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Abstract We present a new approach for image reconstruction 
from non-uniformly sampled k-space. The image is assumed to 
be piecewise constant to model practical display using pixels. 
Using the continuous Fourier transform, the mapping of these 
unknown pixel values to the available frequency domain values 
is derived. Even though the system matrix of this problem can be 
shown to be dense and too large to solve for practical purposes, 
we observe that a simple orthogonal transformation to the rows 
of this matrix converts the matrix to a sparse matrix. This system 
is subsequently solved using the iterative conjugate gradient 
method. 

Introduction 
The most commonly used gridding technique is the one 
described in (1). Nevertheless, this technique relies on a 
rigid kernel that does not take into consideration the 
variations in sampling density between different areas in 
the k-space. Recently, several techniques have been 
proposed to address this problem (2,3) whereby a spatially 
variant kernel is used to perform the gridding. Even though 
these techniques showed a marked improvement over the 
classical technique, their solution cannot be claimed 
optimal for the problem at hand. In this work, we proposed 
a more realistic model for the problem and show its 
solution to be optimal. Moreover, we demonstrate the 
computational efficiency of the new method. 
Theow 
Consider f(x,y) as the continuous-space spatial domain 
intensity distribution and let the available k-space 
(frequency domain) samples be F(hi, kyJ, where 
i=O,l, ..., L-1, and L is the number of samples. Given the 
way the image is displayed, the spatial domain can be 
modeled as the sum of shifted gate-like functions 
representing the pixels of the image up to the desired 
resolution. That is, 

N--l M-1 

n=O m=O 

Consequently, the continuous Fourier transform of f(x,y) 
can be obtained as, 

which reduces to: 
N-l  M-l 

F(k, ,  k y )  = Sinc(ck,). S inc(dk,)z  an,m . e-jza(kxxn+k~y"') 

n=O m=O 

Here c and d correspond to the pixel size. Hence, given the 
available nonuniform samples in the k-space, we can 
express the above equation as a linear system in the form 
A< =$whose equations are obtained by substituting the set 
of L value for k, and ky. Hence, the linear system matrix 
has dimensions of L rows and M.N columns. The vector 
consists of the values of the acquired frequency samples 
indexed by their i value. Given this index and from the 
known locations of the samples in the k-space, the matrix 
A can be computed for a given arrangement of the pixel 

values in the v vector. The unknowns in this linear system 
are the pixel intensity values. In order to simplify the 
practical implementation of the solution, we observe that 
multiplication of the discrete Fourier transform matrix H 
whose inverse is simply its hermitian by the rows of the 
matrix result in compacting the energy within the row into 
g =  A; = A . H H  . H . ;  = ( H . A N ) "  .J? = M . J ? ,  
only a small number of points instead of the original dense 
matrix form. To preserve the linear system unchanged 
while taking advantage of this property, let: 
where M is sparse and the intermediate solution ? is the 1- 
D discrete Fourier transform of the 1-D listing of pixel 
values. 
Methods 
The energy compacting property used above can be 
verified by evaluating one row of the linear system matrix 
and applying the Fourier transformation to it. We have 
observed that more than 90% of the energy is contained 
within less than 10 coefficients out of the much longer 
M.N row values. We allow the user to select the energy 
percentage and then perform the truncation automatically 
for each row. Notice that the size and location of the large 
coefficients that are selected to achieve the energy 
percentage varies from one row to another. This means that 
the kernel used to perform the mapping is spatially varying. 
The non-zero coefficients are stored efficiently using 
sparse matrix techniques as a table containing their 
locations and values. The results show that the number of 
operations required to perform any matrix computation 
using this format is O(L). 
The conjugate gradient technique is used to solve this 
matrix (4). Assuming the initial solution to be zero, the first 
iteration corresponds to simply premultiplying the vector b 
by the hermitian of the matrix M. This first step usually 
provides a reasonable approximate solution. In case a 
number of iterations r is used, the complexity of the 
algorithm remains O(rL), which remains close to 
conventional techniques for small values of r. 
Experimental Results 

The proposed technique was implemented to 
reconstruct images of a numerical phantom as well as 
actual data acquired using a spiral imaging sequence. The 
preliminary results support the theory and show a large 
potential for its clinical use. 
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