and in addition to that, they have implemented GANs for
the purpose of producing datasets. They enhanced their accuracy to 98.8% and attained
this result [39]. To categorize WBC [40], it is common practice to first segment the cells,
extract defining properties, and then classify them. Such a method relies heavily on proper
segmentation and has a poor degree of accuracy. Additionally, the precision of classification
models is affected by insufficient datasets or unbalanced classes for related samples when
using deep learning for medical diagnoses. To deal with such tasks, the authors in [40]
proposed using a Deep Convolutional Generative Adversarial Network (DC-GAN) or a
Residual neural network (ResNet). The experimental results show that the model has a
high accuracy (91.7%) when it comes to classifying WBC images. Inadequate data samples
and the uneven distribution of classes are two problems that this model addresses and
corrects. When compared to other network architectures, the proposed technique provides
the highest accuracy for classifying WBC images [40–42]. Wijesinghe et al. [43] have also
presented a new method for the classification of WBC images. K-means cluster analysis
using RGB color components and manual thresholding is used to determine the region of
interest. The manually cropped WBC images then classified them using a VGG-16-based
method. On custom data, they achieved a 97.4% detection rate and a 95.89% classification
rate, respectively. Classification, localization, and detection of Leukocytes were proposed by
Zhao et al. [44] Databases from Cellavision and Jiashan have been used for detection, while
ALL-IDB has been used for classification. Pipelining begins with WBC identification using
morphological methods, then moves on to color and granularity features for classification.
An SVM Classifier has been used to classify the data as either basophil or eosinophil. On the
other hand, a CNN/random forest hybrid model was used to classify the remaining classes,
which included neutrophils, lymphocytes, and monocytes. In the end, 92.8% accuracy was
achieved. Using DL models including ResNet, AlexNet, GoogLeNet, ZFNet, VGGNet,
DenseNet, and Cell3Net, Qin et al. [29] suggested a classification technique for leukocytes
with 40 classes. For all 40 courses, the achieved accuracy was 76.84 percent. In continuation,
Zheng et al. [45] have proposed a self-supervised approach to blood cell segmentation. To
extract the foreground from the background, they used an unsupervised technique based
on K-means clustering. After that, they utilized a supervised method to extract features
from RGB and HSV colors. Classification was then performed using the SVM on data
from CellaVision and the Jiangxi Tecom Science Corporation of China. Their error rates
were 3.18 and 0.69 for the CellaVision and Jiangxi Tecom Science Corporation and China
datasets, respectively. Sajjad et al. have introduced a mobile-cloud-based model to handle
segmentation followed by the classification of leukocytes into their five separate groups,
as explained in [46]. Blood cells were distinguished using K-means and morphological
procedures. In all, 1030 WBC blood smear samples were given by Hayatabad Medical
Center (HMC). Segmented regions are analyzed for texture, geometry, and statistical data,
then compared using different classifiers as EMC SVM. The segmentation strategy has a
nucleus accuracy of 95.7%, a cytoplasm accuracy of 91.3%, and a classification accuracy
of 98.6%.

3. Materials and Methods

In this section, we discuss the technical aspects of our work, including the dataset
definition, the proposed BCNet architecture, and the components that make up the BCNet.
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3.1. Dataset

A public dataset of human peripheral blood cells (also known as HPBC) is utilized
in the process of constructing and assessing various models, including the deep learning
BCNet. The blood cell images were created by Anna et al. using data that was acquired
from the medical clinic in Barcelona between the years 2015 and 2019. [32]. The data
repository consists a total of 17,092 images of blood cells of healthy individuals. The dataset
is publicly available via https://data.mendeley.com/datasets/snkd93bnjr/1 (accessed on
21 June 2022).

The blood cell images are extracted from the whole microscopic scan slides involving
eight subcategories, which are Basophil (BAS), Eosinophil (EOS), Erythroblast (ERY), Imma-
ture Granulocytes (IMM), Lymphocyte (LYM), Monocyte (MON), Neutrophil (NEU), and
Platelet (PLT). All blood cell images are in the RGB color space in the ‘jpg’ format and with
a size of 360 × 360 pixels. Each image was annotated by the pathologists of the hospital
clinic of Barcelona. Captured images were obtained from individuals without infections
hematologic or oncologic disease and during blood sample collection individuals have not
undergone any pharmacologic treatments. Some examples of blood cell images per class
are depicted in Figure 1.
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(HPBC) images. The images were randomly split per class into 70% (training), 10% (validation), and
20% (testing).

3.2. Pre-Processing

The initial step in the image classification procedure, depicted in Figure 3, involves
the pre-processing of blood cell images. It is used to improve the proposed BCNet’s overall
performance by cleaning and preparing the images. Bi-cubic interpolation is used to scale
all images to a final resolution of 224 × 224 pixels. Meanwhile, normalization of intensity
is performed so that all pixel values fall inside the range [0, 255]. The augmentation
strategy of the training set is performed to enlarge the dataset size and improve the overall
performances, as performed in our previous works [47,48].
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3.3. Data Preparation: Training, Validation, and Testing

To fine-tune and assess the proposed BCNet, the images per class are divided into three
categories: the training set (70%), validation set (10%), and testing set (20%). Figure 2 depicts
the number of blood cell images per category for each class. The trainable parameters such
as bias and weights of the proposed CNN model are optimized via the training process
by utilizing the training–validation sets. Subsequently, the overall performance of the
proposed deep learning model is assessed by an evaluation set. Furthermore, the proposed
BCNet model is evaluated through five-fold tests for training, validation, and evaluation
sets. To deliver a robust and feasible CAD system for the detection and classification of
HPBC data into eight classes, the k-fold cross-validation strategy plays an important role in
the case of lower datasets per each class.

3.4. The Proposed Deep Learning Framework

The BCNet has been developed to tackle the blood cell classification problem and to
improve the overall identification performance as shown in Figure 3. It can be extended
and generalized to be used for different domains such as biomedical imaging with different
modalities such as X-ray, MRI, CT, US, microscopic imaging, satellite imaging, etc. In the
training process, the deep learning BCNet model has been adopted based on different
key factors of the width and depth of the network that can be seen in the previous ones:
ResNet [49] and WideResNet [50]. Such factors are helpful for training the models and
attaining a higher identification performance. To build and develop the BCNet, we used the
EfficientNet model as a base network, which is adopted based on the fundamental blocks
of mobile inverted bottleneck convolution (MBConv) from MobileNet [51]. In [38], the
EfficientNet model proposed the fundamental relationship, which explains the width and
depth parameters’ efficacy for better classification accuracy. The architecture was proposed
by updating the base EfficientNetB0 with different optimizers. However, the EfficientNet
models were pre-trained on ImageNet datasets and outperformed other state-of-the-art
deep learning models in terms of Top-1 accuracy [52]. This means that the EfficientNetB0
could be the best baseline model since it has low computational complexity, scaling of depth
and width, and residual blocks with skip connections to improve the overall classification
accuracy [51,52].

3.5. BCNet Deep Learning Architecture

The proposed BCNet framework for the human blood cell classification is depicted
in Figure 3, while Figure 4 shows the detailed deep learning structures. The base back-
bone model for deep feature extraction was built based on the EfficientNet-B0 network
using seven MBConv blocks, convolution pooling, and fully connected layers [52]. In the
proposed BCNet architecture, we adopted and modified the deep learning architecture
by adding different layers to concatenate and figure out the extracted deep features and
concise them as an average based on the Global Average Pooling (GAP) layer for reducing
the occurrence of overfitting [53]. After that, two fully connected layers were added for
better class-wise prediction probabilities of all eight classes. The number of neurons per
dense layer were determined experimentally to fit our problem of eight blood cell classes
using 1024 and eight nodes, respectively. Lastly, the logistic regression function of SoftMax
was added to predict the classification scores for each class. Meanwhile, the convolution
layer with kernel size of 1 × 1 and number of channels of 1280 was used mainly to decrease
the derived deep feature map dimensionality [54]. The local response normalization (LRN)
layers were utilized for all MBConv blocks and convolutional layers leading to better predic-
tion performance of the proposed BCNet. However, it was prone to overfitting and lacked
the generalization ability of neural architectures. To overcome such a challenge, a dropout
strategy with a rate of 0.5 was assigned and used to handle overfitting and BCNet [55]. The
dropout rate was essentially used with all convolutional layers as well as dense layers to
drop some neural nodes and minimize the number of trainable parameters, reduce the
overfitting, and speed-up the learning process [56]. The technical overview of the BCNet
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architecture is summarized in detail, as demonstrated in Table 1. For training over 5-fold
tests, the same training settings and model parameters were used with training/validation
sets. The evaluation was achieved via the testing sets. We experimentally fine-tuned the AI
models to achieve the best accuracy based on the trail-based error approach [57,58]. All of
our experiments are conducted utilizing the various optimization functions available in
ADAM, RMSP, and SGDM.

Diagnostics 2022, 12, x FOR PEER REVIEW 8 of 19 
 

 

The proposed BCNet framework for the human blood cell classification is depicted 
in Figure 3, while Figure 4 shows the detailed deep learning structures. The base backbone 
model for deep feature extraction was built based on the EfficientNet-B0 network using 
seven MBConv blocks, convolution pooling, and fully connected layers [52]. In the pro-
posed BCNet architecture, we adopted and modified the deep learning architecture by 
adding different layers to concatenate and figure out the extracted deep features and con-
cise them as an average based on the Global Average Pooling (GAP) layer for reducing 
the occurrence of overfitting [53]. After that, two fully connected layers were added for 
better class-wise prediction probabilities of all eight classes. The number of neurons per 
dense layer were determined experimentally to fit our problem of eight blood cell classes 
using 1024 and eight nodes, respectively. Lastly, the logistic regression function of Soft-
Max was added to predict the classification scores for each class. Meanwhile, the convo-
lution layer with kernel size of 1 × 1 and number of channels of 1280 was used mainly to 
decrease the derived deep feature map dimensionality [54]. The local response normali-
zation (LRN) layers were utilized for all MBConv blocks and convolutional layers leading 
to better prediction performance of the proposed BCNet. However, it was prone to over-
fitting and lacked the generalization ability of neural architectures. To overcome such a 
challenge, a dropout strategy with a rate of 0.5 was assigned and used to handle overfit-
ting and BCNet [55]. The dropout rate was essentially used with all convolutional layers 
as well as dense layers to drop some neural nodes and minimize the number of trainable 
parameters, reduce the overfitting, and speed-up the learning process [56]. The technical 
overview of the BCNet architecture is summarized in detail, as demonstrated in Table 1. 
For training over 5-fold tests, the same training settings and model parameters were used 
with training/validation sets. The evaluation was achieved via the testing sets. We exper-
imentally fine-tuned the AI models to achieve the best accuracy based on the trail-based 
error approach [57,58]. All of our experiments are conducted utilizing the various optimi-
zation functions available in ADAM, RMSP, and SGDM. 

 
Figure 4. Feature extraction methodology of the proposed BCNet framework. 

Table 1. Technical Parameters of the proposed BCNet network. 

Stage Operatory Spatial Resolution 
Hi × Wi Channel, Ci Layer, Li 

Figure 4. Feature extraction methodology of the proposed BCNet framework.

Table 1. Technical Parameters of the proposed BCNet network.

Stage Operatory Spatial Resolution Hi × Wi Channel, Ci Layer, Li

1 Conv., k3 × 3 224 × 224 32 1
2 MBConv1, k3 × 3 112 × 112 16 1
3 MBConv6, k3 × 3 112 × 112 24 2
4 MBConv6, k3 × 3 56 × 56 40 2
5 MBConv6, k3 × 3 28 × 28 80 3
6 MBConv6, k3 × 3 14 × 14 112 3
7 MBConv6, k3 × 3 14 × 14 192 4
8 MBConv6, k3 × 3 7 × 7 320 1
9 Conv1 × 1, 7 × 7 1280 1
10 GAP
11 2 Dense Layers 8 nodes
12 SoftMax 8 nodes: Number of blood

cell classes.
Conv: Convolution neural network. MBConv: Mobile Inverted convolution blocks. FC: Fully connected. GAP:
Global average pooling.

3.6. Performance Metrics

The evaluation of the proposed BCNet is carried out for every fold test via a weighted
objective metrics strategy including overall accuracy (Az.), F1-score, recall or sensitivity
(SE), specificity (SP), Matthews correlation coefficient (MCC), positive predictive value
(PPV), and negative predictive value (NPV). The weighted-class strategy is adopted to
overcome the class imbalance per test set that contains unbalanced images from different
classes. A multi-class confusion matrix is used to derive the evaluation parameters. The
evaluation results shown in the result section are achieved over a 5-fold cross-validation
test to investigate the reliability and feasibility of the proposed BCNet. The definition of
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the evaluation metrics is summarized in Equations (1)–(7) [20,59–63]. True positive (TP),
true negative (TN), false positive (FP), and false negative (FN) are derived via a multi-class
confusion matrix for each fold test. Due to the misbalancing testing images, the weighted
evaluation strategy is used to derive all of the evaluation metrics [40].

Recall/Sensitivity (SE) =
TP

TP + FN
. (1)

Specificity (SP) =
TN

TN + FP
. (2)

F1 − score =
2·TP

2·TP + FP + FN
. (3)

Overall accuracy (Az.) =
TP + TN

TP + FN + TN + FP
. (4)

MCC =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (5)

Precision/PPV =
TP

TP + FP
. (6)

NPV =
TN

TN + FN
. (7)

4. Experimental Results

Here, we present and discuss the evaluation classification results obtained using a
5-fold test on the proposed BCNet system. Three optimizers (ADAM, RMSP, and SGDM)
are used to conduct comparison evaluations, and the results are recorded and analyzed.
Table 2 summarizes the results of the 5-fold test conducted with the cross-validation method
applied to the HPBC dataset. The proposed model is a deep learning BCNet model built
on the same DL framework, with specific training settings applied to improve the model’s
reliability and performance. The classification results with multiple optimizers are reported
in Table 1 over 5 folds.

Table 2. Evaluation classification results (%) of the proposed BCNet with different optimizers for
blood cell classification over 5-fold tests.

No. of Fold Optimizer SE SP Az. MCC F1-Score PPV NPV

Fold 1
ADAM 93.89 98.14 97.53 90.93 91.66 90.44 98.55
RMSP 95.53 98.9 98.47 95.11 95.61 95.8 98.84
SGD 93.12 98.53 97.83 92.55 93.36 93.89 98.47

Fold 2
ADAM 97.91 99.26 99.04 97.74 97.74 98.02 99.12
RMSP 98.3 99.26 99.13 98.15 98.3 98.33 99.22
SGD 93.12 98.53 97.83 92.55 93.36 93.89 98.47

Fold 3
ADAM 96.8 98.88 98.53 96.28 96.79 96.82 98.87
RMSP 95.09 98.64 98.13 94.37 95.1 95.21 98.63
SGD 96.6 98.85 98.49 96.05 96.59 96.61 98.84

Fold 4
ADAM 97.16 98.99 98.7 96.73 97.15 97.15 98.86
RMSP 97.1 98.96 98.67 96.66 97.09 97.12 98.96
SGD 96.63 98.93 98.57 96.13 96.62 96.63 98.88

Fold 5
ADAM 96.8 98.88 98.53 96.28 96.79 96.82 98.87
RMSP 95.09 98.64 98.13 94.37 95.1 95.21 98.63
SGD 96.6 98.85 98.49 96.05 96.59 96.61 98.84

Avg. (%)
ADAM 96.51 98.83 98.47 95.59 96.03 95.85 98.85
RMSP 96.22 98.88 98.51 95.73 96.24 96.33 98.86
SGD 95.21 98.74 98.24 94.67 95.30 95.53 98.70
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As presented in Table 2, the blood cell classification performance of the proposed BCNet
with the RMSP optimizer is the best with almost all fold tests. The average evaluation results
over the 5-fold test with all optimizers indicating the error rates are shown in Figure 5. It is
shown that the RMSP slightly outperforms other optimizers achieving an overall accuracy
of 98.51%, while the ADAM and SGD optimizers achieve 98.47% and 98.24%, respectively.
Meanwhile, the BCNet could achieve a promising performance with F1 scores of 96.03%,
96.24%, and 95.30% using ADAM, RMSP, and SGD optimizers, respectively. The evaluation
results in terms of the multiclass confusion matrix are depicted for the proposed BCNet
with each optimizer, as in the following figures.
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As it is shown in all confusion matrices, the low rate of false rates with different
classes is recorded. In the case of class Ig (see Figure 6a–c), the majority of the false rate
is recorded with the wrongly 48 classified cases as a Neutrophil class, while five and four
cases are classified as Monocytes and Basophil, respectively. In the case of the Neutrophil
class, the major classification mistake happened as a cross-similarity with the Ig class with
19 images. Such discussion has proven that both Ig and Neutrophil images have similarities
in figure, shape, or size, and these comparable nature features could negatively affect the
classification performance of any AI-based models. We can also notice that the performance
of BCNet with ADAM and RMSP optimizers is much closer to each other since the TP cases
are almost the same, whereas, the classification performance with SGD is slightly lower.
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5. Discussion

Deep learning based on convolutional networks has recently had excellent and suc-
cessful results in the analysis of medical images for many applications. In this work, we
have proposed an AI-based BCNet framework that aims to automatically, accurately, and
rapidly recognize multi-class human blood cells, and helps in decision-making for assisting
physicians and other medical staff. At the same time, it could assist in the detection of
infections based on various blood cell malignancies such as leukaemia, anaemia, etc. Exist-
ing studies provided insights on AI-based deep learning for predicting multiple diseases
from a specific medical image modality. In our proposed model, we studied a DL-based
model for blood cell classification, which consists of eight classes with a publicly available
dataset. The proposed model plays a critical role in our model which gets the best detection
performance compared with the latest machine and deep learning models. We have used
a transfer learning-based approach with the EffieNetB0 model by modifying this model
with three optimizers to get the best achievements. In fact, the BCNet is able to detect
and classify eight classes: Basophil, Eosinophil, Erythroblast, Ig, Lymphocyte, Monocyte,
Neutrophil, and Platelet. To the best of our knowledge, this is the highest number of classes
on which a BCNet-based model has been tested in contrast to the existing literature (they
used four or five classes). The results of our proposed BCNet, which are presented in
Tables 2 and 3, achieved a competitive overall classification accuracy of 98.51% with an
RMSP optimizer and 98.47% with an ADAM optimizer. This study concluded that BCNet
with different optimizers achieves promising identification performance with slightly better
achievements using the RMSP optimizer. All evaluation results are summarized in the
results section.

Table 3. Performance comparison of the proposed BCNet against the latest AI models with respect to
the number of the learning parameters and the computation costs.

AI Model Number of Trainable
Parameters (million)

Training Time Per
Epoch (sec.)

Testing Time/Image
(msec.)

DenseNet 201 18.10 286 18.13
ResNet 50 23.55 148 11.41

Inception V3 21.78 128 9.18
MobileNet V2 2.23 123 7.36

The proposed BCNet 4.017 122 7.15

5.1. Comparative Results of the BCNet and Other DL Models

For direct comparison using the same dataset, four deep learning models of DenseNet
201, ResNet50, Inception-V3, and Mobilenet-V2 are adopted and used. These AI models are
selected to perform such direct comparison due to their promising classification performance
in the research domain [21,37,47,58,59,64,65]. Such comparison is important to investigate
the reliability of the proposed model with the trusted ones. The comparison evaluation
results among the BCNet and other deep learning models is presented in Figure 7. This
result is recorded over 5-fold tests with the same training sets of all models. It is proven
that the proposed BCNet could successfully handle and classify all images properly and
outperform all other models in terms of all seven metrics.

To explain the rate of change among different models, the standard deviation was
measured to check the model diversity with respect to the proposed BCNet model. The
performance characteristics regarding this study for all AI models (i.e., DenseNet [1],
ResNet [5], Inception [9], and MobileNet [20]) based on the BCNet as a reference are shown
in Figure 8. It was clearly indicated that the ResNet had the closest accuracy performance
compared with our proposed model, since the prediction error was 0.010. On the other
hand, the ResNet showed the worst error deviation in terms PPV and F1-score. The closest
model with BCNet was the Inception model in terms of sensitivity and F1-score, with error
rates of 0.334 and 0.365, respectively. The DesNet model achieved the best match, with the
BCNet achieving the lowest specificity error deviation with 0.030.
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The performance comparison of the proposed BCNet against other AI models (i.e.,
DenseNet, ResNet, Inception, and MobileNet) was carried out in terms of a number of
trainable parameters, costs of training time consumption for each epoch, and testing
time for a single blood cell image, as shown in Table 3. The proposed BCNet model
outperformed the AI models of DenseNet, ResNet, Inception, and MobileNet in terms of
the testing time of a single blood cell image by 10.98, 4.26, 2.03, and 0.21 millisecond (msec),
respectively. Based on the comparison in Table 3, the heaviest model was the ResNet model,
while the MobileNet was comparatively lightweight compared with BCNet. The proposed
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BCNet model provided promising evaluation performance as well as outperforming the
state-of-the-art AI models without regard to the inferencing and testing time cost.

The comparison of the performance of various models with proposed BCNet is carried
out overall in terms of several trainable parameters, testing time for each image, and
costs of training time consumption for each epoch with models such as DenseNet, ResNet,
Inception, MobileNet and Proposed BCNet. The proposed model, with less training and
testing costs, has shown promising results.

5.2. Comparison between Proposed BCNet and Previously Published Models

A comparison between our proposed BCNet against the latest deep learning works
for blood cell classification is performed and summarized in Table 4. The proposed BCNet
could provide a promising and competitive evaluation result for multiple classes.

Table 4. Evaluation comparison results for blood cell identification via the proposed BCNet against
the latest deep learning works in the literature.

Reference Data Methods Az. (%)

Zhao et al., 2017 [44] Cell vision, ALL-IDB, Jiashan CNN, SVM, and random forest 92.80

Journal et al., 2021 [66] Collected, BCCD data set Two DCNN 95.17
(Precession)

Acevedo et al., 2019 [32] Private CNN + Transfer learning 96
Qin et al., 2018 [29] Private CNN 76.84
Ma et al., 2020 [40] BCCD DCGAN + Transfer learning 91.7

Baydilli and Atila 2020, [67] LISC Capsule network 96.86
Rui Liu et al., 2022 [37] HPBC Transfer Learning 96.83
The proposed BCNet HPBC images BCNet 98.51

5.3. Ablation Study

We performed this ablation study to show the proposed model capability in improving
the overall classification evaluation performance with/without the additional layers on the
base model. To achieve this study, the comparison evaluation results against the baseline
model were conducted and the derived evaluation results are reported in Table 5. We
retrained and evaluated the proposed model against its base model using three optimizers:
Adam, RMSP, and SGD. It was clearly shown that the prediction accuracy performance was
improved due to our modifications by 1.94%, 3.33%, and 1.65% in terms of using ADAM,
RMSP, and SGD optimizers, respectively. Similarly, the performance was improved in
terms of F1-scores by 1.14%, 2.13%, and 0.75% with respect to the ADAM, RMSP, and SGD
optimizers, respectively.

Table 5. The compression evaluation result of the ablation study.

AI Models SE SP Az. MCC F1-Score PPV NPV

Baseline Model
ADAM 95.8 97.88 96.53 93.38 94.89 94.82 96.88
RMSP 94.09 95.66 95.18 94.37 94.11 94.21 95.63
SGD 93.50 96.65 96.59 95.05 94.55 95.61 97.84

The Proposed BCNet
ADAM 96.51 98.83 98.47 95.59 96.03 95.85 98.85
RMSP 96.22 98.88 98.51 95.73 96.24 96.33 98.86
SGD 95.21 98.74 98.24 94.67 95.30 95.53 98.70

5.4. Limitations and Future Work

The most significant limitation of the AI-based medical application is due to the
scarcity of the annotated benchmark datasets since the labeling process is expensive and
it takes time for the experts to do it. In the future, we plan to check the capability of the
BCNet with other medical imaging such as magnetic resonance imaging (MRI), Ultrasound
(US), X-ray, and so on. Furthermore, we plan to continue improving the performance
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behavior and providing more interesting blood cell identification performance by applying
the newly impressive AI technologies such as explainable AI, federated learning, etc.

6. Conclusions

One of the most significant issues that the field of medicine is currently facing is the
classification of blood cells. This is especially true given the growing number of infection
cases and the difficulty in identifying them at an early stage. Within the scope of this work,
we have investigated the classification of blood cells by utilizing transfer deep learning,
BCNet. An exhaustive experimental investigation is carried out with several different
optimizers in order to assess the dependability and practicability of the suggested model.
At the same time, we examine the similarities and differences between a variety of transfer
learning models and various optimizers. The RMSP optimizer was used to produce the best
possible accuracy of 98.51%, which exceeds other deep learning models that are currently
available. When applied to the classification of blood cells into eight different classes,
our suggested method achieves a high level of accuracy. In order to demonstrate that the
transfer learning model with the RMSP activation function is an effective one, we compared
this study to a large number of other similar works.
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Abbreviations

AI Artificial Intelligence
BAS Basophils
CAD Computer-Aided Diagnosis
Conv Convolution
CNN Convolution Neural Network
DL Deep Learning
ERY Erythroblasts
EOS Eosinophils
FC Fully connected
GAP Global Average Pooling
HPBC Human Peripheral Blood Cells
LRN local response normalization
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LYM Lymphocytes
MBConv Mobile inverted bottleneck convolution
ML Machine Learning
NEU Neutrophils
MRI Magnetic Resonance Imaging
MON Monocytes
PLT Platelets
RBC Red Blood Cells
WBC White Blood Cells
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