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ABSTRACT 
 
Nonrectilinear k-space trajectories are often used in MRI applications due to their inherent fast acquisition and 
immunity to motion and flow artifacts. In this work, we develop a more general formulation for the problem of 
resampling under the same assumptions as previous techniques. The new formulation allows the new technique to 
overcome the present problems with these techniques while maintaining a reasonable computational complexity. The 
image space is decomposed into a complete set of orthogonal basis functions. Each function is sampled twice, once with 
a rectilinear trajectory and the other with a nonrectilinear trajectory resulting in two vectors of samples. The mapping 
matrix that relates the two sets of vectors is obtained by solving the set of linear equations obtained using the training 
basis set. In order to reduce the computational burden at the reconstruction time, only a few nonrectilinear samples in 
the neighborhood of the point of interest are used. The proposed technique is applied to simulated data and the results 
show a superior performance of the proposed technique in both accuracy and noise resistance and demonstrate the 
usefulness of the new technique in the clinical practice. 
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1. INTRODUCTION 
 
In Magnetic Resonance Imaging (MRI), data is collected in the k-space which represents the Fourier transform of the 
imaged slice. The sampling trajectory along the k-space is determined by the shape of the waveform of the applied 
magnetic gradients. On-Off gradient waveforms result in evenly spaced k-space samples which can be easily 
transformed into the image domain using the fast Fourier transform (FFT). Unfortunately, generation of fast switching 
gradients is not easily accomplished. Thereby smoothly varying gradient waveforms are usually implemented in fast 
MRI acquisition techniques. However, this results in non-rectilinear sampling trajectories with a multitude of loop-like 
patterns such as spiral1,2, radial sampling2, Rossettes3, or Lissajous4. Such data points must be resampled onto a 
rectilinear grid in order to take advantage of the speed of the FFT.  

Ideal reconstruction is theoretically guaranteed by the sampling theory as long as the Nyquist criterion is satisfied 5,6. 
That is, if f(k) is the continuos k-space representation of the imaged slice at a spatial frequency coordinate k, and S(k- kr) 
is a sampling function consisting of 2-dimensional evenly spaced impulse functions located at the rectilinear k-space 
points, kr, the sampling theory guarantees that f(k) can be completely recovered from its sampled version fs(k)= f(k).S(k- 
kr) as follows5 , 

   f(k) = fs(k)*C(k) ,                                            (1) 

where C(k) is an infinite Sinc function, and * is the convolution operator. Since working with an infinite sinc function is 
not feasible in practice, truncating the Sinc function is necessary. Substituting k=knr, where knr is the non-rectilinear k-
space grid coordinates and assuming (without loss of generality) that both the rectilinear and the non-rectilinear grids 
carry the same number of points (=N), then equation (1) can be written in vector form as follows: 

 f nr
Nx1 = CNxN.f r

Nx1   ,                                                                   (2) 

where f r,  and f nr are vectors containing the rectilinear and the non-rectilinear samples, respectively, while C is a matrix 
whose entries are Sinc(kr-knr). In the Uniform Re-Sample algorithm (URS)4, f r is directly obtained from f nr by inverting 
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the matrix C in equation (2). While such matrix inversion can be directly achieved for one-dimensional signals, the 
URS algorithm becomes impractical in the 2-dimensional signals due to the huge size of the matrix C in this case. 

The Block Uniform Re-Sampling algorithm (BURS)7,8 was introduced by way of approximation to the URS method in 
order to reduce the computational effort. The BURS algorithm is in essence a numerical method for obtaining the 
inverse of a large sparse matrix.  It is based on isolating a small block, Cb

mxq, of the matrix C centered at entries (i,j), 
where j represents an unknown point in f r, which is to be estimated from m measured non-rectilinear samples centered 
around the entry i in f nr. The block is assumed to reasonably approximate the entire mapping (2) for the unknown point 
j.  Next, the inverse of the matrix C is obtained, namely Cb-1, of which one row corresponding to the sample j is kept. 
This row is used later, during image reconstruction, to estimate the rectilinear sample j from the selected few measured 
samples. This process is repeated for the entire points in f r. This method does not guarantee the best available estimate 
of the resampling process. Moreover, unreasonable estimates of the rectilinear points may be obtained when Lissajous 
trajectories are used to acquire the k-space as pointed out by Moriguchi, et al 4. 

In the conventional gridding algorithm5,6, the measured samples are convolved with a small shift-invariant interpolation 
kernel, usually a Kaiser-Bessel function, to estimate the rectilinear k-space grid. Steps of pre and post compensation of 
the data are required to reduce certain artifacts inherent to the technique such as cupping or wings7. But the main 
concern in conventional gridding is that the Kaiser-Bessel function is not optimal in the least squares sense, which was 
shown by Sedarat, et al.9. In an attempt to overcome this problem, a methodology was devised to obtain the optimal 
kernel and showed that it can be shift-variant. However, this method is not readily applicable to high-resolution images 
because of the associated intensive calculations. 

In this paper, we present a new method for estimating of shift-variant resampling kernels that map the non-rectilinear 
samples to their rectilinear counterparts. Each sample on the rectilinear grid is estimated from its neighboring sampling 
on the non-rectilinear grid using a least squares criterion. We present the mathematical formulation of the proposed 
method as well as the results of the implementing the proposed technique compared to those of URS and BURS 
techniques.  

2. THEORY 
 
Estimating a point, p, on the rectilinear grid from m sampled (non-rectilinear) points can be represented as 

p = a1xm . pmx1   ,                               (3) 

where p is a vector containing the m neighboring samples of  the point p. For this equation to correctly represent the 
required mapping from the nonrectilinear grid to the rectilinear one, it should be valid for the k-space of any given 
image. In other words, if Φ={φi, i=1:L} represents a basis (continuous) functions for the imaged field of view (FOV), 
then equation (1) should be valid for every φi. Rewriting (1) for the given set of the basis functions yields the following 
set of linear overdetermined system of equations, 

        ϕ =a . φi       , i=1:L     ,                                            (4) 

where ϕi is a sample on the rectilinear grid representation of the basis function φi, and φi is a k-space vector of m 
neighboring samples on the non-rectilinear grid. In vector form, the equations in (2) can be written as 

ϕ1xL = a1xm . ΦmxL   ,            (5.a) 

or,    

a = ϕ  . Φ†     ,           (5.b) 

where Φ is a matrix whose columns are the vectors φi, and Φ† is its pseudo-inverse given by ΦT.(Φ.ΦT)-1. The matrix 
inverse involved in this pseudo-inverse does not represent a computation burden since (Φ.ΦT) is an mxm matrix (usually 
m=9 to 25). A mapping vector a is calculated for every point on the rectilinear grid. That is, equation (5.b) is solved N2 
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times for image size of NxN. We will call this least-squares resampling based on spatially variant kernel LR-based 
sampling throughout this paper.  

3. RESULTS AND DISCUSSION 
 

3.1 One Dimensional Results 
The LR-based estimate of the gridding kernel is used to reconstruct 1-dimension signals of finite extent. The functions, 
φi, are complex exponentials representing the Fourier transform of spatial domain impulses spanning the entire field of 
view (fig. 1). In our 1-dimensional simulations, a sampling scheme of the k-space is used such that the sampling density 
is an integral multiple, referred to as the density factor hereon, of the Nyquist sampling rate. The locations of the 
measured samples, xi, are given by xi=i+r, where i is a location in the rectilinear grid, and r is a random number such 
that |r|<0.5. The case where the entire set of non-rectilinear samples is used to estimate each rectilinear point (m=L) is 
considered first followed by the case where (m<<L). 
 
In the first case (m=L), It was found that both the LR-based and the URS techniques give the same results (error below 
0.5%), which means that the LR-technique reaches the optimal solution in this case. Interesting results are obtained 
when the same simulation settings is used but with the sampling trajectory misses one sample. Figures 2.a,b show the 
reconstruction of the two techniquHV ZKHQ WKH VDPSOH DW VSDWLDO IUHTXHQF\ N ���� LV PLVVHG �HQWU\ �� LQ fnr). In Figure 
2.a, the signal reconstructed by the LR-based technique overlaps the true signal. At the same time, the URS result 
suffers artifacts due to the violation of the sampling theorem at certain region in the k-space. These results were 
obtained without introducing any regularization techniques when obtaining the URS or the LR-based mapping matrices. 
It was found that truncation of some singular values of the Sinc interpolation matrix used in the URS technique 
improves the reconstruction yet the LR-based technique is still better (see Figure 2.b). The mapping matrices for both 
techniques in this case are shown in Figure 3. The effect of varying the location of the missed sample is shown in Figure 
4, where the reconstruction error is plotted for both BURS and LR-based algorithms when the location of the missed 
sample varies from �/16 to �. 

The second case (m<<L), is practically a typical case since the target is to reduce the reconstruction time. In the BURS 
algorithm, the block matrix Cb, of dimension mxq, represents a k-space region of size δkx∆k. This means that m varies 
from place to another inside the k-space according to the sampling density. In our simulation, m is fixed and the 
sampling density is made variable. This means that the reconstruction time, which depends on m rather than δk, is fixed 
allover the k-space regardless what the sampling density is. Moreover, all of the BURS simulations given below use a 
value of ∆k equal � to obtain the best results for BURS. 

Table 1 shows the reconstruction error of both the BURS and LR-based techniques at different sampling densities and 
different values for /k. The reconstruction error of both techniques in the presence of noise is shown in Figure 5. 

3.2.  Two Dimensional Results 
In this section, the LR-based technique is used to reconstruct images acquired using polar trajectories. The images are 
for numerical phantom and each is of resolution 128x128. For each sampling trajectory, a number of sample locations, 
m=16, nearest to each rectilinear point is calculated and stored in a look-up table. The table is used first to construct the 
required optimal mapping, which is stored also in another table to be used in the resampling process. The number of 
basis functions used to construct the mapping is taken to be 1282 thereby, cover the entire FOV with the specified 
spatial resolution. Calculating the mapping matrix takes about 3.5 hours on a personal computer with PII 400MHz 
processore and 192 Mbytes of RAM. Image reconstruction takes about 2 seconds on the same workstation (resampling 
process plus Fourier transformation). Figure 6 shows the LR-based reconstruction in case of polar acquisition of a 
numerical phantom (Figure 6.b) compared with Fourier reconstruction when rectilinear acquisition is used (Figure 6.a). 
Cross sectional profiles in the images in Figure 6 are plotted in Figure 7, where we observe that the results from the new 
method and that of the true almost match each other. 

Although the URS algorithm was usually thought of as the perfect resampling algorithm, the results in the previous 
section indicate that this is not true for all sampling schemes. To demonstrate this, consider the trivial case of 
resampling data points from a rectilinear grid to the same rectilinear grid. In this case, the samples of the Sinc function 
used in the URS algorithm, i.e. the rows of the C matrix in (2), will take unity value at one location corresponding to the 
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row index and zeros in the rest. Therefore, C is an identity matrix of size NxN. If one sample is missing from the 
measurements, the corresponding column in the C matrix is also missed turning the problem into an underdetermined 
system of equations. Therefore, the obtained solution is the minimum norm solution, and in the above case the missing 
sample will be substituted for by zero. On the other hand, the proposed method still provides the least squares solution 
for the same problem. That is, when the mapping is being established by equation (5), the problem is still over-
determined because the basis vectors outnumber the grid points, i.e. the number of columns in matrix - is larger than 
the number of rows. This conclusion can also be illustrated by examining the mapping matrices in Figure 3, where the 
mapping matrices are shown to be band-limited in general. Nonetheless, when a sample is missing, the URS matrix 
ignores its absence while the proposed method matrix tries to estimate it based on the larger set of the non-rectilinear 
samples. Moreover, regularization techniques should be used for the URS algorithm to give acceptable reconstruction 
results. It was found that the regularization depends on the location where the sample is missing and since many 
samples are expected to be missing in practical situations, it might be difficult to achieve reasonable regularization. 

As mentioned earlier, the main concern in any resampling or gridding algorithm is to reach optimal reconstruction 
meanwhile maintain the reconstruction time at low limit. The proposed method in this work establishes a mapping 
between each rectilinear point and a given finite number of neighboring points on the non-rectilinear grid. For each 
rectilinear point, the mapping is not restricted to certain functional form, instead, it is determined through an 
optimization process based on a least squares error criterion. Consequently, the obtained mapping is shift-variant which 
is apparent clearly in Figure 3. This result contradicts with the thoughts involved in the current resampling algorithms, 
which rely mainly on the convolution with a shift-invariant kernel (e.g., Sinc, Kaiser-Bessel, etc.). However, a work of 
Sedarat et al.9 showed that the optimal mapping can be shift-variant but the methodology used to obtain such mapping 
requires intensive computations and thus not readily applicable to high-resolution images. Moreover, although our 
simulations show that the mapping is complex, we can observe that the reconstruction error when ignoring the 
imaginary part is almost the same. This approximately halves the computational time of the resampling process and 
reduces the memory size required for storing the mapping matrix.  

From Table 1, it is obvious that the reconstruction error of the LR-based technique is lower than that of the BURS 
technique especially at small values of δk (the smaller the values of δk, the lower the reconstruction time and memory 
requirements). At large values of /k, e.g. 2.5, the performance of both techniques is nearly the same. Unexpectedly, 
there is a rise in the reconstruction error at δk =1.5 this is because this result is given by using only three non-rectilinear 
samples to estimate each rectilinear point. 

Finally, although the described LR-based algorithm is applied to resample the data from a non-rectilinear grid to 
rectilinear one, it can be used to establish mapping between arbitrary grids by changing the locations of the samples in 
the two vectors f r, and f nr in equation (2). The proposed LR-algorithm achieves the required mapping on one step only. 
This is faster than the method proposed by Rasche et al.10, which requires a two-step convolution interpolation.  

4. CONCLUSIONS 
 
In this work, a least squares error solution is developed to resample data points from a non-rectilinear grid into a 
rectilinear grid. The results of this work show that the URS algorithm is not the optimal method in the least squares 
sense when the sampling density decreases below the Nyquist limit. The proposed technique, on the other hand, is 
superior in the least squares sense regardless of the sampling pattern. Moreover, the proposed algorithm does not restrict 
the mapping to be shift-invariant or real valued which allows more freedom to achieve optimality. Future work includes 
the potential of the new method to be extended for use in extrapolation besides interpolation or resampling.  
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Figure 1. The basis set used in the LR equations are the Fourier transforms of impulse functions spanning the field of 
view. Note that the magnitude of the functions ϕi are the same and equal to unity while the phase (not shown) depends 
on the location of each impulse, x. 
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Figure 2.a Reconstruction using URS versus LR-based technique, both are without regularization. 

 

 

Figure 2.b Reconstruction using URS (with regularization) versus LR-based technique. 
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Figure 3. The mapping matrix of the URS (left) and LR-based technique (right). Note the difference at row number 16, 
where the trajectory has missed a k-space sample. 

Figure 4. Reconstruction error using URS and LR-based algorithms when the missed sample varies from �/16 to �. 

 

Density Factor 8 8 10 8 6 4 2 8 2 

# Points, m 5 7 11 9 7 5 3 13 5 

Corresponding δk  .625 .875 1.1 1.125 1.167 1.25 1.5 1.625 2.5 

LR-based 3.5% 3% 0.6% .56% .47% 0.78% 9.5% 0.23% 0.6% 

BURS (∆k=∞) 17.5% 
14.1
% 

11.9% 11.8% 9.7% 3.3% 10.2% 2% 0.8% 

Table 1.  Reconstruction error of both LR-based and BURS techniques at different sampling densities and different 
values for m. 
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  Figure 5. Reconstruction error using URS and LR-based algorithms in presence of noise. 
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Figure 6.  Phantom image when acquired using rectilinear trajectory (a), and when acquired using polar trajectories and 
reconstructed using LR-based and BURS algorithms in (b), and (c) respectively. 

 

Figure 7. Cross-sectional profiles of the images in Figure 6 at the level of the dotted white line. It is shown that the LR-
based reconstructed image coincides with the true one. 
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