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Abstract: One of the most promising research areas in the healthcare industry and the scientific
community is focusing on the AI-based applications for real medical challenges such as the building
of computer-aided diagnosis (CAD) systems for breast cancer. Transfer learning is one of the recent
emerging AI-based techniques that allow rapid learning progress and improve medical imaging
diagnosis performance. Although deep learning classification for breast cancer has been widely
covered, certain obstacles still remain to investigate the independency among the extracted high-
level deep features. This work tackles two challenges that still exist when designing effective CAD
systems for breast lesion classification from mammograms. The first challenge is to enrich the input
information of the deep learning models by generating pseudo-colored images instead of only using
the input original grayscale images. To achieve this goal two different image preprocessing techniques
are parallel used: contrast-limited adaptive histogram equalization (CLAHE) and Pixel-wise intensity
adjustment. The original image is preserved in the first channel, while the other two channels
receive the processed images, respectively. The generated three-channel pseudo-colored images
are fed directly into the input layer of the backbone CNNs to generate more powerful high-level
deep features. The second challenge is to overcome the multicollinearity problem that occurs among
the high correlated deep features generated from deep learning models. A new hybrid processing
technique based on Logistic Regression (LR) as well as Principal Components Analysis (PCA) is
presented and called LR-PCA. Such a process helps to select the significant principal components
(PCs) to further use them for the classification purpose. The proposed CAD system has been examined
using two different public benchmark datasets which are INbreast and mini-MAIS. The proposed
CAD system could achieve the highest performance accuracies of 98.60% and 98.80% using INbreast
and mini-MAIS datasets, respectively. Such a CAD system seems to be useful and reliable for breast
cancer diagnosis.

Keywords: hybrid CNN-based LR-PCA; deep feature extraction and reduction; breast lesion classification;
CAD system; breast cancer

1. Introduction

According to the global cancer statistics in 2020, GLOBOCAN 2020 [1], an estimated
19.3 million new cancer cases have been diagnosed worldwide, with over 10.0 million
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cancer deaths in 2020. With an anticipated 2.3 million new cases, female breast cancer has
surpassed lung cancer as the most diagnosed malignancy, followed by lung, colorectal,
prostate, and stomach cancers. In Saudi Arabia, breast cancer is the most common type of
cancer, and in 2018, the incidence and death age-standardized rates for Saudi women were
27.3 and 7.5 per 100,000, respectively [2]. The most efficient way to diagnose breast cancer is
medical imaging examination. Digital mammography, magnetic resonance imaging (MRI),
ultrasound, and infrared thermography are some of the imaging techniques utilized for
diagnosis of breast cancer, while mammography imaging is the most important paradigm
for its early detection [3]. The overall goal is to enable early breast cancer treatment,
improve survival rates, and limit the need for severe treatments such as mastectomy [4,5].
On a mammography, dense breast tissue can appear white or light gray. This can make
mammograms more difficult to read in younger women with denser breasts [6]. Many
breast disorders have symptoms that are similar to cancer and require testing and, in some
cases, a biopsy to diagnose. When a mammography detects something that appears to be
cancer but turns out to be benign, it is called a false positive result. Based on the density
of the breasts, radiologists may diagnose incorrectly with a percentage of 30% of breast
cancers [7]. It is challenging for even experienced radiologists to interpret a huge number of
screening mammography. Masses and microcalcifications are two types of cancer markers
that can be detected by mammography technology. However, the mass detection is thought
to be more difficult than microcalcification detection, not only because of the wide range
of size and shape that masses can take on in a mammography, but also because masses
often have poor image contrast [6,8]. Therefore, the CAD, has been developed to assist
radiologists in analyzing the entire images and highlighting probable areas of concern
that require further investigation. CAD can detect tumors that a radiologist may miss.
It can be considered a second opinion automated tool that can assist the radiologists by
automatically identifying the areas of abnormal contrast, suspicious regions [9].

Artificial intelligence, or AI, is a well-known technology that has recently been used
in the development of effective CAD systems for the classification of lesions in mammo-
grams. Numerous researchers have lately developed AI-based solutions for the automated
detection and diagnosis of breast anomalies in mammography pictures. These solutions
can be divided into two types: classical and deep learning models. Although the deep
learning approach has achieved exceptional performance in the context of medical image
analysis, several problems remain, as discussed in [10]. Over-fitting, the high complexity of
deploying deep learning models, and the loss of some visual information owing to the pre-
processing phase are some of these concerns. Overfitting is a key issue when applying deep
learning models to medical data because of the small data size in comparison to the large
number of network parameters [11–13]. As a result, the use of pretrained CNN models is
recommended in this work to alleviate over-fitting and reduce the required high complexity
in training deep learning models from scratch. However, the number of retrieved features
from pretrained CNN is huge, which may cause significant problems throughout the data
processing process, such as the multicollinearity problem. Multicollinearity occurs when
input features of a dataset are strongly correlated. This affects regression and classification
model effectiveness. Multicollinearity is reduced in this study by the utilization of feature
reduction such as the Principal Components Analysis, PCA. The use of PCA is empowered
in this study by using the Logistic Regression to pick the significant principal components
returned from the PCA analysis [14,15].

To highlight our contribution, this study extends our prior work [16] in constructing
an effective CAD system for the categorization of lesions in breast mammograms and
contributes the following:

• A hybrid deep learning model of CNN-based LR-PCA has been designed for breast
lesion classification purpose using the X-ray breast cancer images (i.e., mammograms).

• Generating more useful and powerful input information based on pseudo-colored
images to enrich the input knowledge of deep learning models.
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• A comprehensive study of transfer learning based on multiple convolutional networks
has been conducted in order to extract the high-level deep features directly from the
pre-trained backbone models.

• Resolving the multicollinearity problem that occurs among the derived high-level
deep features from pre-trained by introducing a new method called LR-PCA. The
optimized PCs are selected to perform the final classification purpose.

• A comprehensive evaluation process of the proposed CAD system is performed using
two different public benchmark datasets: INbreast and mini-MAIS.

2. Related Work

Artificial intelligence, AI, is a well-known technology that has recently been employed
in developing innovative solutions in the healthcare sector. These solutions can help pa-
tients in receiving an earlier diagnosis and precise treatments while also increasing the
efficiency and effectiveness of healthcare services. The governance and regulation of AI
services in healthcare is a major concern. The BSI (body substance isolation) and AAMI
(Association for the Advancement of Medical Instrumentation) are non-profit standard-
ization organizations that are investigating the role for standards in the deployment of
innovative AI solutions within the healthcare sector [17]. Regulations protect the society by
guaranteeing that the medical technology placed on the market poses an acceptable and fair
level of risk. The quality of data inputs is one of the main issues that has been reported by
the Medicines and Healthcare products Regulatory Agency, MHRA, in partnership with the
AAMI. MHRA is an executive agency responsible for ensuring that medicines and medical
devices work and are acceptably safe. They have recommended that the AI solutions will
only be effective, and safe if the data models are trained on high quality data. Data samples
need to contain enough variety to fulfill regulators, patients, and professionals and avoid
unintentionally any error or bias in the AI outputs. In addition, the level of complexity is
another concern. Eventually, the AI developer should understand and articulate the type
of AI technique that is being developed, and its deployment environment.

The AI-based solutions for the automated detection and diagnosis of breast abnormali-
ties in mammography images have recently been proposed by numerous researchers. These
solutions can be classified into classical and deep learning models. Early CAD systems
have been developed using the classical machine learning models such as the research con-
ducted in [18–30]. The basic framework in these studies consists of three stages including
Region of Interest (ROI) extraction, feature extraction and selection, and classification stage
using well-known classifiers such as K Nearest Neighbor (KNN), Support Vector Machine
(SVM), Neural Network (NN), and Ensemble classifiers such as the work conducted by
Kadah et al. [18,21,24,25,31]. In [18], a CAD system that can help radiologists diagnose
microcalcification patterns in digitized mammograms earlier and faster than traditional
screening systems has been introduced. The proposed approach involves three steps includ-
ing ROI extraction (32 × 32 pixels), feature selection using the wavelet decomposition, and
classification of benign/malignant microcalcifications. Traditional classification methods
were used: K-NN, SVM, NN, and fuzzy. MIAS mammographic databases were used to
evaluate the suggested approach. Wavelet transform and fuzzy-neural algorithms have
been proposed in [19]. These strategies are based on globally/locally processing of im-
age/ROI. Classification of the normal/abnormal, and microcalcification masses has been
accomplished on the MIAS benchmarking dataset. In [21], an enhancement in the classifier
performance of the normal/microcalcification of breast tissue has been performed by the
utilization of voting-based KNN and SVM classification approaches. A hybrid approach of
SVM and Linear Discriminant Analysis (LDA) has been utilized in designing a CAD system
for breast lesion classification in [22]. The genetic algorithm approach has been utilized
for the classification of breast cancer in [23,32]. Lately, the deep learning techniques were
used in most recent studies in the context of CAD system of breast cancer [33–36]. This is
a natural consequence of the outstanding performance retrieved using the deep learning
methods in image classification [37]. The most popular paradigm of the deep learning
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technology in the medical imaging is transfer learning which is based on using pretrained
CNN such as Inception V3 [38], AlexNet [39], VGG19/VGG16 [40], ResNet50 [41], and
GoogleNet [42]. The pretrained CNNs have been already trained on natural images such
as ImageNet. The transfer learning approach has been exploited extensively in the classifi-
cation of mammograms [43–48] to improve the performance of CNN architectures created
from scratch. Transfer learning is utilized to enhance the performance of a machine learning
model from one domain by transferring knowledge from a related domain [49]. The main
advantage of transfer learning is the improvement of classification precision and rapid
execution of the training phase [48]. Better improvement in the performance of transfer
learning in the classification of mammograms has been introduced by utilizing the fusion of
features extracted using different types of pretrained CNNs [50,51]. Another enhancement
has been proposed in the study [52] which proposed a deep feature fusion framework
using pretrained a CNN followed by the principal component analysis (PCA) as a feature
reduction step and the SVM for the classification of breast cancer. The utilization of PCA
as a dimensionality reduction for the features extracted using transfer learning has been
proposed in [53] and yielded better performance than the individual use of the pretrained
CNN. It is well known that PCA is the original and dominant dimension reduction tool
and has been employed in a numerous study for the classification of mammograms using
the traditional machine learning techniques.

With the current artificial NN and optimization skills, large-scale deep NN have been
successfully developed, with a greater performance with deeper depth [54]. However,
there are some concerns that should be investigated to assure the effectiveness of such
solutions before being deployed in the healthcare sector. Some of the drawbacks of the
AI technology have been surveyed in [55–58]. Additionally, the current challenges of
deep learning technologies in the context of medical image analysis have been reviewed
and defined in [10]. That article reviewed the basic concepts of deep learning and the
most recent advances in medical images. They have defined the current problems of deep
learning in the medical field and proposed a perspective of the primary research focus. In
this study, we are investigating some of these raised issues. The first issue is the overfitting
which is a major problem in applying deep learning models on medical data due to the
very small data size relative to the huge number of network parameters. Second, most
of network parameters come from fully connected layers after the convolutional part of
the network. The third issue is that the number of classes in medical data sets is usually
very small, and in many cases, binary classification problems are very common. Another
issue is that all medical images are in grayscale while pretrained deep networks have
color image input layers, repeating grayscale images for all three color channels is done
to match input requirements, which does not seem efficient. The last issue that we have
observed moreover in the current literature is that most of the aforementioned studies have
employed the preprocessing of the medical images before they are used as input to deep
learning networks. This does not seem to be rational given that such preprocessing aims
to enhance images for human viewers and that deep networks should be able to learn the
best preprocessing on its own from original images. Losing information in original images
as a result of such preprocessing is likely and hence performance may be limited by the
choice of such preprocessing.

3. Methodology

In this study, a hybrid deep learning CNN-based LR-PCA for breast lesion classifi-
cation is proposed. Such a CAD system involves three main stages. First, three-channel
pseudo-colored images are prepared based on the input grayscale images allowing deep
learning models to extract more powerful deep features for better diagnosis performance.
Second, backbone deep convolutional networks are used to extract the high-level deep
features based on the transfer learning strategy avoiding the overfitting problem [59]. For
deep feature extraction and selection, multiple deep learning models are employed such
as AlexNet, VGG, and GoogleNet. Third, the LR-PCA model is proposed to select the
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significant principal components among the extracted features to tackle the problem of
multicollinearity among the derived features. The dimensionality of the high-level deep
features extracted from the top convolution layers is reduced using the PCA technique to
obtain a reasonable feature space of low dimensionality while representing the variance in
the input data. Then, Logistic Regression (LR) is used for selecting the significant principal
components (PCs) extracted from the PCA.

The proposed CAD system comprises five modules including the preprocessing of
images, features extraction using the pretrained CNN, dimensionality reduction using
PCA, feature classification using the traditional machine learning techniques, and classifier
evaluation using the performance metrics of CAD systems. The proposed framework is
depicted in Figure 1.

3.1. Data Preparation

The data used in this work were obtained from different public datasets including
the mini-MIAS for film-based, reduced resolution data, and the INbreast for full-field
high-resolution digital mammography. The mini-MIAS is a popular Mammography Image
Analysis Society (MIAS) database [60]. The mini-MIAS database was created from X-ray
films carefully taken from the United Kingdom National Breast Screening Program. It
was digitalized with to 50 microns resolution via a device having a linear optical density
mapping of 3.2 and 8-bits per pixel quantization levels. However, the images were resized
to 200-micron resolution and clipped/padded to retain a size of 1024 × 1024 pixels for all
images. The database comprises right, and left breast images for 161 patients so the total
number of images is 322. The images correspond to samples from normal, benign and
malignant tissues with 208, 63 and 51 images correspondingly. The database is supplied
with a ground truth diagnosis for all images and exact locations of abnormalities that may
exist inside each image represented as the center and radius of the circle around each lesion.
The mammograms that are included in the INbreast dataset were all obtained at a Breast
Centre that is housed within a University Hospital [61]. It has a total of 410 mammograms,
representing 115 distinct patient cases. Some of the cases were obtained from women who
had both of their breasts examined, meaning that there were four mammograms performed
on each woman. The INbreast includes a variety of lesions that can occur in the breast,
such as masses, calcifications, and distortions of asymmetries. These lesions can be found
in the breast. In addition to the type of lesion and the pathology type, the bounding box
annotations of any existing lesions are present in each case.

The data preparation stage includes the following steps: Region of Interest, ROI,
extraction, data augmentation, and generating pseudo-color images. ROIs fed to the CNN
are derived from the suspicious areas of mammograms. Data augmentation is used to
enlarge the number of samples in the training dataset. A 32 × 32 square region of interest
(ROI) was extracted from the lesion. Such an ROI size was selected to directly compare our
proposed framework against earlier work that addressed the same classification problem
using various techniques [16]. However, the ROI selection method was commonly used
for various medical image CAD system pipelines [62,63]. The selected ROI size could
help in ensuring an adequate statistical representation of the breast lesion. The small ROI
size makes it possible to subsequently allow better lesion localization capability for the
developed models [32]. For the miniMIAS database, multiple ROIs were extracted and
used from a single lesion whenever it was possible to obtain non-overlapping ROIs within
the given lesion. This explains why the number of ROIs is larger than the number of images.
We tried to avoid overlap to obtain completely independent ROIs and this was followed
in previous work [16,62,63]. Regarding the INBreast database, the previous work on this
database relied on extracting an ROI of the whole mass and resizing it to the input size of
the deep learning model [64].
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Figure 1. The Proposed CAD framework for breast lesion classification from X-ray mammograms. Figure 1. The Proposed CAD framework for breast lesion classification from X-ray mammograms.
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The created datasets contain 144 ROIs with equal number, 72 abnormal and normal
regions for the mini-MIAS collection, and 34 and 73 benign/malignant ROIs for the INbreast
dataset. Data augmentation, which was primarily based on the flipping (up/down and
left/right) and rotation technique, was utilized in order to generate greater size of the
dataset that were utilized. The ROIs have been rotated by multiple different angles:
0 degrees, 90 degrees, 180 degrees, and 270 degrees. The number of samples included
in each category of the labeled ROI dataset that was generated is 576 and 1095 for the
mini-MIAS and the INbreast, respectively.

The pseudo-colored images were generated and used to obtain rich information
allowing deep learning models to derive more accurate deep features. Instead of repeating
the same image in all three-color channels, only one channel gets the original image while
the other two channels receive different processed images that allow some additional global
information to be incorporated within each pixel. The pseudo-color image display has been
widely used in medical imaging since the digital imaging revolution and gives doctors
new ways of detecting subtle variations because of the way colors are perceived by the
human eye. Figure 2 illustrates the main steps that has been followed in generating the
pseudo-color mapping which can be listed as follows:

• Channel 1 (Red) includes the original grayscale image.
• Channel 2 (Green) includes the enhanced image contrast of the grayscale image

by transforming the values using contrast-limited adaptive histogram equalization
(CLAHE) [65].

• Channel 3 (Blue) includes the processed image that maps the intensity values in the
grayscale image to new values by saturating the bottom 1% and the top 1% of all pixel
values. This operation increases the contrast of the output image.
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An example of an input image that was used during the data preparation phase can be
seen in Figure 3, along with the corresponding pseudo-colored image that was generated
as an output.



Sensors 2022, 22, 4938 8 of 23

Sensors 2022, 22, x FOR PEER REVIEW 8 of 24 
 

 

by the human eye. Figure 2 illustrates the main steps that has been followed in generating 
the pseudo-color mapping which can be listed as follows: 
• Channel 1 (Red) includes the original grayscale image. 
• Channel 2 (Green) includes the enhanced image contrast of the grayscale image by 

transforming the values using contrast-limited adaptive histogram equalization 
(CLAHE) [65]. 

• Channel 3 (Blue) includes the processed image that maps the intensity values in the 
grayscale image to new values by saturating the bottom 1% and the top 1% of all 
pixel values. This operation increases the contrast of the output image. 
An example of an input image that was used during the data preparation phase can 

be seen in Figure 3, along with the corresponding pseudo-colored image that was gener-
ated as an output. 

 
Figure 2. The concept of generating three-channel pseudo-color mapping image. 

 
 

 
(a) (b) (c) 

Figure 3. Example of data preparation phase for generating the pseudo-colored image based on the 
original grayscale X-ray mammogram. (a) Region of interest (ROI); (b) Pseudo-Colored image; (c) 
Grayscale image. 

  

Figure 3. Example of data preparation phase for generating the pseudo-colored image based on
the original grayscale X-ray mammogram. (a) Region of interest (ROI); (b) Pseudo-Colored image;
(c) Grayscale image.

3.2. Feature Selection using Transfer Learning

The conventional computer-aided diagnosing system in medical field relies heavily on
the human designer’s efforts to extract handcrafted features, such as the density and shape
of the cancer region [66]. This is a difficult task, as the extraction of handcrafted features
is not significant in classifying the malignant areas despite the lengthy process [67]. Thus,
other techniques such as transfer learning have been developed and utilized for selecting
the significant features without the need for handcrafted features. The approach of transfer
learning is based on utilizing pretrained CNNs in either the classification or extraction of
the significant features in the training/validation dataset. There are three main types of
layers in a pre-trained CNN: a convolutional layer, a pooling layer, and a fully connected
(FC) layer. The convolution layers are used to extract the features, while a fully connected
layer is used to classify them. This layer categorizes the selected features based on the input
class. In this work, we have utilized the convolutional and pooling layers of pretrained
CNNs in extracting the significant features in benign/malignant images of breast cancer;
however, the FC layer has been replaced by traditional classifiers. AlexNet [39], VGG [40],
and Googlenet [42] are some of the most popular pre-trained CNN models for image
classification. Abdelhafiz et al. [68] have surveyed many research articles demonstrating
their effectiveness in breast cancer classification. The AlexNet, VGG, and GoogleNet CNNs
have been selected and utilized for this investigation due to their capability to generate
high-level feature accuracy and relatively low processing complexity comparing with other
models [68].

AlexNet [39] was introduced by Alex Krizhevsky and his team in 2012 in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) competition. Their CNN’s architecture
is characterized by the fact that it has a much higher number of levels than previous models.
There are five convolutional levels and three fully connected levels to this network’s input,
which is an image with a resolution of 227 × 227 pixels. They have accomplished the top-5
error rates which is a significant improvement over what was previously possible.

VGG [40] has been introduced in the ImageNet Challenge 2014 by Karen Simonyan,
and Andrew Zisserman. Using VGG, it has been shown that the depth of the network has a
significant impact on CNN’s accuracy. The ReLU activation function has been inserted after
the convolutional layers and followed by a pooling layer. Calibration is performed using
softmaxes at the end of the model. VGG-11, VGG-16, and VGG-19 are three models of VGG-
E with 11, 16, and 19 levels, respectively. The remaining 8, 13, and 16 levels in each model
are convolution levels, with the final three levels of each model being fully connected.
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GoogleNet [42] has also been introduced in ILSVRC challenge in 2014 by Szegedy C.
et al. There are 22 layers in the GoogleNet CNN architecture. The Inception module serves
as the foundation for this network structure, which is why it is known as Inception-v1.
After nine inception units, each GoogleNet layer has a fully connected layer before it can be
output. Inception modules are stacked on top of each other in GoogleNet, with a maximum
layer of pooling. GoogleNet has twelve times fewer parameters than AlexNet, which makes
it easier to train, even though it is more complex.

3.3. Dimensional Reduction Using LR-PCA

The number of extracted features from transfer learning when applied in the classifi-
cation of medical images is huge. Although this creates opportunities to improve model
performance, it also creates serious problems during the data analysis process. One of these
problems is known as the multicollinearity problem [69]. Multicollinearity is a problem
that arises when the input features of a dataset have a strong correlation with more than
one of the other features in the dataset. The effectiveness of regression and classification
models is hampered as a result of this factor. Feature reduction methods are the primary
strategy that are implemented to reduce the effects of multicollinearity. PCA, or Principal
Component Analysis, is a statistical technique that makes use of multicollinearity. In PCA,
highly correlated variables are combined into a set of variables that are not correlated with
one another. As a result, principal component analysis has the potential to successfully
eliminate multicollinearity between features.

It is well known that principal component analysis is the original and preeminent
dimension reduction technique, and that it has been utilized in numerous studies for
the classification of mammograms utilizing conventional machine learning techniques.
The process of PCA consists primarily of transforming the feature space through the
relationship between attributes, mapping the initial feature space to the low-dimensional
one to accomplish the goal of dimension reduction, and then analyzing the transformed
feature space [70]. PCA is an unsupervised dimensional reduction approach, and it reduces
the data dimension through the correlation between input features. The transformation
matrix is optimized by finding the most significant differences in the original space.

The main principal in selecting the Principal Components, PCs, retrieved from the
PCA is that the directions with the greatest variations contain the most information about
classes. PCA is most commonly derived from a standard linear projection that maximizes
the variance in the projected space. The most common method for selecting the PCs to be
used is to first establish a threshold for the percentage of variance that can be explained,
such as 80 percent, and then choose the number of components that generate a cumulative
sum of variance that is as close as possible to that threshold. This is the standard approach
to selecting the Principal Components to be used. This method suffers from the two
primary weaknesses. It is necessary to make a personal decision regarding the threshold.
The 80 percent or 90 percent thresholds are arbitrary and do not have a fair motive for
being chosen in the majority of cases; instead, they are chosen at random. There is a chance
that some portion of that variation is just noise and not an actual signal. It is not possible
to know in advance whether or not the selected threshold eliminates only noise or it may
remove important information from the signal itself. To overcome that problem, we are
proposing a hybrid usage of Logistic Regression, LR, and PCA to select the significant
components as a further reduction of features yielded from the transfer learning. LR is a
common ML approach that can be utilized to explore the relationship between the input
feature and outcomes. Logistic regression is a simple and effective binary classification
model. It is very easy to implement LR and it works very well with classes that can be
separated by a straight line. In this work, a Binomial Logistic Regression model has been
constructed using a subset of the retrieved PCs from the PCA analysis. The selected PCs
from the LR are the one that have a significant coefficient in the constructed LR model,
p-value less than 0.05. As a result, the LR-PCA algorithm is as follows:

1. Create a covariance matrix for your dataset.
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2. Determine the eigenvectors and eigenvalues of that matrix.
3. Choose the desired number of dimensions and filter the eigenvectors to match, sorting

them by their associated eigenvalue.
4. Multiply the original space by the feature vector produced in the preceding step.
5. Build a Multinomial Logistic Regression model for the retrieved features.
6. Pick the principal components of the newly created LR model that have significant

coefficients.

3.4. Classical ML Approaches for ROI Classification and Model Evaluation

In this work, the statistical machine learning system comprised the implementation
of six distinct families of traditional classifiers. These classifiers included both parametric
and nonparametric classification strategies. Methods such as decision trees, discriminant
analysis, ensemble, KNN, naive Bayes, and SVM are examples of these types of techniques.
By using 5-fold cross-validation to obtain a reliable estimation of the performance, the
various parameters and variants that make up each classifier were optimized in order
to achieve the best possible performance and reduce the issue of overfitting as much as
possible. In each fold, different portions of images are assigned for each set. This process is
carried out five times, which is the same as the number of folds, and the results obtained
from each fold are averaged together to determine the overall performance of the system.
In particular, the data for benign and malignant cases are randomly split into three sets
including the training, validation, and testing sets. The percentage of division between the
different splits are 70%, 15%, and 15% for training, validation, and testing sets, respectively.

To evaluate the proposed CAD framework, Accuracy (Acc.), sensitivity (SE), speci-
ficity (SP), False Negative Rate (FNR), False Positive Rate (FPR), Area Under the Curve
(AUC), Matthews Correlation Coefficient (MCC), and F1-score were used [16,71]. All evalu-
ation metrics were driven using the benefits of confusion matrix. Although accuracy is a
significant performance metric due to the fact that it provides the percentage of correct clas-
sification in relation to the total number of samples, it does not distinguish between errors
based on whether they are false-positive or false-negative. This presents a problem in the
context of a CAD system, because in that scenario, a false-negative classification could have
much more serious repercussions than a false-positive one. This issue is addressed by the
sensitivity metric, which provides the percentage of malignant cases that were determined
to be correctly diagnosed. However, at the other hand, the specificity reveals the proportion
of typical patients whose conditions were accurately identified. When taken together, they
present the full picture, which enables an observer to make direct comparisons between
the various systems. In a CAD system, for instance, if two different systems have the same
level of accuracy, the one that has a higher level of sensitivity is the one that is preferred.

4. Results and Discussion

In this study, we have proposed an innovative framework of a CAD system for the
classification of breast cancer lesions by the use of a hybrid pretrained CNN and LR-PCA
learning model. The framework comprises four stages including data preparation, feature
extraction, feature reduction, and classification. In order to highlight the effect that the
newly developed method in the data preparation stage has on the overall performance
of the CAD system, we have generated two distinct sets of images for each database that
was used in this investigation. These sets include grayscale and pseudo-colored images,
respectively. In total, we have four different datasets being utilized in the testing of the
adequacy of the introduced CAD system.

The pre-trained CNN has been employed as a feature extraction stage. The ROIs in
each dataset have been resized to the corresponding size of each network (i.e., 227 × 227
for AlexNet and 224 × 224 for both VGG and GoogleNet) using bilinear interpolation
with an anti-aliasing filter in trying to attain network requirements and preserve the
image quality and maintain them free of aliasing artifacts, as the input layer must not
be altered as a part of the transfer learning strategy. During the training of CNNs, the
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learning parameters should be estimated. In this work, a stochastic gradient descent with
momentum, SGDM, optimizer was utilized. The learning rate for this optimizer was set
to 0.0001, the momentum term factor was set to 0.9, the L2-Regularization setting was set
to 0.0005, and the gradient threshold method used the L2-norm. The number of training
epochs that could be performed was set at 100, and the mini-batch size that could be used
was 16. These training options were chosen by examining the validation results obtained
through the running experiments. They were applied across all networks to enable a direct
comparison of the networks’ respective results as well as the training time incurred by
each of them. Figure 4 outlines the required processing time for the feature extraction
phase from each pre-trained deep learning model using both INbreast and mini-MIAS
datasets. The development processing of this work has been executed using the academic
version of Matlab 2020a coupled with the Machine Learning toolbox. The processor of the
computer system is a quad-core Intel® CoreTM i7-6700HQ that operates at 2.60 GHz. It
also has 16 gigabytes of random access memory (RAM), and a CUDA-supported graphics
card (NVIDIA GeForce GTX 950M with 4 gigabytes of memory). Although the retrieved
processing time of the conducted experiments depends on the execution environment
specifications, the insights gained could be reflected by comparing the derived overall
performances of the alternative methodologies. As depicted in Figure 4, the VGG16 has
consumed the largest processing time compared to the other networks. This is due to the
fact that VGG16 possesses a network that is more complicated and deeper than that of
the AexNet, and GoogleNet. In addition, we have observed that network architecture
affects the quantity of features extracted. The number of retrieved features from AlexNet,
GoogleNet, and VGG16 are 4096, 1024, and 4096 respectively. This is true regardless of the
type of dataset that is being utilized.
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We have computed the correlation coefficients between the extracted features as well
as the corresponding p-values for each feature pair in order to validate the necessity of
applying principal component analysis and demonstrate that the extracted features are
affected by the multicollinearity problem. The range of possible p-values is from 0 to 1,
with values close to 0 indicating a significant correlation between the extracted features.
For illustration, Figure 5 presents a heatmap depicting the retrieved correlation between
the features extracted from one of the pretrained CNNs, as well as a histogram of the
corresponding p-value. Figure 5 depicts the correlation coefficient using colors that are
graded from lightest to darkest (yellow, and dark blue color represent the highest correlation
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coefficients). Most of the extracted features have high values for the correlation coefficient
between their own and each other’s as represented by yellow color in the heatmap, as
shown in the figure. Furthermore, the vast majority of the corresponding p-values for the
correlation coefficient lie in the bin containing the numbers 0 to 0.1, which indicates that
the coefficients are significant.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 24 
 

 

  
(a) (b) 

Figure 5. A heatmap for the correlation coefficient between the extracted features and a histogram 
of the corresponding p-value. (a) The heatmap of correlation coefficient; (b) Histogram of the p-
value. 

PCA is implemented by first computing the covariance matrix of the extracted fea-
tures, and then calculating the PCs by employing eigenvalue decomposition. This is done 
so that PCA can more accurately analyze the data. After sorting the eigenvalues, the 50 
values with the highest absolute value are chosen. The projection is carried out with the 
help of the corresponding eigenvectors. The 50 selected PCs has retained a high amount 
of energy within the components as illustrated in Figure 6. In order to achieve the best 
results from the PCA analysis, it is first performed on the training data from each class 
individually, and then it is combined with the principal components from all of the clas-
ses. As a result of this, the creation of class-specific features ought to be feasible at this 
point. It is obvious from Figure 6 that the retained energy within the PCs that is obtained 
by applying PCA to each category of cancer yields a higher amount of energy than the 
energy that is obtained by applying PCA to all of the classes combined. 

Figure 5. A heatmap for the correlation coefficient between the extracted features and a histogram of
the corresponding p-value. (a) The heatmap of correlation coefficient; (b) Histogram of the p-value.

PCA is implemented by first computing the covariance matrix of the extracted features,
and then calculating the PCs by employing eigenvalue decomposition. This is done so that
PCA can more accurately analyze the data. After sorting the eigenvalues, the 50 values
with the highest absolute value are chosen. The projection is carried out with the help of
the corresponding eigenvectors. The 50 selected PCs has retained a high amount of energy
within the components as illustrated in Figure 6. In order to achieve the best results from
the PCA analysis, it is first performed on the training data from each class individually, and
then it is combined with the principal components from all of the classes. As a result of
this, the creation of class-specific features ought to be feasible at this point. It is obvious
from Figure 6 that the retained energy within the PCs that is obtained by applying PCA to
each category of cancer yields a higher amount of energy than the energy that is obtained
by applying PCA to all of the classes combined.

Utilizing the Logistic Regression approach allowed for an additional level of filtering
of the PCs to be carried out in an effective manner. Following the completion of the
PCA analysis, a Binomial LR model was developed using the retrieved set of principal
components (50 PCs). We have used the ANOVA F-statistics test as a method of hypothesis
testing in order to evaluate the significance of the LR model in terms of choosing the
significant PCs. This test was carried out so that we could assess the significance of the LR
model. The significance level of the estimated coefficients that are yielded from the binomial
logistic regression model has been measured. The significance has been calculated using the
following metrics including the standard errors (SE), the t statistics (t), and the p-value of the
coefficient estimates. The retrieved results of the test for the coefficient estimates of the fifty
extracted principal components are presented in Table 1. The p-values that were retrieved
show that the implanted LR model is effective in selecting the significant PCs that should
be utilized in the subsequent classical classification model. The PCs that were chosen from
the LR model were the ones that had a significant coefficient in the constructed LR model
with a p-value that was lower than 0.05 as highlighted in gray color in Table 1. After that
step, the total number of PCs that have been chosen is 23 which has been submitted to six
distinct families of classical classifiers including the decision trees, discriminant analysis,
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SVM, KNN, naive Bayes, and Ensemble. We have performed three experiments in testing
and evaluating the adequacy of the introduced CAD system. In the first experiment, the
extracted features from the pretrained CNNs (AlexNet, VGG, and GoogleNet) are fed
directly to the classical classifiers. In the second experiment, the extracted features are
reduced using the LR-PCA before being submitted the classical classifiers and the PCA is
applied for each class (normal/abnormal) separately. Additionally, in the last experiment,
the PCA is utilized across all of the classes. The three experiments were carried out on a
total of four image collections, which included the grayscale and pseudo-colored images
derived from the mini-MIAS, and INbreast benchmarking datasets. Therefore, a total of
twelve separate experiments were carried out in this work. The retrieved results yielded
from experiments performed on the INbreast, and mini-MIAS datasets are presented in
Tables 2 and 3, respectively. The results that are presented in these tables are the ones that
were retrieved from the best classification model out of the pool of classical classifiers that
were implemented in this work. The utilization of LR-PCA on the extracted features using
AlexNet for each class of the INbreast/mini-MAIS (pseudo-colored images) separately has
yielded the best performance as highlighted in gray color in Tables 2 and 3, respectively.
The PCA has been applied in an optimized manner. The PCA is performed on training
data from each class separately then principal components have been combined. This has
allowed class-specific features to be developed and yielded those excellent results. For
illustration, the ROC curve and confusion matrix for the classification results yielded from
applying the LR-PCA on the extracted features from AlexNet are displayed in Figure 7.
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Table 1. Statistics of the Logistic Regression (LR) model.

Model Predictors SE t Statistics p-Value
PC1 1.1638 7.8235 5.14 × 10−15

PC2 0.0008 14.7641 0
PC3 0.0013 −11.1861 4.77 × 10−29

PC4 0.0014 −13.4629 2.59 × 10−41

PC5 0.0019 −12.9322 2.96 × 10−38

PC6 0.0015 −2.1592 0.030837
PC7 0.0022 13.8375 1.51 × 10−43

PC8 0.0019 −0.0055 0.995623
PC9 0.0023 −9.0287 1.74 × 10−19

PC10 0.0026 1.2018 0.22944
PC11 0.0026 −2.1862 0.028801
PC12 0.0027 1.6188 0.1055
PC13 0.0032 −7.2077 5.69 × 10−13

PC14 0.0033 −8.3964 4.61 × 10−17

PC15 0.0034 −0.7858 0.431973
PC16 0.0035 1.8389 0.065923
PC17 0.0037 0.0854 0.931964
PC18 0.0036 5.9441 2.78 × 10−9

PC19 0.0035 1.8050 0.07108
PC20 0.0036 −6.9300 4.21 × 10−12

PC21 0.0040 4.9057 9.31 × 10−7

PC22 0.0040 −4.4528 8.47 × 10−6

PC23 0.0043 11.6463 2.40 × 10−31

PC24 0.0045 −4.8968 9.74 × 10−7

PC25 0.0048 −9.4881 2.35 × 10−21

PC26 0.0047 0.7119 0.476501
PC27 0.0047 −0.6445 0.519277
PC28 0.0050 −2.6172 0.008865
PC29 0.0053 0.9396 0.347413
PC30 0.0054 −6.5354 6.34 × 10−11

PC31 0.0050 −1.4328 0.151915
PC32 0.0054 −0.5211 0.602287
PC33 0.0052 2.2693 0.023249
PC34 0.0057 −0.6697 0.503072
PC35 0.0058 −0.1642 0.869595
PC36 0.0056 6.0392 1.55 × 10−9

PC37 0.0059 −1.5046 0.132437
PC38 0.0061 −2.5012 0.012377
PC39 0.0060 0.5841 0.559178
PC40 0.0062 2.9399 0.003284
PC41 0.0065 3.0751 0.002104
PC42 0.0065 −6.5521 5.67 × 10−11

PC43 0.0065 −3.3909 0.000697
PC44 0.0068 −0.2496 0.802873
PC45 0.0063 3.0721 0.002125
PC46 0.0065 −1.5325 0.125403
PC47 0.0064 −1.5169 0.1293
PC48 0.0067 −2.3565 0.01845
PC49 0.0069 1.7933 0.072918
PC50 0.0071 −3.3454 0.000822
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Table 2. Classification evaluation performance (%) of the proposed CAD system with three different
backbone deep learning classifiers. These results were derived using INbreast dataset.

Dataset LR-PCA Feature
Extractor

Classification
Model Acc. SE SP PRE FNR FPR AUC MCC F1-

Score

Grayscale
images

Across all
classes

AlexNet
Ensemble
(subspace

KNN)
97.20 96.75 97.67 97.65 3.25 2.33 100 94.43 97.20

VGG16
Ensemble
(subspace

KNN)
95.90 94.12 97.77 97.68 5.88 2.23 99.0 91.95 95.87

GoogleNet
Ensemble
(subspace

KNN)
93.90 92.29 95.54 95.39 7.71 4.46 98.0 87.88 93.81

Pseudo-
Colored
images

AlexNet
Ensemble
(subspace

KNN)
98.00 96.96 98.88 98.86 3.04 1.12 95.22 95.86 97.90

VGG16
Ensemble
(subspace

KNN)
97.90 96.65 99.09 99.06 3.35 0.91 100 95.77 97.84

GoogleNet
Ensemble
(subspace

KNN)
95.10 92.90 97.06 96.93 7.10 2.94 99.0 90.04 94.87

Grayscale
images

For each
class sepa-

rately

AlexNet
Ensemble
(subspace

KNN)
97.20 96.65 97.67 97.64 3.35 2.33 100 94.33 97.15

VGG16
Ensemble
(subspace

KNN)
95.90 95.13 96.65 96.60 4.87 3.35 99.0 91.80 95.86

GoogleNet
Ensemble
(subspace

KNN)
94.60 92.90 97.06 96.93 7.10 2.94 99.0 90.04 94.87

Pseudo-
Colored
images

AlexNet
Ensemble
(subspace

KNN)
98.60 98.28 98.99 98.98 1.72 1.01 100 97.26 98.63

VGG16
Ensemble
(subspace

KNN)
98.10 97.87 98.28 98.27 2.13 1.72 99.0 96.15 98.07

GoogleNet
Ensemble
(subspace

KNN)
94.50 92.60 96.45 96.31 7.40 3.55 98.0 89.11 94.42

Grayscale
images

Not
applied

AlexNet KNN 96.00 94.61 97.67 97.59 5.39 2.33 96.0 92.33 96.07

VGG16 KNN 95.80 94.53 97.16 97.09 5.47 2.84 99.0 91.72 95.79

GoogleNet KNN 93.40 92.01 95.02 94.89 7.99 4.98 98.0 87.06 93.43

Pseudo-
Colored

AlexNet KNN 96.80 95.13 98.48 98.43 4.87 1.52 96.0 93.66 96.75

VGG16 KNN 96.40 95.13 97.67 97.61 4.87 2.33 96.0 92.83 96.35

GoogleNet KNN 93.90 92.49 95.23 95.10 7.51 4.77 94.0 87.76 93.78
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Table 3. Classification evaluation performance (%) of the proposed CAD system with three different
backbone deep learning classifiers. These results were derived using mini-MIAS dataset.

Dataset LR-PCA Feature
Extractor

Classification
Model Acc. SE SP PRE FNR FPR AUC MCC F1-

Score

Grayscale
images

Across all
classes

AlexNet
Ensemble
(subspace

KNN)
97.50 99.42 96.38 96.41 0.58 3.62 100 95.81 97.89

VGG16
Ensemble
(subspace

KNN)
97.30 97.49 97.30 97.30 2.51 2.70 100 94.79 97.40

GoogleNet
Ensemble
(subspace

KNN)
97.50 97.47 95.98 95.98 2.53 4.02 100 93.45 96.72

Pseudo-
Colored
images

AlexNet
Ensemble
(subspace

KNN)
98.60 99.41 97.49 97.54 0.39 2.51 100 97.13 98.57

VGG16
Ensemble
(subspace

KNN)
98.20 98.26 98.07 98.07 1.74 1.93 100 96.33 98.17

GoogleNet
Ensemble
(subspace

KNN)
97.50 97.88 97.10 97.13 2.12 2.90 100 94.98 97.50

Grayscale
images

For each
class sepa-

rately

AlexNet
Ensemble
(subspace

KNN)
98.10 98.65 97.49 97.51 1.35 2.51 100 96.14 98.08

VGG16
Ensemble
(subspace

KNN)
97.00 98.07 96.53 96.58 1.93 3.47 100 94.61 97.32

GoogleNet
Ensemble
(subspace

KNN)
96.30 96.35 96.71 96.72 3.65 3.29 99.0 93.05 96.53

Pseudo-
Colored
images

AlexNet
Ensemble
(subspace

KNN)
98.80 99.62 98.26 98.28 0.58 1.74 100 97.69 98.85

VGG16
Ensemble
(subspace

KNN)
97.70 98.46 96.91 96.96 1.54 3.09 99.0 95.38 97.70

GoogleNet
Ensemble
(subspace

KNN)
97.30 97.30 97.30 97.30 2.70 2.70 0.99 94.59 97.30

Grayscale
images

Not
applied

AlexNet KNN 97.00 98.65 96.91 96.97 1.35 3.09 96.0 95.57 97.80

VGG16 KNN 97.80 97.88 97.68 97.69 2.12 2.32 100 95.56 97.78

GoogleNet KNN 97.80 97.68 97.88 97.87 2.32 2.12 98.0 95.56 97.78

Pseudo-
Colored

AlexNet KNN 97.20 97.90 96.93 96.97 2.10 3.07 95.0 94.83 97.43

VGG16 KNN 97.60 97.87 97.88 97.87 2.13 2.12 100 0.9575 0.9787

GoogleNet KNN 97.90 97.67 97.50 97.49 2.33 2.50 99.0 0.9517 0.9758
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Figure 7. The confusion matrices and corresponding ROC curves of the classification results based on
the proposed CAD system with deep extractor AlexNet and the LR-PCA. (a) The derived confusion
matrix when the PCA is separately applied for each class; (b) The ROC curve when the PCA is
separately applied for each class; (c) The confusion matrix when the PCA is applied across all classes;
(d) The ROC curve when the PCA is applied across all classes.

5. Comparing the Performance and Conclusions

One of the real medical challenges of the AI applications is to build an automatic and
accurate computer-aided framework for breast lesion diagnosis. In the body of published
work, there have been great investigations and attempts to construct an accurate CAD
system for such applications. The classification performance of the introduced system
is further assessed in comparison to a number of state-of-the-art breast cancer detection
systems as reported in Table 4. The early studies [72–78] focused mostly on identifying the
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textural features of breast tissues and applying traditional machine learning algorithms
for classification purpose. The outcomes of those methods were not appropriated for
the accurate classification of breast lesions since they lack high accuracy and sensitivity.
However, the developed CAD system based on the classification of ROIs has yielded as
high a performance as the work conducted using the classical ML methods [16,75] and the
DL based methods [52,63,64,79–83]. For the MIAS dataset, the proposed LR-PCA-based
system outperforms the deep learning systems developed by Ragab et al. [29], Alhussan
et al. [16], and Zhang et al. [81]. Moreover, it has been noticed that the presented system
achieved superior accuracy and sensitivity over the system developed by Zhang et al. [81]
on the INbreast dataset. Generally, the comparison in Table 4 reveals that the proposed
system could record a comparative performance with all other systems.

Table 4. Evaluation comparison results of the proposed CAD system against the state-of the-art
breast cancer classification systems.

Reference Feature Extraction Approach Classifier Dataset SE (%) Acc.
(%)

Oliver et al. [78]
Utilizing Fuzzy C Means for lesion

segmentation and a number of textural and
morphological features are used

SVM MIAS 87.33 91.51

Phadke et al. [77]
Breast cancer classification based on the fusion
of local and global morphological and textural

features
SVM MIAS 92.71 83.1

Jian et al. [75] Utilizing the wavelet transform in order to
retrieve the textural features of ROIs

Classification of ROIs
using SVM MIAS 96.3 97.7

Vijayarajeswari
et al. [76]

Breast lesions were classified using SVM after
applying the Hough transform for feature

extraction.
SVM MIAS - 94.0

Xie et al. [74] Classification of breast lesions using
metaheuristic-based classifier PSO-SVM MIAS 92.0 89.0

Mina et al. [73] Classification of breast cancer using ANN and
wavelet decomposition for feature extraction ANN MIAS 68.0 -

Liu et al. [72] Detection of microcalcification in digital
mammograms SVM INbreast 92.0 -

Xu et al. [79] Deep CNN for feature extraction and
classification of breast lesions CNN INbreast - 96.8

Al-antari et al.
[63,82]

End-to-end CAD system for the segmentation
and classification of breast masses YOLO classifier INbreast 95.64 89.91

Ragab et al. [29] Deep features fusion of AlexNet, GoogleNet,
ResNet-18, ResNet-50, and ResNet-10. SVM CBIS-DDSM

MIAS
98.0
99.0

97.90
97.40

Alhussan et al. [16]
AlexNet AlexNet

MIAS
98.26 98.26

GoogLeNet GoogLeNet 98.26 98.26
VGG-16 VGG-16 98.70 98.28

Zhang et al. [81]
Features were extracted by Gist, SIFT, HOG,
LBP, VGG, ResNet, and DenseNet and fused

together.

SVM, XGBoost, Naïve
Bayes, k-NN, DT,

AdaBoosting

CBIS-DDSM
INbreast

98.61
57.2

90.91
87.93

Song et al. [83] GoogleNet
Inception-v2 XGBoost DDSM 99.74 92.8

Khan et al. [80] Fusion of deep features extracted by VGG-16,
VGG-19, GoogleNet, and ResNet-50. Transfer Learning CBIS-DDSM

MIAS 98.07 96.6

Proposed CAD
system

Features are selected using LR-PCA from
pseudo images.

Hybrid Transfer
Learning of

CNN-based LR-PCA

MIAS
INbreast

99.62
98.28

98.80
98.62
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To conclude the current investigation, we have suggested a novel framework for a
CAD system that can classify breast cancer lesions. This framework makes use of a hybrid
pretrained CNN and LR-PCA learning model. The introduced system comprises four
modules including data preparation, feature extraction, feature reduction, and classification.
In the data preparation module, we have developed a new method for submitting the input
images by applying the original ROI and the preprocessed ones in the input channels of
the pretrained CNNs. The generated pseudo-colored images from the mini-MIAS and
INbreast datasets, respectively, have been applied for the introduced CAD system and
yielded better performance compared to the one achieved from the grayscale images. Three
pretrained CNNs including the AexNet, GoogleNet, and VGG16 have been employed in the
feature extraction phase and the number of extracted features from them is 4096, 1024, and
4096, respectively. These networks represent different architectures with different levels of
complexity as represented by the number of parameters (weights and biases). In particular,
the numbers of parameters for these networks are approximately 61 million for AlexNet,
7 million for GoogLeNet, and 138 million for VGG-16. Even with the least complex of
them, the huge number of parameters suggests that it is not possible to properly train such
networks with the limited data set available in this study and outline the value of using
them as pretrained feature extractors rather than attempting to retrain them. Furthermore,
these networks were used to classify the same data sets of this study through transfer
learning. This allows direct comparison of the results. Naturally, there are additional
options for pretrained CNNs that appear to be significant; nevertheless, it is challenging to
address more models in a brief presentation.

A correlation analysis has been accomplished on the extracted features to examine
the necessity for applying PCA on the feature matrix and demonstrating that the extracted
features are affected by the multicollinearity problem. The Binomial Logistic Regression
model has been developed using the retrieved set of principal components (50 PCs). The
selected subset of these PCs is 23 according to their significance in the yielded results
from the ANOVA F-statistics test on the developed LR model. The twenty-three PCs
have been presented to six distinct families of traditional classifiers including the decision
trees, discriminant analysis, SVM, KNN, naive Bayes, and Ensemble. Twelve classification
experiments have been performed based on all features with or without the utilization of
LR-PCA. The PCA has been examined with all classes as opposed to PCA with combined
PCs that are class specific. The application of LR-PCA on the extracted features utilizing
AlexNet for each class of the INbreast/mini-MAIS (pseudo-colored pictures) individually
has provided the best performance. The performance of the proposed framework of our
CAD system was compared to that of similar systems found in the literature, and the
results of the comparison showed that the proposed one records the highest performance
compared to all other systems.
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