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Deconvolution-Interpolation Gridding (DING): Accurate
Reconstruction for Arbitrary k-Space Trajectories

Refaat E. Gabr,"?* Pelin Aksit,® Paul A. Bottomley,"* Abou-Bakr M. Youssef,? and

Yasser M. Kadah?

A simple iterative algorithm, termed deconvolution-interpola-
tion gridding (DING), is presented to address the problem of
reconstructing images from arbitrarily-sampled k-space. The
new algorithm solves a sparse system of linear equations that is
equivalent to a deconvolution of the k-space with a small win-
dow. The deconvolution operation results in increased recon-
struction accuracy without grid subsampling, at some cost to
computational load. By avoiding grid oversampling, the new
solution saves memory, which is critical for 3D trajectories. The
DING algorithm does not require the calculation of a sampling
density compensation function, which is often problematic.
DING’s sparse linear system is inverted efficiently using the
conjugate gradient (CG) method. The reconstruction of the
gridding system matrix is simple and fast, and no regularization
is needed. This feature renders DING suitable for situations
where the k-space trajectory is changed often or is not known
a priori, such as when patient motion occurs during the scan.
DING was compared with conventional gridding and an iterative
reconstruction method in computer simulations and in vivo
spiral MRI experiments. The results demonstrate a stable per-
formance and reduced root mean square (RMS) error for DING
in different k-space trajectories. Magn Reson Med 56:
1182-1191, 2006. © 2006 Wiley-Liss, Inc.
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The reconstruction of images from nonuniform samples of
their spatial frequency domain (k-space) is an important
problem in fields as diverse as computed imaging and
radioastronomy. A convolution-interpolation algorithm
known as the “gridding algorithm” is widely used to re-
construct images from such data. Basically, this conven-
tional gridding algorithm (1,2) convolves the nonuniform
samples with a small-width window, and samples the
result onto a rectilinear grid. It consists of the following
four steps: First, the nonuniform samples are compensated
for the nonuniform sampling density in k-space by multi-
plication with a weighting function the density compen-
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sation function (DCF), which has small values in areas of
high sampling density and large values in sparsely sam-
pled areas. Second, the density-compensated data are in-
terpolated to a uniform grid using a small convolution
window. Third, the data are Fourier transformed (FT) into
the image domain. Fourth, apodization caused by the con-
volution step is compensated for by dividing the result by
the FT of the convolution window.

The conventional gridding algorithm is efficient and
stable because the convolution step has a smoothing effect,
but it has been shown to be non-optimal and artifact-prone
(3,4). Density compensation is necessary to adequately
approximate the convolution operation (3), and several
studies have attempted to determine the optimum DCF
(2,5,6). The final step in the conventional gridding algo-
rithm, which compensates for the convolution roll-off,
results in large signal at the image periphery (wings) due to
the side lobes of the convolution window, and the aliasing
caused by the sampling process. Sampling the result of the
convolution onto a finer grid reduces aliasing and wing
artifacts in the reconstructed image. A twofold subsam-
pling (“twice-finer” grid) is commonly used to achieve
acceptable image quality.

Other methods used to overcome limitations in the con-
ventional gridding algorithm commonly exploit the rela-
tionship between the acquired k-space samples and their
rectilinear counterparts, as given by the standard sinc-
function interpolation of the sampling theorem (7). This
relationship is strictly valid only if the signal is of infinite
length in k-space, but it does provide a good approxima-
tion if k-space coverage is large. Discrete sampling of the
interpolation results in a linear system with a dense sinc-
interpolation matrix, the inversion of which results in the
uniform resampling (URS) solution (8). While inverting
the sinc-coefficients matrix is practical for one-dimen-
sional (1D) signals, it becomes impractical for higher di-
mensions due to the tremendous matrix size, except for
special cases (9). Nevertheless, the conventional gridding
algorithm has been shown to be an approximation of the
URS solution, and an optimal DCF that minimizes the
difference between the gridding and the URS solution is
obtained with matrix approximation techniques for struc-
tured matrices (7). However, these techniques are compu-
tationally exhaustive.

The block URS (BURS) method is an approximation to
the URS solution that aims to reduce computational effort
(8). A small block of the sinc-matrix around each grid
point is isolated and inverted to obtain a spatially varying
convolution window. Attention to regularization is criti-
cal, and poor estimates are reported for Lissajous k-space
trajectories (9—11). The computation required to recon-
struct the gridding matrix is still huge, although it only has
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to be done once for a given trajectory. Nonuniform fast FT
(NUFFT) techniques have also been utilized to provide
spatially varying convolutions that minimize measures of
the approximation error (12—15). In another approach, a
model of the imaged object is assumed and is used to
derive an optimal spatially-varying interpolation kernel
(16).

Nonuniform sampling can be formulated as a continu-
ous-to-discrete mapping through the FT operator. This
system can be inverted using singular value decomposi-
tion (SVD), and offers the advantage of arbitrary sampling
in the image domain (5). To avoid the huge computational
load and regularization problems, previous studies solved
a discrete version of the same formulation iteratively using
the conjugate gradient (CG) method, whereby each itera-
tion of the solution involves a forward and an inverse
gridding operation (4,17). This solution has been also em-
ployed to reconstruct sensitivity-encoded (SENSE) images
from arbitrary trajectories (18). In the rest of this paper we
refer to this iterative inversion of the Fourier encoding
system using CG as “F-CG.” Although density compensa-
tion is not needed in the gridding operation in F-CG,
density compensation has been suggested as a precondi-
tioner to the CG matrix to reduce the number of iterations
(18). The same formulation of the problem can be solved in
a different way by noting that the dense Fourier exponen-
tial matrix can be converted into a sparse form by the
application of a compacting transform to the rows of this
matrix. The resulting sparse linear system can then be
efficiently solved using the CG method (19).

A characteristic of all of these methods is that they
require intensive calculations to invert or construct a grid-
ding matrix, and in many cases careful regularization is
essential in order to maintain stability and avoid noise
amplification. The truncations and approximations made
by many of these methods (5,8,19) influence the accuracy
of the solution and introduce artifacts that are not well
characterized.

In this work we introduce a new solution to the gridding
problem that solves a more accurate yet simple formula-
tion of the problem. Instead of the convolution-interpola-
tion operation used in the conventional gridding algorithm
that depends on the DCF used, an iterative deconvolution-
interpolation gridding (DING) algorithm is implemented.
DING utilizes the CG method to solve a sparse system of
linear equations in a manner equivalent to a deconvolu-
tion operation. The theory and implementation of DING
for the reconstruction of simulated data with spiral and
random k-space trajectories and real spiral MRI data are
presented, and its performance is quantified relative to the
conventional gridding and F-CG methods.

THEORY

Let M(k) be the continuous FT of the object to be imaged as
a function of the continuous k-space position k, and S(k)
be the nonuniform sampling function that consists of a
series of impulses at required sampling locations, such
that:

S(k) = Dk — «). [1]

j=1
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where L is the number of data points, {K/-}]-=1:L are arbitrary
sampling locations, and 3(.) is the Dirac delta function.
The sampled k-space M (k) is thus given by M (k) =
M(k)S(k). The sampling theorem states that M(k) can be
exactly reconstructed from the discrete samples on a uni-
form grid via an infinite sinc-function interpolation, pro-
vided that the Nyquist criterion is satisfied by the sam-
pling grid. Assuming that the k-space is well sampled by N
samples such that the Nyquist criterion is satisfied and the
N samples cover the whole k-space, this relationship can
be written as

N

M(k) = > Mik,)sinc(k — k), (2]

n=1

where {k,},_,.n are the rectilinear grid points, and the
modulus term measures distance. Calculating Eq. [2] at the
L nonuniform samples{k;};_, ;, and stacking the non-recti-
linear samples {M(k;)};_,; and their rectilinear counter-
parts {M(k,)},,—,.n in column vectors mg and m, respec-
tively, a compact matrix form for this relation is:

m, = Am,. [3]

where A is a dense matrix containing the sinc interpola-
tion coefficients, A;, = sinc(|k; — k,|). Because Eq. [3] is
a convolution operation, inverting this equation to get m,
is essentially an algebraic inverse-filtering, or deconvolu-
tion (20), of the k-space data with the sinc function. Solv-
ing Eq. [3] is impractical because of the prohibitively large
size of A.

To improve the efficiency of the solution, we replace the
infinite sinc function with a small window C(k) of finite
support in a manner similar to conventional gridding (1).
Defining D(k) to be the result of the deconvolution of M(k)
and C(k), we replace the formulation in Eq. [2] with

M(k) = D(k)*C(k)=JD(k’)C(|k—k'|)dk’ (4]

where * denotes convolution. The solution of Eq. [4] is
calculated on a rectilinear grid, yielding

D,(k)=(M(k)* " Ck) (k) (5]

where (*') denotes deconvolution, and D, (k) is a uni-
formly sampled version of D(k), D,(k)=D(k)III(k), where
II(k)==1_,3(k—k,) is the grid sampling function (i.e., the
Shah function). In the spatial domain, this is equivalent to

m(r)

c(r)

d(r)= *I11(r) (6]

where the lowercase variables are the inverse-FT of the
corresponding uppercase variables, and r is the position
variable in the image space. The relationship between
D,(k) and M(K) is easily inferred from the corresponding
inverse Fourier transforms, d/(r), and m(r). The recon-
structed image d,(r) and the desired image m(r) are related
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by the modulating function 1/c(r) resulting from the de-
convolution operation, plus the aliasing introduced by the
Shah function. The intensity modulation effect can be
simply eliminated by multiplying the image in the central
part by c(r) and truncating the result to the field-of-view
(FOV) To obtain the final image estimate m,,,(r):

m(r)

M (r) = [TI,)*III(I‘)]C(I‘)HFOV(I‘): (7]

where I1zoy(.) is the Rect function that truncates the object
to the FOV.

An implementation of DING will first solve a discretized
version of Eq. [4], with M(k) measured only at the L points
{Kj};—1.1, to form the sparse system:

M(x)) = >, D(k,)C(lx;— k) j=1:Ln=1:N.  [8]

One can make the approximation in Eq. [8] arbitrarily
accurate by choosing a finer uniform grid. Nevertheless,
for a regular grid the approximation is quite accurate be-
cause D is sampled on a uniform grid and no DCF is
needed. Note that in order to avoid aliasing in D when
solving Eq. [8], the Nyquist criterion must be satisfied by
the nonuniform sampling function S(k). The discretized
system is compactly written as

m, = Cd,, [9]

where C is the L X N interpolation matrix with Gy,
= C(x; — ky|), and d, is a vector of the stacked uniform
samples of D. Thus, the steps of the DING solution are as
follows: 1) solve Eq. [9] for d, using the CG method, 2)
perform an inverse-FT into the image domain, and 3) mul-
tiply the result by c(r) to compensate for the effect of the
deconvolution. The conventional gridding algorithm and
DING are illustrated in Fig. 1.

Since C is a sparse matrix, the linear system in Eq. [9] is
efficiently inverted using the CG method. The CG method
optimizes the solution of a symmetric positive-definite
system by removing the error components in independent
directions that span the space of the solution (21). It is well
suited for sparse linear systems because each iteration
involves only a single matrix-vector multiplication, and
minimal low-cost inner-product operations. Here the
method is applied to solve the normal equations of Eq. [9],
where the system matrix C*C is symmetric and positive
definite.

A Kaiser-Bessel window is used as the interpolating
window, C(k). The Kaiser-Bessel window has small side-
lobe energy outside the passband, and is a good approxi-
mation to the optimal zero-order prolate-spheroidal wave
function of the first kind, which has the least amount of
side-lobe energy (2). The optimum window parameter, B,
is set by the criterion of Eq. [12] of Ref. 2, with the vari-
ables c(r) and 1/c(r) interchanged to reflect the use of a
deconvolution operation for interpolation instead of a con-
volution. The measure to be minimized, E, is thus given by

Gabr et al.

J [TI(r)c(r)]* OI(r) | *
—— | dr
c(r)

[10]

‘ [II(r)c(r)]* II(r) |*
c(r)

This criterion minimizes the relative amount of the alias-
ing energy, including the effect of the deconvolution cor-
rection. Regularization is required during the calculation
of B when dividing by very small numbers in the window
tail (numbers less than 0.01 for a normalized window are
excluded from the calculation). Optimal values for B are
listed in Table 1.

MATERIALS AND METHODS

We evaluated DING using simulated and real MRI data. To
assess the performance of DING, we compared it with
conventional gridding and F-CG. Conventional gridding
was performed with a Kaiser-Bessel window of the same
width as in DING, an optimal window parameter (2), and
a twice-finer grid. The F-CG method was implemented
according to Eq. [21] in Ref. 18. The matrix-vector multi-
plication in the CG iteration was performed by gridding
and inverse gridding (17) operations with the same win-
dow parameters and grid subsampling factor as in conven-
tional gridding. To investigate the effect of density com-
pensation on the solution speed and noise amplification,
we implemented two versions of F-CG (without and with
density compensation turned on).

The simulated data are the result of sampling the con-
tinuous frequency domain of the Shepp Logan (SL) phan-
tom (5) using a 32-interleave Archimedean spiral trajec-
tory optimized for minimum readout time (22). Each in-
terleave samples 4096 points and shares the central point.
The SL phantom is shown in Fig. 2. All images are recon-
structed to a 256 X 256 matrix. Noisy data are simulated by
adding Gaussian white noise to both the real and imagi-
nary parts of the ideal data. The mean of the noise is zero,

(k)

7

M, (k) X

conv m,(r)

II FT II <+

DCF(k)  C(k)

Conventional gridding

(k)
(decon)—((x) (0

(k) II T c(r)

DING

Ms(k) msst(r)

FIG. 1. The gridding algorithm of conventional gridding and DING.
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Table 1
Optimal B Parameter for the Kaiser-Bessel Window Used in the DING Algorithm
Window width 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0
B 5.56 5.52 5.50 5.49 5.52 5.48 5.48 4.82

and the standard deviation (SD) of the noise is equal to
20%,40%, 60%, 80%, and 100% of the average magnitude
of the original ideal k-space data (23). For conventional
gridding and F-CG, a spiral analytical DCF is used:
DCF(k;) = g; - k;, where g; is the gradient vector at k-space
position k; (24). A window size of three Cartesian grid
units is used in all methods with optimal parameters. In
DING and F-CG, the CG iterations are stopped either when
the magnitude of the residual falls below 0.1% of the
magnitude of m,, or the change in the residual magnitude
falls below 1% of the initial change.

The reconstruction accuracy is quantified by calculating
the root mean square (RMS) error between the recon-
structed image and a reference image reconstructed from a
uniformly sampled noiseless k-space of the phantom. The
RMS error is normalized by the RMS of the reference
image and is reported as a percentage. In simulations, the
RMS error calculations employ a scalar multiplier in the
reconstructed image to minimize the sum of the squared
differences between the reconstructed image and the ref-
erence image. Note that this scaling does not result in any
change in image contrast. To assess the stability of recon-
struction, the signal-to-noise ratio (SNR) is calculated from
two rectangular areas within the white ellipse and the
background marked in Fig. 2 by the dark and bright rect-
angles, respectively. The SNR is defined as 0.655 times the
ratio between the mean magnitude in the object region
divided by the SD of the background region (25). The SNR

]

FIG. 2. Reference SL phantom. The SNR calculations are per-
formed on the regions enclosed by the dark and bright rectangles as
object and background, respectively.

measures how noise is amplified by each reconstruction
technique, and when reconstruction artifacts are domi-
nant, the SNR provides a reasonable measure of recon-
struction accuracy.

To demonstrate performance for other k-space trajecto-
ries, we apply DING to the case of a randomly sampled
k-space, where analytical expressions for the DCF do not
exist. The simulation experiment is repeated for a random
sampling pattern in which the k-space of the SL phantom
is sampled using 256 X 256 X 4 random samples generated
from a uniform distribution in the desired k-space cover-
age. This large number of samples is sufficient to avoid
undersampling problems. DING is applied in the same
way as for the spiral trajectory, while for conventional
gridding and F-CG, where no analytical DCF exists, the
Voronoi cell area is used for density compensation (17,23).
To avoid problems in calculating the Voronoi diagram at
the periphery of the k-space, a sampling pattern set larger
than the required k-space coverage is initially applied,
followed by truncation after the Voronoi DCF is calcu-
lated.

For in vivo experiments, the same spiral trajectory used
in the simulations (32-interleave Archimedean spiral tra-
jectory with 4096 points per interleave) is used to acquire
an axial brain gradient-echo image of a healthy volunteer
on a 1.5T GE CV/i system (GE Healthcare, Waukesha, WI,
USA). All human MRI studies are performed under an
institutional review board-approved protocol. The scan
parameters are as follows: FOV = 24 cm, slice thickness =
5 mm, TR/TE = 51/2.5 ms, flip angle = 60°, and NEX = 16.
For DING, images are reconstructed onto a 380 X 380 grid
zero-padded to 512 X 512 prior to FT. Conventional grid-
ding and F-CG are implemented with the same spiral DCF
as in the simulations, and a twice-finer grid. The same
Kaiser-Bessel window with a width of three rectilinear
grid points and optimal parameters is used.

While the spiral trajectory benefits from its uniform
sampling pattern and optimal analytical DCF, problems
arise when the trajectory undersamples the k-space and
the Nyquist criterion is not satisfied, or the sampling uni-
formity is distorted. This occurs, for example, when vari-
able-density trajectories designed to optimize speed (26)
are used, or when the trajectory is distorted by motion
during the scan (27). To test the performance of the three
methods with the in vivo data in the case of nonuniform
sampling, every eighth spiral interleave is removed from
the trajectory, leaving 28 interleaves, and the collected
data are reconstructed by DING as described above. For
conventional gridding and F-CG, a Voronoi DCF is used for
density correction to accommodate the irregular sampling
pattern, instead of the analytical spiral DCF.

All of the methods are implemented offline on a PC
(Intel Pentium M processor, 1.5 GHz, 512 MB of memory)
operating on Microsoft Windows XP platform in MATLAB
v6.5 (Mathworks, Natick, MA, USA).
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RESULTS
Simulation

Figure 3 shows the reconstructed noiseless images of the
SL phantom for the spiral k-space trajectory obtained with
conventional gridding, the F-CG method, and DING. All
images are visually indistinguishable, as also evidenced by
the point spread function (PSF) profiles for the three meth-
ods shown in Fig. 4. Figure 5 shows the reconstructed
images in the case of 60% noise. Again there is little
perceptible difference between the conventional gridding,
F-CG (without DCF), and DING images; however, the F-CG
(with DCF) image shows more background artifacts. Note
that using the preconditioning DCF is not SNR-optimal
(18). Table 2 summarizes the RMS errors and the SNR
values of the three reconstruction methods for different
noise levels. The data show that better accuracy and SNR
are achieved with DING.

For the random k-space trajectory, the DING and F-CG
methods substantially outperform the conventional grid-
ding algorithm in both accuracy and SNR (Table 3). It is
obvious that the conventional gridding algorithm is unable
to compensate for the varying sampling density, and the
reconstruction error is dominant over noise. The noiseless
images reconstructed by the three methods (Fig. 6) show
intense sampling artifacts in the conventional gridding
reconstruction, whereas these artifacts are not visible in
the image reconstructed by DING or F-CG. This observa-
tion is reflected in the lower RMS error (Table 3). For this
random trajectory, large tails are evident in the PSF of the
conventional gridding algorithm, while a better PSF is
obtained with F-CG, and a much better PSF results from
using DING, as plotted in Fig. 7.

To show the convergence properties of the F-CG and
DING methods, Fig. 8 shows the RMS error after each

a. b.
c. d.
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FIG. 4. PSF profile of conventional gridding, F-CG, and DING for the
spiral trajectory. A logarithmic scale is used in the vertical axis.

iteration of the CG method for the random trajectory in the
noiseless case. In both reconstruction methods the error
drops sharply for the first few iterations and stabilizes after
about 10—20 iterations. Fast convergence is evidenced for
F-CG, and a faster convergence is achieved using DCF for
preconditioning. However, higher RMS error is observed
in the F-CG images in the presence of noise. On the other
hand, although DING has a slower convergence, it exhibits
better immunity toward noise (Fig. 8; Tables 2 and 3).

In Vivo Studies

Figure 9 shows in vivo spiral brain images reconstructed
using the conventional gridding, F-CG, and DING meth-

FIG. 3. Reconstructed images for simulated spiral
sampling of the noiseless k-space of the SL phan-
tom using conventional gridding (a), F-CG without
(b) and with spiral DCF (c), and DING (d).
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FIG. 5. Reconstructed images for simulated spiral
sampling of the noisy k-space of the SL phantom
(60% noise) using conventional gridding (a), F-CG
without (b) and with spiral DCF (c), and DING (d).

ods. Both F-CG versions and DING converged in nine
iterations. The locations of the object and background
regions used for SNR measurement are indicated in black
and white rectangles, respectively. The images recon-

Table 2
Comparison of the Performance of the Conventional Gridding, the
F-CG, and the DING Algorithms for the Spiral Trajectory*
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b .
d .

structed by the three methods are of comparable quality.
The image SNRs for conventional gridding, F-CG without
and with DCF, and DING are 23.4, 22.1, 22.6, and 23.3,
respectively, indicating a similar performance by conven-

Table 3
Comparison of the Performance of the Conventional Gridding, the
F-CG, and the DING Algorithms for the Random Trajectory*

Noise Method RMS

Noise Method RMS

level (number of iterations) error (%) SNR level (number of iterations) error (%) SNR
0% Gridding 2.6 N/A 0% Gridding 30.4 N/A
F-CG (7) 2.9 N/A F-CG (11) 0.5 N/A
F-CG + spiral DCF (2) 2.6 N/A F-CG + Voronoi DCF (8) 0.82 N/A
DING (9) 4.9 N/A DING (13) 2.6 N/A
20% Gridding 7.4 47.9 20% Gridding 30.5 39.2
F-CG (7) 7.4 48.3 F-CG (11) 2.8 106.0
F-CG + spiral DCF (13) 10.8 34.3 F-CG + Voronoi DCF (8) 3.0 112.8
DING (9) 7.0 56.0 DING (13) 3.4 101.7
40% Gridding 14.1 241 40% Gridding 30.7 34.3
F-CG (7) 14.0 24.5 F-CG (11) 5.6 58.4
F-CG + spiral DCF (16) 23.4 15.5 F-CG + Voronoi DCF (8) 6.1 54.7
DING (9) 11.4 28.1 DING (13) 5.3 59.6
60% Gridding 20.1 16.1 60% Gridding 31.2 29.2
F-CG (7) 20.6 16.3 F-CG (11) 8.5 39.2
F-CG + spiral DCF (16) 33.8 10.3 F-CG + Voronoi DCF (7) 9.1 36.8
DING (12) 171 17.2 DING (13) 7.5 41.1
80% Gridding 27.2 121 80% Gridding 31.7 24.9
F-CG (7) 271 12.2 F-CG (11) 11.4 29.5
F-CG + spiral DCF (16) 43.0 7.7 F-CG + Voronoi DCF (7) 12.1 27.7
DING (9) 21.7 13.3 DING (13) 9.9 31.0
100% Gridding 33.1 9.7 100% Gridding 325 21.5
F-CG (8) 33.5 9.5 F-CG (11) 14.2 23.6
F-CG + spiral DCF (16) 50.7 6.2 F-CG + Voronoi DCF (7) 15.2 22.2
DING (12) 28.4 9.8 DING (13) 12.4 24.8

*RMS errors are calculated as a percentage of the RMS of the
reference image.

*RMS errors are calculated as a percentage of the RMS of the
reference image.
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a. b.
c. d.

tional gridding and DING, and a slightly degraded perfor-
mance by F-CG. With irregular sampling resulting from the
removal of every eighth interleave, significant artifacts are
evident in the conventional gridding image, which re-
duces the measured SNR in the same region to 8.0. The
artifacts are much less noticeable in the F-CG without
(nine iterations) and with DCF (nine iterations), and the
DING (eight iterations) images, where the measured SNRs
are 13.8, 15.5, and 16.8, respectively. These results show
that conventional gridding fails to correctly adapt to this

---- conventional gridding

wmen F-CG
..... F-CG (spiral DCF)
ING

L L L 1
50 100 150 200 250

r

FIG. 7. PSF profile of the conventional gridding algorithm, F-CG,
and DING for the random trajectory. A logarithmic scale is used in
the vertical axis.

Gabr et al.

FIG. 6. Reconstructed images for simulated ran-
dom sampling of the noiseless k-space of the SL
phantom using conventional gridding (a), F-CG
without (b) and with Voronoi DCF (c), and DING (d).

irregular sampling even when the Voronoi DCF is used,
while DING, although affected by the undersampling, fares
best.

DISCUSSION

Our new DING algorithm enables images to be accurately
reconstructed from arbitrarily-sampled k-space. This is
achieved without grid subsampling, which is usually nec-
essary when the conventional gridding algorithm is used.

100F

— FCG
..... F-CG (Voronei DCF)
il ) — DING

80t

70F

50F

RMS error (%)

40

30F

10F

8
Iteartion

FIG. 8. The RMS error of F-CG and DING vs. the number of CG
iterations for the simulated noiseless SL phantom and the random
trajectory. Errors stabilize after approximately 15 iterations.
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FIG. 9. Reconstructed in vivo brain images for the spiral trajectory using conventional gridding (a), F-CG without (b) and with the spiral DCF
(c), and DING (d). Below are the images reconstructed from the irregular spiral that results from omission of every eighth interleave, using
conventional gridding (e), and F-CG without (f) and with Voronoi DCF (g), and DING (h). Note the severe artifacts in e compared to f-h. The
black and white rectangles denote regions inside and outside the object sampled for SNR measurements.

Lower RMS errors and comparable SNR are achieved using
DING, as is evident from Tables 2 and 3. A lower SNR
might be expected for DING, which involves a deconvolu-
tion process, as compared to the smoothing convolution
operation of the conventional gridding algorithm. How-
ever, no significant SNR degradation is observed, which
reflects the inherent regularization of the CG method. On
the other hand, no artifacts are discernible in the DING-
reconstructed images. This contrasts with the well-known
wing artifact with conventional gridding if subsampling is
not performed and/or sampling artifacts when irregular
k-space sampling schemes are deployed.

One of the advantages of DING is that the problem of
calculating the DCF can be completely avoided because
density compensation is inherent in the deconvolution
step. Avoiding the calculation of the DCF is an important
property, especially when analytical solutions are unavail-
able, as is the case for the random trajectory we used, or
when the trajectory crosses itself. The DCF is the major
factor that determines the accuracy of the conventional
gridding algorithm, and discrete approximation of the con-
volution operation is highly dependent on the DCF (3).
Errors in density compensation are magnified by the alias-
ing and roll-off-correction processes. Significant artifacts
in the reconstructed image may result if the sampling
density is not rendered uniform after the DCF is applied.
This is the case for the random trajectory in which the
random sampling density is not efficiently compensated
for, resulting in the artifacts in Fig. 6 compared to the
artifact-free images for the spiral trajectory in Fig. 3. Un-
fortunately, the existence of a sufficiently good DCF for an
arbitrary trajectory is not guaranteed, and in such situa-
tions DING provides a better solution. The improved per-
formance of DING is essentially due to the accuracy of the
deconvolution operation, and is largely independent of the
sampling trajectory as long as the sampling rate is suffi-
cient to avoid aliasing. This is evident in Fig. 6, which
shows that the DING-reconstructed image is free of the

reconstruction artifacts present in the conventional grid-
ding image.

The memory requirement for DING is the same as that
for conventional gridding without grid subsampling, be-
cause the same gridding matrix is used. The reconstruction
accuracy of DING is about the same as or better than that of
conventional gridding with a twice-finer grid. Thus, there
is about a fourfold saving in memory requirement for 2D
trajectories, and the saving is even greater for 3D trajecto-
ries. The F-CG method has the same memory requirements
as conventional gridding because F-CG uses conventional
gridding to implement the matrix-vector multiplication in
each CG iteration.

Both DING and F-CG have a higher computational load
than the conventional gridding algorithm as a cost of their
improved accuracy. In the following, we compare the com-
putational load of the three reconstruction methods as-
suming comparable image quality. This requires imple-
menting the conventional gridding algorithm with a twice-
finer grid to avoid artifacts. Let J be the number of
neighboring grid points around each of the trajectory sam-
ples. In the conventional gridding algorithm, reconstruc-
tion involves a single matrix-vector multiplication with a
matrix size of 4N X L with 4L] nonzero elements. This is
about four times the computational load required for a
regular grid. The computational requirement of DING for a
K-iteration solution is (2K + 1) matrix-vector multiplica-
tions. The matrix size is L X N and contains LJ nonzero
elements. The result is a {(2K + 1)/4}-fold increase in the
number of multiplications over conventional gridding. A
satisfactory solution is usually obtained in less than 15
iterations for a zero initial solution, which means an in-
crease in computational load by a factor of about 8. Al-
though the F-CG method generally has a better conver-
gence rate than DING and thus requires less iterations for
a stable solution, it also performs more work in each iter-
ation because it involves a forward and an inverse gridding
operations. The gridding operations are usually performed
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on a subsampled grid, which increases the computational
load. For a twice-finer grid and a K-iterations solution, the
cost is about (2K + 1) X 4LJ multiplications. Assuming that
the F-CG requires about half the number of iterations as
DING (Fig. 8), the net result is a speed-up by a factor of 2
in DING compared to F-CG.

Note that two matrix-vector multiplications are needed
for each CG iteration if the normal equation matrix C*C is
not computed in advance. If this matrix is computed in
advance, the number of matrix-vector multiplications is
cut by almost half, reducing the computation time to only
fivefold that of conventional gridding. However, this in-
crease in speed comes at the expense of an increased
memory requirement to store the C matrix, as well as the
C”C matrix. In this case the fourfold reduction in memory
requirements for DING reduces to about twofold compared
to conventional gridding. Also, the speed-up factor may
not be exactly 2, because the C*C matrix contains more
nonzero elements than the sparse matrix C. This trade-off
between memory requirements and computational speed
can be made according to resource availability. In simula-
tions, the number of iterations needed to achieve a stable
DING solution ranged from 8 to 15 using a zero initial
solution; however, when a good initial solution is avail-
able the number of iterations can be greatly reduced, thus
improving the speed. For example, this can be done in
dynamic studies where the image in one frame can be used
as the initial solution for the next frame. The reconstruc-
tion times for conventional gridding, F-CG, and DING with
memory-saving and higher-speed versions, were on aver-
age 0.7, 18.4, 9.4, and 4.6 s, respectively, for a 256 X
256 grid in the simulated spiral experiment.

An important feature of DING, which is shared by con-
ventional gridding and F-CG, is that reconstruction of the
gridding matrix is simple and remains relatively fast. On
the same machine, the gridding matrix for the simulated
spiral trajectory with 32 X 4096 samples and a 256 X 256
Cartesian grid can be constructed in less than 1.7 min. This
is a useful property for situations in which the k-space
trajectory is not known a priori. For example, when there
is patient motion during the scan, locations of the acquired
samples are unknown until the motion is estimated. Rota-
tional motion of the imaged object corresponds to a similar
rotation of the k-space samples, resulting in an irregular
sampling pattern. Computationally intensive techniques
for constructing the gridding matrix (8) and the DCF (6) are
unsuitable in such cases, whereas DING provides an easy
way to construct the gridding matrix while avoiding den-
sity-compensation problems. Motion-correction schemes
(27,28) may thus benefit from utilizing DING to efficiently
suppress motion-induced blurring and improve the fidel-
ity of the reconstructed image.

CONCLUSIONS

We have introduced DING as a new method for recon-
structing images from arbitrarily sampled k-space. DING
performs better than conventional gridding in terms of
reconstruction accuracy and memory requirements, at
some cost to reconstruction speed. Its performance is bet-
ter than F-CG in terms of speed, memory, and noise sup-
pression. Deconvolution-interpolation, as opposed to con-
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volution-interpolation, is the underlying difference that
yields the better accuracy in DING compared to conven-
tional gridding. DING completely avoids the problem of
calculating a DCF, since density compensation is inherent
in the deconvolution process. Reconstruction of the grid-
ding matrix is a simple and fast process, and thus provides
flexibility for k-space trajectories that are often changed or
not known a priori. The regularization inherent in the CG
method helps to stabilize the performance of DING in the
presence of noise.
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