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ABSTRACT

We present a novel approach for speckle reduction and
coherence enhancement of the ultrasound images. The algorithm
maximally low-pass filter those parts of the image which
correspond to fully developed speckle, while substantially
preserving information associated with resolved-object structure.
The proposed algorithm is based on coherent anisotropic
diffusion with an efficient discretization scheme that could be
used as a preprocessing step for online visualization of
ultrasound images even when it is implemented on a PC based
system. It is shown experimentally that this technique produced
superior results when compared to results obtained from similar
methods.

Keywords- Nonlinear anisotropic diffusion, ultrasound image,
speckle reduction, coherence enhancement.

1. INTRODUCTION

Noise and artifacts can cause signal and image degradations for
many medical imaging modalities. Different image modalities
exhibit distinct types of degradation. Radiographs often exhibit
low contrast while images formed with coherent energy, such as
ultrasound, suffer from speckle noise.

The noninvasive nature, low cost, portability, and real-
time image formation make ultrasound imaging an attractive tool
for medical diagnosis. One of the limitations of ultrasound
images is poor image quality affected by speckle noise. Speckle
reduction remains a difficult problem due to the lack of reliable
models to estimate noise.

Image degradation can have a significant impact on
image quality and thus affect human interpretation and the
accuracy of computer-assisted methods. Poor image quality often
makes feature extraction, analysis, recognition, and quantitative
measurements problematic and unreliable. The denoising and
feature enhancement developed in this study may help to
improve the accuracy and reliability of image processing
algorithms targeting both quantitative and qualitative problems.
It is now agreed by many authors that it would be desirable to
remove, or reduce the speckle in pulse-echo images, since its
presence degrades the apparent resolution in the image to a point
below the diffraction-predicted value and it interferes with the
visual assessment of small differences in mean gray level or
texture.
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A number of methods have been suggested for
achieving this, most of methods involving temporal averaging,
median filtering, maximum amplitude writing (temporal
dilation), adaptive speckle reduction (ASR), Wiener filtering,
and wavelet shrinkage. Temporal averaging and multi-frame
methods try to increase SNR by generating multiple uncorrelated
images that are summed incoherently to reduce speckle. These
approaches suffer from two drawbacks. First, to produce
uncorrelated images the transducer has to be translated at least
by about half its width muitiplied by the number of the generated
frames. Second, temporal averaging based on transducer
movement destroys small details such as small vessels, and
texture patterns that will be inevitably blurred. On the other

hand, Adaptive speckle unsharp filter [2][6] depends on SNR to

permit a variant degree of smoothing according to the extent of
the speckle pattern from the fully formed speckle (FFS). This
approach works well when applied on the uncompressed
backscattered envelope signal but greatly suffer from inaccuracy
with the log-compressed one. Besides, Wavelet shrinkage
method seems to be applicable only off-line. The algorithms
above do not seem to have a coherence enhancing criteria.

We describe a new method by which ultrasound pulse-
echo image be smoothed to suppress the FFS, while substantially
preserving the image component corresponding to resolved (or
partially resolved) object structure. This method is based on the
nonlinear diffusion model adapted to remove the compressed
speckle pattern form the sticks of the convex array B-mode
ultrasound images. The choice of sticks instead of the formed
image is motivated by two reasons; First, it is clearly more
accurate since the actual scan is rather in radial coordinates than
in Cartesian coordinates. Second, it is nearly six times as fast as
when it is applied on the whole formed image. Besides, the
model allows, due to its anisotropy, coherent structure
enhancement.

The paper is organized as follows;, Section two
presents a review of ultrasound speckle properties and the effect
of compression while a summary on nonlinear diffusion model is
described in the section two. System model is detailed in section
three. Section four presents experimental results both on
phantoms and actual clinical images. Section five includes the
discussion as long as the final conclusion.



2. SPECKLE MODEL
2.1 Medical ultrasound speckle pattern

The nature of speckle pattern depends mainly on the number of
scatterers per resolution cell or Scatterer Number Density (SND)
and their spatial distribution and the characteristics of the
imaging system itself it can be divided into three main classes:

(a) The fully formed speckle pattemn occurs when many fine
randomly distributed scattering sites exist within the resolution
cell of the imaging system (SND > 10) in which the amplitude of
the backscattered signal can be modeled as a Rayleigh
distributed random variable with a constant SNR of 1.92. Under
such conditions the speckle pattern represents a signature of the

imaging instrument [2]. Blood cells are a typical example.

(b) The second class of tissue scatterers is nonrandomly
distributed with long-range order [1]. Examples of this type are

the lobules in liver parenchyma. It contributes a coherent or
specular backscattered intensity that is itself spatially variant.
The pattern is associated with an the effective number of
scatterers is finite (SND < 10). This situation is modeled by K
distribution and is associated with (SNR < 1.92) [6].

(c) The third class occurs when a spatially invariant coherent
structure is present within the random scatterer region such as

organ surfaces and blood vessels [1]. The probability density

function (PDF) of the backscattered signals becomes Rician
distribution. This class is associated with (SNR > 1.92) [6].

From this summary we discover that the coherence
phenomena make SNR an ambiguous feature and cannot be used
alone. The deviation in the image properties due to the presence
of coherent structures ‘partially or completely resolved’ results
in a speckle pattern which is no longer entirely characteristic of
the imaging system [2]. It should therefore be possible to use

these deviations to classify each local region of the image
according to how much it resembles the fully formed speckle
normally generated by that particular imaging system in that part
of the image. This measure of similarity can then be used to
control the spatial bandwidth of a smoothing filter of some kind,
so that regions of the image which closely resemble the fully
formed speckle are replaced by alocal mean value and, at the
other extreme, regions with properties which are least similar to
fully formed speckle are not smoothed [2].

2.2 Effect of logarithmic compression

Due to the limited dynamic range of commercial display
monitors, ultrasound imaging systems compress the echo signal
to fit in the display range. This compression changes the
characteristics of the signal PDF. The compression affects the
high intensity tail of the Rayleigh and Rician PDF more than its
effect on the low intensity part such that the signal is now very
close to be with additive Gaussian noise corresponding the

uncompressed Rayleigh signal [6].
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3. MATERIALS AND METHODS
3.1 Relation to previous work

SNR remains the most fundamental feature that is most widely
used in single feature texture classifiers due to its sensitivity to
the variation of scatterer distribution in a region. The unsharp

filter, described in [2], allowed a degree of smoothing controlled

by the local features of image texture and was concerned with
differentiating FFS pattern from class two pattern therefore, took
the form:: .

=% +k(x—X)

M)

where X is the new (processed) value of a pixel to be computed
from the old unprocessed value, x , and the local mean of the old

values surrounding and including that pixel, X . The constant, k,

is controlled by the measure of similarity p , which in this case is
the deviation in the ratio of the local variance of gray levels to
the local mean;

where ﬁs is the mean value of P in a region corresponding to
fully formed speckle [2].

3.2 Nonlinear Anisotropic Diffusion

Diffusion algorithms remove noise from an image by modifying
the image via a partial differential equation (PDE). For example,
consider applying the isotropic diffusion equation (the heat
equation) given by JI(x,y,t)/dt =div(cVI), using the
original (degraded / noisy) image I(x, y,0) as the initial

condition, where [ (x, y,O): R: >R is animage in the
continuous domain, (X,y) specifies spatial position, t is an
artificial time parameter, ¢ is the diffusion constant, and where
VI is the image gradient. Modifying the image according to
this linear isotropic diffusion equation is equivalent to filtering
the image with a Gaussian filter.

The previous model can be put in the form:

X0 =% =(1-k)X, —x;) 2

which is very close to the nonlinear isotropic diffusion model
It+1_1t=g(p)(1m+10yy) (3)

where [ is the ultrasound image after averaging with a linear
Gaussian kemel of scaleG . g(p) is a function of the SNR or
g= ﬁs / P which represent a nonlinear diffusivity replacing

the constant diffusivity in the linear case. Diffusion is maximum
(g=1) in Rayleigh scatterer region and zero in a fully structured
or correlated region (specified experimentally for each imaging
system environment).

Simple speckle reduction algorithms like the model
above enhance only region associated with a decreasing SNR i.e.



class two while organ surtaces are missclassitied and possibly
derogated.

3.3 Original formulation

Perona and Malik [3] replaced the classical isotropic diffusion
with

ol(x,y,n/ot =divig(|VI)-VI] (4

where || VI'|| is the gradient, and g(||VI||) is the
diffusivity function or the edge-stopping function [4]. This

function is chosen to satisfy g(x) —> O when x —> 00 andis

monotonically decreasing so that the diffusion or the smoothing
decreases as the gradient strength increase and the diffusion is
stopped across edges.

3.4 Coherent Nonlinear Anisotropic Diffusion

Although g(x) can be a scalar function and diffusion is still

anisotropic but since VI serves only as an edge detector, the
applicability of the above filter is restricted to smoothing with
edge enhancement. In general g(x) can be in a tensor form that
measures local coherence of structures such that the diffusion
process become more directional in both the gradient the contour
directions, the directions of maximum and minimum variations
respectively.

The coherent diffusion model takes the form
al(x, y,1)/dt = div{DVI] (5)

where DeR* is a symmetric positive semi-definite
diffusion tensor representing the required diffusion in both
gradient and contour directions and hence enhancing coherent
structures as well as edges.

There are two tensors widely used to detect the local
coherence; the structure tensor (also called scaiter matrix or
(windowed second) moment tensor) and the Hessian tensor
which represents the second order derivatives.
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Because the Hessian matrix is more sensitive to noise, we
preferred to use the structure tensor.

The multiscale structure matrix takes the form
J,(VI)=K, *(VI®VI)

=K, «(VI.VvI")  (p=0)

where

K, (x)= (21t62 )_1 -eprxl2 /2(52 )

The convolution above is done component-wise
mainly to average a feature over a known neighborhood (scale)

where p is the integration scale (the window size) over which

the orientation information is averaged [5]. The eigenvectors

W;,W,and the ecigenvalues W,,lL, correspond to the

directions of maximum and minimum variations and the strength
of these variations respectively.

4. COHERENT FILTERING MODEL
4.1 Proposed model description

The diffusion tensor D should be chosen with the same
eigenvectors of the structure matrix but with eigenvalues that
represent the strength of diffusion in each principal direction.

K *1?2 K _*(I1
LetJ,(I) = px P ("z”)
K,*x(J1,) K *I,
Ay 0w
ThenD(I)=(w1 Wz{ol 12] wlT

Wherel, = a'(l_(pﬂ‘l‘z)z/sz) if (h-n)<s®
l 0 else
A= a

4.2 Discretization scheme

Due to the need for [, I ,and I, all the 8-points
neighborhood are used in the model therefore explicit scheme
seems stable for only very small step ( Af <1/4 for the scalar
diffusion) {5] and even smaller for this model. Implicit scheme is

extremely complicated due to the nonlinearity and the bulky
system matrix to be solved. Although semi implicit has shown
unconditional stability in scalar nonlinear diffusion for any time
step where the system matrix is divided into two simple
tridiagonal ones but in this coherent model the schemeisno
longer simple due to the added diagonal points. For these reasons
and since we are concerned with fast implementation, we
thought of a hybrid scheme that combines two important
features; stability and fastness.

The scheme can be summarized as follows:

t t+AL t

Ii-—l,jH Ii,j+1 Ii+1,j+1

I it,;'At <1 itle_; ! i',j I fflA}
t t+At t

1 i-1,j-1 1 i j-1 1 i+1, j-1

where : ; stands for the pixel at location x=i, y=j attime

instance t. In this scheme splitting can be used to convert the
system matrix into two tridiagonal matrices which are easily
solved.

5. RESULTS AND DISCUSSION
Several reasons are behind choosing this model:



(a) Our main objective 1s to produce a filter not only an edge
preserving but also a coherence enhancing to overcome the
ambiguity of using the SNR alone and to further enhance both
tissue texture, organ surfaces, and blood vessels.

(b)7\.1 is related to the anisotropy of the image (u] - ],12)

through a monotonically decreasing function that resemble
Tukey’s biweight robust estimator which preserves sharp
boundaries and improves the automatic stopping of the diffusion
in the gradient direction {4].

() The stopping level s* is determined experimentally
corresponding to the fully structured region.

The model is applied on the ultrasound convex B-
mode sticks, 80 sticks of 320 samples each. Since, the sticks
coordinates are closer to radian than to the Cartesian, the model
is modified simply by adjusting the gradient step in the axial
direction to take into consideration the diverging pattern of the
sticks. The benefit of using the sticks before scan conversion is
very clear; the small number of pixels makes the algorithm at
least three times faster, the algorithm is now more accurate since
the coordinate system is the same as that of the probe.

Fig.1 illustrates the results of applying the proposed
algorithm to standard phantom with positive and negative
contrast regions. Fig.2 shows the effect on standard clinical

images. Applying two iterations each of Af =2, aa =0.9

and s’=2. It is apparent that speckle suppression while preserving
and even enhancing coherent structures has been achieved to a
great extent. We expect that area calculations of heart chambers
and urinary bladders are now more robust. Although the
algorithm was not implemented optimally yet we reached a rate
of 70msec/ iteration on a PC with PII 366 MHz microprocessor
which is suitable for real time processing.

6. CONCLUSION

We introduced a coherent diffusion model to reduce ultrasound
speckle while preserving the appearance of structured regions
and organ surfaces. Thanks to its robustness of parameter
selection, the algorithm is suitable for commercial
implementation. Texture and organ surfaces have been enhanced
and even the disrupted regions due to ultrasound behavior have
been reconnected again. We are now concerned with the effect of
this algorithm on the automatic detectability of liver and breast
abnormalities and how could the parameters be calculated
automatically.
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Fig.1 Standard phantom of positive and negative contrast
regions. Itr=2, Af =2, o =0.9,s>=2. (left) original, (right)
filtered

Fig2 The effect of the algorithm on clinical images (a)
abdomen, (b) blood vessels, (c) kidney. Itr=2,

At =2, o =0.9,s’=2. (left) original, (right) filtered.



