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ABSTRACT 
 
The application of independent components analysis (ICA) to functional magnetic resonance imaging data has been 
proven useful to decompose the signal in terms of its basic sources. The main advantage is that ICA requires no prior 
assumption about the neuronal activity or the noise structure, which are usually unknown in fMRI. This enables the 
detection of true activation components free of random and physiological noise. Hence, this technique is superior to 
other techniques such as subspace modeling or canonical correlation analysis, which have underlying assumptions about 
the signal components. Nevertheless, this technique suffers from a fundamental limitation of not providing a consistent 
ordering of the signal components as a result of the whitening step involved in ICA. This mandates human intervention 
to pick out the relevant activation components from the outcome of ICA, which poses a significant obstacle to the 
practicality of this technique. In this work, a simple yet robust technique is proposed for ranking the resultant 
independent components. This technique adds a second step to ICA based on canonical correlation analysis and the prior 
information about the activation paradigm. This enables the proposed technique to provide a consistent and reproducible 
ordering of independent components. The proposed technique was applied to real event-related functional magnetic 
resonance imaging data and the results confirm the practicality and robustness of the proposed method. 
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1. INTRODUCTION 
 
The advent of functional magnetic resonance imaging (fMRI) has resulted in many exciting studies that have exploited 
its unique capability. It provides a valuable noninvasive tool for investigating brain function. The different magnetic 
properties of oxy- and deoxyhemoglobin are used to visualize localized changes in blood flow, blood volume and blood 
oxygenation in the brain1,2,3. These in turn become indicators for local changes in neural activity. To observe these 
homodynamic changes, the subject is exposed to controlled stimuli, which are carefully designed to affect only certain 
brain functions then rapid acquisition of a series of brain images is performed. The sequence of images is analyzed to 
detect such changes and the result is expressed in the form of a map of the activated regions, which represents sensory, 
motor, and cognitive functions in the brain4. fMRI analysis approaches range from model-based to exploratory, although 
model-based approaches are by far the most utilized5. Model-based approaches are extremely useful when the time 
course of the hemodynamic response can be inferred apriori, however the hemodynamics of the brain are still being 
studied and good a priori assumptions are sometimes not available6. Besides, the data are in general very noisy, and 
much statistical research has been devoted to studying how the weak activation signals may be extracted with optimal 
sensitivity. Thus, the use of data-driven analysis in fMRI is inherently attractive because it does not rely on imposed 
assumptions about experimental conditions. The concept of data driven decompositions became familiar since principal 
component analysis (PCA) and independent component analysis (ICA) have been introduced to fMRI data analysis1,7,8. 
Both ICA and PCA are closely related to projection pursuit methods9,10. The underlying idea is to find interesting 
directions or components within the multi-dimensional data set. Both ICA and PCA use linear transformation to get the 
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components of the observed signals. The key difference however, is in the type of components obtained. The goal of 
PCA is to obtain principal components, which are defined as the uncorrelated direction of highest variance. In ICA 
however, the stronger constraint of statistical independence is imposed.  It seeks to obtain statistically independent 
components. Hence, PCA algorithms use only second order statistical information, while ICA algorithms utilize higher 
order statistical information for separating the signals. Moreover, PCA gives projections of the data in the direction of 
the maximum variance. The principal components (PCs) are ordered in terms of their variances: the first PC defines the 
direction that captures the maximum variance possible; the second PC defines (in the remaining orthogonal subspace) 
the direction of maximum variance, and so forth. This provides a natural ranking for the resulting components (even 
though this might not provide information about the usefulness of the components since the variance of a signal is not 
necessarily related to the importance of the variable). On the other hand, ICA involves an intermediate whitening step 
that does not make the ranking based on projection magnitude possible. Therefore, there is no consensus of how this 
ordering can be performed15. Several attempts were reported including the use of the value of higher order statistics17. 
These methods were not proven useful in many applications including fMRI and electrophysiology data17. The lack of 
consistent ordering of components results in different arrangement of independent components each time the analysis is 
performed even on the same data set, which mandates the intervention by the user to select the “interesting” components 
out of the analysis result. This is usually a cumbersome task that takes fairly long time and makes the technique subject-
dependent. Therefore, an analysis technique that would allow the robust ordering of independent components without the 
intervention of the user would be rather useful. 
 
In the present work, we present a simple yet effective method for functionally ranking the resulting components of the 
ICA algorithm by using a priori information about the functional paradigm. This technique applies one of the prominent 
model-based fMRI tools, namely canonical correlation analysis (CCA), to the outcome of ICA. This combination 
enables the elimination of the limitations of both techniques and provides a robust model-free mechanism for analyzing 
fMRI data. The proposed methodology is applied to real event-related fMRI data and the results confirm the consistency 
of ICA ordering using this method.   
 

2. BACKGROUND 
 
2.1. Independent component analysis 
Independent Component Analysis (ICA) is a promising tool in statistical analysis. It was developed as a solution to blind 
source separation problems. These problems involve multiple sources and sensors for situations in which multiple 
measurements of linearly mixed independent signals are available. In its most common form, ICA is represented by: 

SAX ⋅=  , or equivalently,  XWS ⋅=  ,   (1) 
where X is our data matrix where rows correspond to time and columns to spatial locations (a single column is a time 
course at a given voxel), S is the matrix of the independent components, A is the mixing matrix and W is unmixing 
matrix and they are the inverse of each other. A, W, S are all estimated from X. Assuming that the sources S are mutually 
independent and by constructing a suitable measure of independence among the components of S, we may estimate S by 
optimizing this measure. 
 
 
 
 
 
 

Figure 1. Basic concept of ICA. 
 
The use of ICA for analyzing fMRI data was first proposed by McKeown [1]. Here the measured MRI signal is a 
mixture of the signals arising from various biological processes. It is desired to recover activations maps and time 
courses corresponding to the functional task in question. The main advantage is that ICA does not require any a prior 
assumption about neither the signal response to the neuronal activation nor the noise structure surrounding the signal, 
which are both unknown in fMRI. However, the main drawback of ICA is that it provides no natural ranking for the 
resultant components. This is due to the nature of its concept. From Eq. (1), ICA assumes no information about both 
matrix A and S and try to extract both of them. Whatever the algorithm it uses to find them, if we multiply any row of 
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matrix A with a factor m and divide the corresponding column in S with a factor 1/m, nothing will change from the view 
of the resultant output. Most current ICA algorithms use this factor to maintain a unit variance for all the out components 
or to maintain any other required criteria. This shows that the variance, entropy and all signal properties (at least those 
that depends on the second order moment) do not contain any useful information because simply the algorithm has 
assumed it during solving the problem. And so, we cannot depend on any feature of the generated components to make 
any relations between them (ordering them for example). 
 
2.2. Canonical correlation analysis 
Canonical correlation analysis (CCA) is a well-known tool in statistical analysis, developed by Hotelling11. CCA is a 
way of measuring the linear relationship between two multidimensional variables. It finds two bases, one for each 
variable, that are optimal with respect to correlations and, at the same time, it finds the corresponding correlations12,13. 
 
Consider two multidimensional random vectors x and y which are m, n-dimensional respectively. We try to find linear 
combinations, 

xwxaxaxaxaX T
xmm =++++= ...332211  ,   (2) 

and,   

ywybybybybY T
ynn =++++= ...332211  ,   (3) 

which are chosen so that X and Y correlate the most. The linear combination coefficients are gathered in the two vectors 
wx and wy. The projections onto wx and wy, i.e. X and Y are called canonical variates. Thus, we attempt to solve the 
following optimization problem, 
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Since both variance V and covariance C are invariant with respect to an addition of a constant, we can without loss of 
generality assume a zero mean. The expression for the correlation r in Eq. (3) can then be written as, 
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Applying the expectation operators leads to the following formula for the objective function, 
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Here, Cxx and Cyy are the auto-correlation matrices between x, y and Cxy is the cross-correlation matrix between x, y. By 
taking the partial derivatives of Eq. (4) with respect to wx and wy we arrive in the following system of equations, 
 

xxxxyxy wCrwC ˆˆ λ= ,     (8) 

and     

yyyyxyx wCrwC ˆˆ λ= ,     (9) 

where λx and λy are expressed as,   
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A simple scaling of the linear combination coefficients in Eqs. (1) and (2) would not affect the correlation coefficient. 
The norms of wx and wy are for this reason free of choice. A natural choice is to make ║wx║

2 = ║wy║
2 = 1, which 

explains the normalized vectors wx and wy in Eq. (5). A solution to the equation system in Eq. (5) can be obtained as, 
 

xxyxyyxyxx wrwCCCC ˆˆ 211 =−−
 ,   (11) 

and,      

yyxyxxyxyy wrwCCCC ˆˆ 211 =−−
 .   (12) 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2. CCA between two-dimensional vectors X and Y. 
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matrices. In fact, we obtain min(m, n) possible solutions, but the eigenvectors wx,1 and wy,1 corresponding to the largest 
eigenvalue, i.e., the largest canonical correlation. 
 

3. METHODS 
 
3.1. Algorithm 
Here, we describe the methodology by which the combination of ICA and CCA will be performed. In event-related 
fMRI, the activation signal seems to be our helper. It is not used in the calculation of the ICs. Beside, we can assume 
without any restriction that the neuronal response is periodic and have in some way the same periodicity of the activation 
signal, i.e., it contains some harmonics that looks like the harmonics in the activation signal. And from here we can start.   
 
In an fMRI experiment, a number of image slices N are acquired at N subsequent time points. With each pixel in each 
image slice we obtain a time series of length N. The independent components of this time series can then be computed 
using ICA. Some of these components are relevant to the neuronal activation; others are relevant to the physiological 
noise while others show the random noise components. We are searching for ICs whose time series has a component that 
follows the paradigm. Due to the low Signal-to-Noise ratio, most of these components are heavily contaminated with 
noise. So, we cannot use a normal correlation between them and the activation signal to know which of them is more 
relevant to the neuronal activity. So, we use the canonical correlation (CCA) between all the ICs as vector x in Eq. (2) 
and a model for the activation signal as vector y in Eq. (3). This model is chosen depending on the symmetric square 
wave paradigm of the activation signal. It is then likely to assume that the response will have the same fundamental 
frequency as the paradigm. It is probably also a good choice to include components with frequencies equal to a 
following few harmonics in the Fourier series expansion of the symmetric square-wave. In our work, we have chosen the 
following simple basis14, 
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That is, the chosen basis consists of the truncated Fourier-series expansion of a square-wave, which contains odd 
harmonics only) where T is the period in the paradigm and t is a discrete time index. This is similar to the decomposition 
in16 where also the assumption of little power in the frequencies beyond the fifth harmonic is asserted. 
 
Then, CCA begins to work to find a linear combination between the ICs time series X=wx

Tx and the basis functions 
Y=wy

Ty so that the correlation between X(t) and Y(t) is the largest achievable as shown in Fig. (3). This procedure results 
in a six sample canonical correlation, ri, i=1,2…6 with a corresponding wx and wy. It is clear that the higher the value of 
ri, the higher the relation with the activation paradigm and the corresponding wx, moreover, the higher a certain 
coefficient in wx, the higher the relation between the activation paradigm and the IC that corresponds to this coefficient. 
Based on this note, a certain grade can be assigned for each IC based on its relation with the activation paradigm. This 
can be given by: 

∑
=

⋅=
n

i
i

T
x rwM

1

 .     (14) 

So each factor of the wx will be weighted by how strong it will correlate with the activation paradigm. By ordering the 
vector M, we can get the order of the ICs according to its relation to the activation paradigm. 
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3.2. Noise considerations 
Unfortunately, the sine/cosine basis choice may lead to problems with noise especially in fMRI environment. That is 
mainly because noise can just by pure chance make a strong correlation with some signal in Y. A linear combination of 
our chosen basis (which forms Y(t)) can be: 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )twtwtwtwtwtwty yyyyyy ωωωωωω 5cos5sin3cos3sincossin, 654321 +++++= .    (15) 

Applying trigonometric identities to the above equation yields, 

( ) ( ) ( ) ( )3322311 5sin3sinsin, θωθωθω +++++= tktktkty  , (16) 

 
where k1, k2, and k3 represent the magnitudes of the different frequency components, which determine the shape of Y(t). 
And θ1, θ2, θ3 represent the phase delay between the frequency components. To illustrates the importance of these 
different variables, different samples of Y(t) are generated with different sets of these variables as shown in Fig. 3. 

 
Figure 3. Different generated time series form the chosen basis functions 

 
It should be noted that the top generated time series is very close to the activation paradigm itself (actually, it is the 
projection of the square wave activation paradigm on our basis space). The second can be accepted as an activation 
response to this paradigm, while the third time series seems to be just a noise. Note that all of them are generated using 
the same basis in our work. So, some signal that looks like the third one can deceive our system and give a very high 
correlation with a noisy component while we will convert this high correlation factor to high grade for this component as 
an activation response. To solve this problem, we return back to the activation paradigm. We can imagine that the 
activation response component should be more similar to this paradigm than any other component especially the noise 
components that cause the problem we are facing. So, the projection of the activation response on our chosen basis 
should give similar coefficients to those comes from the projection of the paradigm itself on these basis. By applying any 
measurement technique to measure this similarity between the two coefficient vectors (mean square error for example), 
we can get a new rank of how close the vector Y(t) corresponds to the activation response not to a noisy component. By 
combining these two ranks, we can get a general rank for each generated IC by: 

( )∑
= −

⋅=
n

i yyi

i
T
x

wwMSE

rw
M

1 0

   .     (17) 

Here M is the resultant rank vector, ri is the correlation coefficient result from the CCA, wyi is the ith row of wy 

corresponds to the ith IC in the CCA (i.e. the projection of the ith linear combination of the ICs on the basis functions) and 
wy0 is the projection vector of the activation paradigm on our basis. The higher the term MSE (wyi-wy0), the wider the 
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distance between this linear combination of the ICs and the activation paradigm and most probably it is correlated to a 
noise component and so decrease the grade of this combination of the ICs. 
 

4. RESULTS 
 
The present technique was applied to ICA results for event-related fMRI data. The data were obtained from an activation 
study performed on a volunteer using a Siemens 1.5T clinical scanner. In this study, an oblique slice through the motor 
and the visual cortices was imaged using a T2*-weighted EPI sequence (TE/TR= 60/300 ms, Flip angle=55°, 
FOV=22cm×22cm, slice thickness=5 mm). The subject performed rapid finger movement cued by flashing LED 
goggles. The study consisted of 31 epochs, with 64 images per epoch3. Temporal ICA was applied to process groups of 
pixels within a user-specified region of interest of variable size between 4×4 to 16×16. The proposed ranking method 
based on CCA was used to order the outcome of ICA, which came in different order each run. The results of ICA before 
and after applying the ordering technique are shown in Figs. 4-7. As can be seen, the components are consistently 
ordered in these examples. Furthermore, in each of these examples, even though the order of components came different 
from ICA from the data before the application of the proposed technique, the results after its application were exactly the 
same each time. This suggests that the addition of the proposed method as a postprocessing step after ICA makes the 
technique more practical for use in clinical settings. 
 

5. CONCLUSIONS 
 
A new technique for ordering the outcome of temporal ICA is proposed. With the aid of CCA, our method attempts to 
distribute noise in fMRI signals to many projections so its effect on the overall decision of ranking is minimal. The 
results obtained in our experiments suggest this technique to be highly robust, which makes it suitable as a 
postprocessing step after ICA to make its results easier to evaluate and the technique more practical to use.  
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Figure 4. The generated ICs  (left) without ordering. and (right) after ordering – Example 1. 
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Figure 5. The generated ICs  (left) without ordering. and (right) after ordering – Example 2. 

 
 

 
  

Figure 6. The generated ICs  (left) without ordering. and (right) after ordering – Example 3. 

Figure 7. The generated ICs  (left) without ordering. and (right) after ordering – Example 4. 
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