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Abstract ~ The diagnostic value of the current two-
dimensional Doppler flow mapping techniques is lim-
ited by the fact that velocity values at different parts of
the image are only projections of the total three-
dimensional true-velocity vectors onto the image plane.
Since these vectors have different orientations, the
resulting values do not have the same reference and
hence cannot be compared for correct diagnosis. In
this work, we show that it is possible to obtain true-
velocity flow maps from coplanar observations. This
effectively eliminates any angle dependency in the
imaging process and provides a convenient way of rep-
resenting velocity as a two-dimensional map relative to
the same reference. Also, we establish the conditions
under which this estimation process is space invariant
to illustrate the practicality of the technique.

I. INTRODUCTION

Many authors have investigated the effect of transit
time and geometric broadening on the Doppler spectrum
(1]. In the generalized model, these two effects are related
and their contribution is essentially a function to the char-
acteristics of the ultrasound beam and the path of the mov-
ing particles in the field. According to this model, the
resultant Doppler spectrum depends on both the axial and
the lateral components of the flow. Using the generalized
Doppler model, the theory of estimating the transverse
component of a Doppler flow was developed for ultra-
sound fields in the Fraunhofer zone of the transducer and
in the focal plane of focussed transducers [2]. This theory
suggests that the lateral component of the flow can be
obtained by an equation very similar to that for the axial
flow by using the absolute bandwidth of the return signal
instead of the Doppler shift. Existing theoretical literature
assumed a single particle moving transversely in the field
and obtained the return spectrum by different methods
such as diffraction theory and geometrical transducer argu-

ment.. Some intuitive expressions have been given for the -

case- of oblique flow, but no rigorous formulas were
derived for this case.

Four problems arose during the above experiments
suggesting that the conditions needed to obtain accurate
transverse flow spectra are too strict and therefore of lim-
ited practical value. First, the flow path has to be exactly at
the focal plane of the focussed transducer or at the far zone
of unfocussed transducer. This means that we are unable to
scan the whole image plane in the first case, or that the
absolute bandwidth of the returned Doppler signal might
be too small for accurate measurement. Second, the abso-
lute Doppler bandwidth dependence on the range position
has not been resolved. Some authors suggested that the
absolute Doppler bandwidth is range invariant for the
focussed transducer arrangement and showed some experi-
mental results to prove that [3]. Third, the lateral position
dependence of the flow path was not considered theoreti-
cally. Fourth, the effect of the temporal characteristics of
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the aperture was not investigated. These issues must be
resolved to establish this technique.

II. GENERALIZED MODEL

Assume a line of random scatterers with a Poisson
impulses distribution to be moving in a general direction
in the imaging plane making an angle ¢ with the axial (2)
direction. Choose the lateral direction x as the direction of
the projection of the flow line on the transverse plane per-
pendicular to the z-axis at the depth of interest. Assume
that the scatterers are identical perfect Rayleigh scatterers
with scattering cross section o, and that they maintain a
uniform velocity v throughout the “effective period of
insonification. Let the field magnitude along the path of
scatterers be denoted as u(x, z), the temporal insonification
window be s(t), and the random scattering line process be
denoted as f(r). Then, the distribution of the scatterers
across the flow line as a function of the distance to the
observation point r=YxZ + 72 can be given as:

f(r;x,2) = o, i o-1) =0, i d(x~1,5in8,z-r1,cos8) (1)

If we consider only small variations of the depth z around
a given bias value z, the dependence of the lateral beam
profile can be considered as an exculsive function of x in
this domain. That is, u(x,z)=u(x, z,) in the region of interest
( We shall call u(x, z,) as u(x) for short). Then, the reflected
signal from the process of insonifying the above process
while moving at a uniform velocity v = (v,,v, )can be
expressed as: : o

8:(t) = _" ju(x)-f(x-v,t,_z—z,,+v,t)- t— z'cz°)dz dx(2)

Hence, if the magnitude of the velocity vector is much
smaller than the phase velocity of ultrasound in the
medium, the received signal can be given in the form:

1)) ~ J'f(r).u(rsina+v,t)-s(t+2%-2§°?ﬁ)m 3)

Define the functions u’(.) and s’(.) as: 4
v'(a) =u(-sin6(a +a-b)) C))

s;'(a) = s(a- 20080) o)

where: a = -v,t/sing and b = ct(l +2v,/c)/(2cos6). Then,
r(t) can be expressed as:

() = I f@ -w'(b-1)-5'(b~r) dr=1£(b) * [u'(b) . S'(b)] ©

where f(b) is a DPoisson process with parameter
A’ = Ac(1 + 2v,/c)/(2 cos 8). Notice that the form in (6) mod-
els the process as linear filtering of a Poisson process, with
filter impulse response defined by a multiplication of
dilated/compressed versions of the temporal and spatial



patterns of. the “insonification -field: Hence, the - average .
power spectrum of the returned signal can be expressed as:
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Here Py (o) is the'Doppler poWerr s»pectrum, A s th‘e‘lioris-;r

son model parameter which can be related to the Hemat-
ocrit value (ratio’of thé voluie of the formed elements to
the total volume of Blood), o, is the scattering cross. sec-

tion of the individual scatterers, v, and v, are the trans-

verse and axial components of the.flow, U(.) is the Fourier

Transform of the. effective transmit-receive aperture at the.
depth. of interest, S(.) is-the Fourier transform of the exci- .
tation signal, c is. the ultrasound velocity in the medium.
Notice that we have-assumed-here that S(») is.a bandpass .

signal and that the bandwidth of U to be small enough to
make the.convolution signal a bandpass signal to.climinate
adcterm. - . : ~ )

Some special cases of interest canbe easily derived -

from the: above formula. ‘For example; the classical

Doppler formula-can be obtained from the above form by -
using a constant for u(.) and assuming s(.) to-be a narrow--

band signal. Also, the formula obtained in [2] for the trans-
verse velocity estimation can be obtained by assuming a

‘narrowband s(.) and a.zero axial velocity: More impor-

tantly, this formula suggests that the use of wideband func-
tions for both.s(.). and u(.) should be looked at more-
closely. As can be seen from the formula, the result of a
steady-flow in any given direction will be a bandwidth

broadening which is directly proportional to the magnitude -

of the flow. This broadening is not only a function of the
transverse Velocity from-the spatial beam pattern effect

alone,. but also of the axial velocity from the- temporal
excitation. Hence, we can directly measure the bandwidth_

for two (or more) different coplanar apertures and solve
algebraically for both flow components. This can be done
by using different rings-of an annular array for example.
Table.I lists. the different possibilities of doing velocity
magnitude measurements. ' R

Table.I ‘Theoretical velocity estimation Taethods
:s(Yual) | WB/WB QB/WB NB/NB
Measurement . BW BW&FS | .- FS
F Min.Req. Apertures | - -2 EE T 7

Here WB denotes wideband, NB denotes narrowband, BW

denotes bandwidth and FS denotes frequency shift:: Notice.

that for circularly symmetric apertures, the magnitude of
the full-length velocity ‘véctor can be obtained in theory by
estimating only its two components v, and v, from the
return signal. :

III. SPACE-INVARIANCE CONDITIONS : - -

A potential problem with the above suggested meth-
ods is that the spatial beam pattern is a function of range in
general. Also, the derivation. assumed that the line of scat-
terers pass exactly through the origin of the range plane of
interest. Any range or azimuth shifts could in general lead
to a completely different spatial beam pattern u(.) in (7)
and hence to different estimation process. This, if true, can

greatly hinder the practical use of the techinique. In the fol-
fowing;- we shall “dérive the‘conditions under-which the*

measurements aré range and azimiith' shift-invariant and

o
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hence the process can be of practical value. -

» _Given .that the wave propagation under Fresnel
approximation can be represented by a linear system with
a range-dependent space transfer function of infinite sup-
port [4], it can be shown that an aperture with finite-
support angular spectrum can only propagate to another
with the same support. Hence the absolute Doppler band-,
width remain finite and the same. On-the other hand, if the
field does not have this property, the-absolute bandwidth is -
infinite and any other definition of the bandwidth is clearly
range-dependent “following the space transfer function.
Hence; under Fresnel propagation conditions, the absolute
bandwidth of® the returned Dopplér spectrum -is range--
invariant if and only if there exist a depth ¢ at which the™
angular spectrum of the ultrasound field perpendicular to-
the ‘direction of wave propagation has a compact:support: ™
‘We shall call the beams which satisfy this condition com-
pact ‘angulat spectrum beams (CASBs). Note that for any
CASB, the Fourier transform’ of any laterally-shifted-slice
of the field at any depth is the projection of the the coin-
pact angular spectrum at that depth multiplied by a linear
phase term onto the same direction defined by the angle of -~
the slice. This means that we obtain exactly the same
absolute bandwidth as the original function only for circu-
larly symmetric apertures since asymmetrical functions
give different projections at different angles.

- Note also that the above condition can be met in"a
variety of ways. For example, CASB can be produced by
placing the transducer at a focal length distance in front of -
a thin lens [4]: Also, they can be produced by using annu-
lar arrays ‘or two-dimensional arrays by proper choice: of
their” excitation. It should be’ noted that the-above condi-
tions are different from the result in [3] ‘which-was based
on ‘the ‘conventional ‘transducer-against-lens configuration -
or far field. Moreover, we can 'show-that the far field of an "
unfocussed transducer can be shown to be range-varying
[4].. These -situations have extremely rapid -oscillating: -
quadratic phase terms in their spatial expressions, which-
translate- to “infinite ‘angular spectrumthat has a strong -
range-dependence. ’ B

, ' IV. CONCLUSIONS a0
We have derived a closed form éxpression for the power -
spectrum’ of the return signal from a generalized flow
direction, temporal excitation and ‘spatial field pattern.
Based on this model, the different strategies of: velocity *
estimation were derived. We have also established the con-
ditions. .under which the . estimation process is- space-
invariant, which can be readily met using.-the -existing -
transducer arrangements. This shows the value and practi- .
cality of those techniques for direct clinical use under
these conditions.. - R
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