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Image reconstruction from nonuniformly sampled spatial frequency domain data is an important problem that arises in com-
puted imaging. Current reconstruction techniques suffer from limitations in their model and implementation. In this paper, we
present a new reconstruction method that is based on solving a system of linear equations using an efficient iterative approach.
Image pixel intensities are related to the measured frequency domain data through a set of linear equations. Although the system
matrix is too dense and large to solve by direct inversion in practice, a simple orthogonal transformation to the rows of this matrix
is applied to convert the matrix into a sparse one up to a certain chosen level of energy preservation. The transformed system is
subsequently solved using the conjugate gradient method. This method is applied to reconstruct images of a numerical phantom
as well as magnetic resonance images from experimental spiral imaging data. The results support the theory and demonstrate that
the computational load of this method is similar to that of standard gridding, illustrating its practical utility.
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1. INTRODUCTION

In this paper, we consider the problem of image reconstruc-
tion in magnetic resonance imaging (MRI) without the loss
of generality to other tomographic modalities. In the past
decade, there has been a great deal of interest and advances
in ultrafast MRI. Echo-planar imaging (EPI) is a technique
that is widely used for dynamic studies. However, it is lim-
ited in speed by how fast the gradients can be switched [1].
To lessen this limitation, nonrectilinear k-space trajectories
such as spiral trajectory have been used to allow smoother
gradient waveforms. This led to a more efficient acquisition
process besides the reduction of inhomogeneity and motion
artifacts, but image reconstruction from the nonuniformly
sampled k-space data remains less than optimal in speed
and accuracy. Given that conventional MRI relies on discrete
Fourier transformation as its reconstruction tool, most exist-
ing methods reconstruct the image by gridding, that is, esti-
mating a uniformly sampled k-space from the nonuniformly
sampled version.

In his seminal work published in 1985, O’Sullivan [2]
showed that the ideal resampling kernel is theoretically an

infinite Sinc function and that the convolution with such
a kernel followed by sampling on a rectilinear grid results
in accurate reconstruction. Furthermore, the optimization
of an objective function based on a truncated kernel
determined that the prolate-spheroidal function is the opti-
mal kernel, which can be well approximated by the Kaiser-
Bessel window. This procedure has been utilized in prac-
tice as the classical gridding technique for the past two
decades. Several papers addressed various aspects of this
method, including the optimal selection of the width and
form of the gridding kernel for spiral imaging [3], the practi-
cal implementation and applications to clinical studies [4, 5],
the compensation of sampling density variations [6], the effi-
cient use of computer arithmetic for faster computation [7],
and the optimized selection of sampling density compen-
sation factors [8]. The performance of nonrectilinear sam-
pling in the presence of inhomogeneities was also shown to
be more robust [9]. Therefore, it is fair to say that gridding
is well established in MRI reconstruction. Nevertheless, sev-
eral issues remain as open questions in using such a method.
These issues include the choice of kernel size and shape for
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different k-space trajectories, the possible consequences of
undersampling some areas in the k-space, and the reduction
of the characteristic artifacts associated with gridding.

The above issues led to the development of methods for
estimating the rectilinear points from the nonrectilinear ones
as a solution to a linear system of equations. This system
of equations has a rather large size that is equal to the to-
tal number of points. That is, to obtain N × N rectilinear
k-space samples, a linear system of size N2 must be solved.
Even though the solution to this system would in fact be the
optimal solution to the gridding problem, it is not feasible
in practice. As a result, a number of attempts have been di-
rected towards obtaining practical approximate solutions to
this system of equations [10–13]. Moreover, other authors
attempted to estimate the image from the sampled k-space
using similar techniques [14–18]. Even though these meth-
ods offer some advantages over the conventional gridding
method, they still have some limitations. First, there is no di-
rect measure of the solution within their formulation and the
methods are inflexible in trading off computation time and
reconstruction accuracy. The latter is particularly important
given the general consensus that gridding techniques are per-
ceived as slow and inflexible in reconstruction time. Second,
the computational requirements of the image domain solu-
tion techniques [14–18] are still very high for routine use.
Therefore, another solution strategy that offers to overcome
these limitations is still desired.

In this work, we describe a novel solution to the prob-
lem of reconstruction from nonuniformly sampled spatial
frequency data. The problem is formulated as a linear system
of equations that maps the acquired k-space points into the
pixel values that represent the image. Even though the linear
system is large in size and dense, a simple transformation and
thresholding are utilized to convert the system into a sparse
form that requires much smaller computational and storage
efforts. The sparse system is then solved using the conjugate
gradient iterative technique, which enables further control of
accuracy versus the computation time. The theory of the new
method is described and the results of applying the technique
to reconstruct images of a numerical phantom as well as data
from a spiral imaging sequence are presented.

2. THEORY

Consider f (x, y) as a continuous-space spatial domain in-
tensity distribution and let the available k-space (frequency
domain) samples be F(kxi, kyi), where i = 0, 1, . . . ,L−1, and
L is the number of samples. The spatial domain can be mod-
eled as piecewise constant function consisting of the sum of
shifted gate-like functions representing the pixels of the im-
age at the desired resolution. That is,

f (x, y) =
N−1∑

n=0

M−1∑

m=0

αn,m ·Π
(
x − xn, y − ym

)
. (1)

Consequently, the continuous Fourier transform of f (x, y)
can be obtained as

F
(
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(2)

which reduces to

F
(
kx, ky

) = Sinc
(
wxkx

) · Sinc
(
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)

×
N−1∑

n=0
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(3)

Here wx and wy correspond to the half of the pixel width in x
and y directions, respectively. Given the available arbitrarily
located samples in the k-space, the above equation leads to
a linear system whose equations are obtained by substituting
the set of L values for kx and ky . Hence, the linear system ma-
trix has dimensions of L rows and M×N columns. The right-
hand side vector of this linear system consists of the values of
the measured data indexed by i. Given this index and from
the known locations of the samples in the k-space, the system
matrix can be computed for a given arrangement of the pix-
els. The unknowns in this linear system are the pixel inten-
sity values. Specifically, the matrix equation takes the form in
(4) and using normalized uniformly sampled spatial points
(i.e., xn = n ·Δx and ym = m ·Δy), (4) takes the form in (5)
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In order to simplify the solution, we multiply the rows of
the system matrix by the N ·M-point discrete Fourier trans-
form matrix H in the following form:

H

= 1√
NM

×

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
1 e− j2π/NM · · · e− j2π(NM−1)/NM

...
... · · · ...
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⎤
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N·M×N·M

.

(6)

Note that the inverse of this matrix is simply its Hermitian.
This multiplication compacts most of the energy within each
row into only a small number of elements in a similar fashion
to the transform coding-based compression techniques. As a
result, instead of the original dense format of the system ma-
trix, we obtain an equivalent system with a sparse matrix, al-
lowing us to tap into the rich literature of matrix storage and
solution techniques in this area. In order to keep the linear
system unchanged while taking advantage of this property,
we multiply by H and its inverse such that

�b = A�v = A ·HH ·H ·�v = (H · AH
)H · �V = M · �V , (7)

where �V is the 1D M · N-point discrete Fourier transform
of the 1D listing of all pixel values in the 2D image and the
matrix M has most of the energy in each row compacted into
only a few elements. In order to make the matrix M really
sparse, in each row, the element values are sorted by absolute
value and only the first few row elements above a threshold
are retained. Once this process is completed, the matrix is
stored in a sparse matrix format and the conjugate gradient
iteration is applied to solve the linear system. A block dia-
gram of the new method is illustrated in Figure 1.

3. METHODS

3.1. Energy compacting transformation

The energy compacting transformation is implemented by
Fourier-transforming the rows of the linear system matrix
A. The outcome of this transformation is sorted by magni-
tude and only the largest few elements are retained such that
their energy is above a certain fraction of the total energy
in each row. Subsequently, such elements are stored by their
row and column positions and values as a part of the new
sparse linear system matrix. Given that this process is done in
a row-by-row fashion, the storage demands for this method
are not very high since the huge system matrix need not be
constructed or stored.

3.2. Sparse matrix manipulation

The storage of the above-derived sparse system can be per-
formed using several techniques. The row-indexed storage
method [19], which requires only twice the size of the
nonzero elements for their storage, is used in our imple-
mentation. With this representation, matrix-vector multipli-
cation operations are only equal in complexity to the num-
ber of nonzero elements and always computationally feasible.
Also, Hermitian operations are rather simple and do not pose
a substantial computational burden.

3.3. Conjugate gradient iterative solution

The method of conjugate gradient is used to solve the sparse
system. It optimizes the solution of a linear system by re-
moving the error components in a number of directions that
span the space of the solution [20]. The original formulation
of this iteration requires the system to be real, square, sym-
metric, and positive definite for the algorithm to work and
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Figure 1: A block diagram of the developed reconstruction method.

(1) Set the initial solution �x0 = �0.
(2) Set ε = required accuracy and/or set the maxi-

mum number of iterations.
(3) Compute the initial residual �r0 = AH ·�b.
(4) Compute first direction �p = �r0.

(5) Compute δ = ⇀
r
H

m ·�rm/�bH ·�b.
(6) If δ < ε or maximum number of iterations

reached, then stop.
(7) Let �q′ = A · �p and �q = AH · �q′.
(8) Update solution�xm+1 = �xm+(�rHm ·�rm/�pH ·�q)·�p,

and update residual �rm+1 = �rm − (�rHm · �rm/�pH ·
�q) · �q.

(9) Update direction �p = �rm+1 + (�rHm+1 · �rm+1/�rHm ·
�rm) · �p.

(10) Increment counter m = m+ 1, and repeat steps
(5) through (9) until at least one of the condi-
tions in step (6) is satisfied.

Algorithm 1

provide a unique solution to the system [21]. Here, a variant
of this method is applied to solve the normal equations of
the system where the system matrix (termed the Grammian
matrix) is complex Hermitian, positive definite, and square.
The approach based on the delta-criterion [22] has a com-
putational advantage over other methods [9] in the way the
stopping condition is checked every step where no further
matrix-vector multiplication is involved. In particular, the
conjugate gradient algorithm for solving the normal equa-

tion AHA�x = AH�b is described in Algorithm 1.

3.4. Simulations and experimental data acquisition

The new method was implemented to construct images from
numerical phantoms as well as from experimental magnetic

resonance imaging data acquired using a spiral imaging se-
quence. The numerical phantom data were constructed from
polar samples of the analytical expression of the Shepp-
Logan phantom [14]. The experimental data were acquired
on a Siemens Magnetom Trio 3T MRI scanner using a spi-
ral sequence. The spiral sequence had 16 interleaves with
2596 points each to sample a 256× 256 k-space matrix using
an eight-channel phased array heal coil. The sequence pa-
rameters were spin echo, TR / TE = 1000/15 ms, and FOV:
25.6 cm × 25.6 cm. The spiral gradient waveform was de-
signed with a maximum gradient of 40 mT/m and a mini-
mum rise time of 0.5 milliseconds. The spiral gradient read-
out had a duration of 13 milliseconds per segment and was
sampled at 200 kHz.

4. RESULTS AND DISCUSSION

Figure 2 illustrates the energy compacting transformation
based on simulation. A system matrix was constructed for
a 64 × 64 gridding problem under polar sampling as shown
in Figure 2(a). The resultant system matrix, which has a size
of 642 × 642, is shown in Figure 2(b). As can be seen, very
few elements are nonzero as opposed to the original dense
matrix. The average number of elements per row needed to
retain 92% of the kernel energy for this particular case was 3,
a significant reduction of elements.

The result of reconstructing the image of the experimen-
tal data using conventional gridding is shown in Figure 3(a).
This was the best result obtained from this method, us-
ing a Kaiser-Bessel window of width 3 and parameter 9.
The results obtained using the new method are illustrated
in Figures 3(b)–3(d) for energy levels of 90%, 80%, and
70%, respectively. The average numbers of sparse matrix el-
ements/row for these three cases were 3.9, 1.49, and 1.14 el-
ements, respectively. The number of iterations used for all
images was 6. As can be observed, the quality of all of them is
comparable to that of gridding while having a computational
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Figure 2: Illustration of the energy compacting transformation: (a) example polar trajectory, (b) the constructed system matrix after the
energy compacting transformation with only a few nonzero elements, (c) sample row showing only few nonzero peaks.
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Figure 3: Images reconstructed with (a) conventional gridding (best image with optimized parameters), (b-d) new method with energies
90%, 80%, and 70% of the energy retained, respectively. The lower row shows the same images windowed at 10% of the maximum level for
each to better illustrate the residual artifacts.
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Figure 4: Results from reconstructed images from spiral sampling for image size 128 × 128 showing average number of elements per row
for retained energy levels between 70-99%. The number of elements per row increases dramatically after 95% level.
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Figure 5: Results from reconstructed images from spiral sampling for image size 128×128 showing reconstruction relative error for retained
energy levels between 70- 95%. The number of elements per row increases dramatically after 95% level.

advantage especially for the last image (nearly half the re-
construction complexity of conventional gridding). In Fig-
ures 3(e)–3(h), specially-windowed (window center set to
10% of the average intensity) versions of all images are
shown to illustrate the residual artifacts. As can be seen,
the artifacts differ between conventional gridding and the
new method where the latter exhibits vertical and horizon-
tal aliases of the same shape as the object. Note also that the
level of residual artifacts increases as the energy retained de-
creases as expected. The selection of the energy level to be
retained controls the average number of elements per row
in the sparse matrix conversion process and hence the re-
construction accuracy and complexity. Figures 6 and 4 il-
lustrate the effect of energy retained on the average num-
ber of elements per row in the sparse matrix and also the
relative error in the reconstructed image. These figures sug-
gest an optimal range between 85% and 95% of the en-
ergy to be retained for substantial reduction in complexity
while maintaining a sufficiently low error. It is worth not-
ing that the performance of conventional gridding was 8.5
for the equivalent average number of elements per row with
an error of 0.37%. Even though the conventional gridding
with parameters shown above needs only a single iteration
as opposed to the new method, the complexity of multiple
iterations of the new method can still be lower than that.
Given the significantly higher error, it is evident that the
new method has an advantage over the conventional grid-
ding.

To illustrate the rapid convergence of the conjugate gra-
dient iteration, the results of reconstructing the image above
with 90% of the energy retained for different numbers of it-
erations are shown in Figure 5. As can be seen, diagnostic
quality reconstruction can be achieved with as low as 2-3
iterations. The convergence of this experiment is shown in
Figure 7 where the delta-criterion was computed and used
as the error measure. The error converges very fast to reach
a level of approximately 10−6 in the 10th iteration. Note
that the oscillatory form of the convergence is mainly due
to the fact that the problem solved is an approximation to
the original one.

It should be noted that the size and location of the large
matrix elements that are selected to achieve the kernel en-
ergy percentage varies from one row to another. This means
that the kernel used to perform the mapping is spatially vary-
ing. We note also that the truncation using this method is
optimal in the least-squares sense. The selection using this
method avoids having the user choose more specific parame-
ters of reconstruction like window size or neighborhood defi-
nition like other techniques [3, 10]. Instead, a single parame-
ter is used as a quality measure (the energy percentage) while
another is used as a computation time control (number of
conjugate gradient iterations).

The computational complexity of the new method is
O(N2) to obtain the solution to the linear system in ad-
dition to one N2-point 1D FFT required afterwards. This
computational complexity is well within the range of that
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Figure 6: Reconstructed images from spiral sampling of real phantom data for image size 256 × 256 showing output from iterations 1
through 10. We start to see diagnostic quality images after only a few iterations.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

R
el

at
iv

e
er

ro
r

0 1 2 3 4 5 6 7 8 9 10

Iteration

Figure 7: The convergence characteristics of the iteration used in the previous figure. As can be observed, only a few iterations are needed
to substantially reduce the reconstruction error.

for conventional gridding methods as well as gridding tech-
niques based on localized SVD solution. This complexity is
several orders of magnitude below other iterative reconstruc-
tion techniques [14–18] given its linear dependence on the
number of points in the image in the matrix inversion part.
The ability of the user to control the reconstruction time is
a unique feature in this method. This allows a quick, almost
real-time computation of images for fast viewing by the ra-
diologist. Furthermore, it allows the radiologist to increase
the accuracy of the reconstruction of a selected image at will
simply by allowing additional iterations to run. Given the low
complexity of iterations, such process can be performed dur-
ing image viewing using console control just like zooming or
gamma curve selection with virtually no noticeable delay.

The method of conjugate gradient has a number of ad-
vantages. First only a few iterations are usually required
to reach a good accuracy for the solution. Another advan-
tage is that the solution accuracy can be traded off with
computation time rather flexibly. This allows the method
to be customized for the particular application at hand by
selecting a predetermined number of iterations that corre-
spond to the desired computation time. If a high accuracy is
desired, an efficient implementation of this method may rely
on a measure of the solution update in such a way that the

stopping criterion is to have an update that is insignificant
compared to the present solution.

The potential applications of the new method are several.
The most obvious is its use to generate real-time reconstruc-
tion of spiral imaging sequences. This can be useful in appli-
cations such as functional MRI (fMRI) where real-time acti-
vation detection and display are increasingly more available
on commercial scanners. Another application is to generate
fast spiral navigator reconstructions for use with segmented
acquisition sequences. The new method can potentially be
modified to include special reconstruction procedures such
as field inhomogeneity correction where a distortion in the
spatial domain needs to be taken into account. In this case,
the reconstruction and artifact suppression can be achieved
in a single step. Applications also extend to other modalities
such as computerized tomography (CT). Further investiga-
tion of such applications is needed to assess their value in
practice.

5. CONCLUSIONS

A new method for image reconstruction from nonuniformly
sampled spatial frequency domain data is presented. This
method provides the means for solving the reconstruction
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problem iteratively based on an efficient algorithm, which
permits the solution of the large linear system of the problem
after conversion to sparse form. A unique aspect of this tech-
nique is the availability of explicit reconstruction error mea-
sures that can be monitored and controlled for customized
performance. More work is needed to investigate the use of
the new method in practical clinical applications.
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