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V. CONCLUSION

In this paper, we proposed a heart rate indication system using sound
with pitch and interval decided corresponding to instantaneous heart
rates in real-time. We discussed the evaluation results of the biofeed-
back effects during work as an application example of this system.

This system uses an ECG which can be measured easily. Because it
can be converted to sound in real-time and presented via a sound source,
it is expected to be applied for biofeedback to monitor and improve
biological conditions.

We compared the case where sound was presented using the pro-
posed system with the case where work was performed without sound.
Subjective effects differed among subjects. But even when a subject
felt subjective workload, the physiological workload measured from
the heart rate variability turned out to be rather smaller than when no
sound was presented. On the other hand, the subjects who did not feel
subjective workload because of the sound improved work performance.
This result indicates the possibility of the biofeedback effect of this
system.
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Study of Features Based on Nonlinear Dynamical Modeling
in ECG Arrhythmia Detection and Classification
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and Yasser M. Kadah*

Abstract—We present a study of the nonlinear dynamics of electrocar-
diogram (ECG) signals for arrhythmia characterization. The correlation
dimension and largest Lyapunov exponent are used to model the chaotic
nature of five different classes of ECG signals. The model parameters are
evaluated for a large number of real ECG signals within each class and
the results are reported. The presented algorithms allow automatic cal-
culation of the features. The statistical analysis of the calculated features
indicates that they differ significantly between normal heart rhythm and
the different arrhythmia types and, hence, can be rather useful in ECG ar-
rhythmia detection. On the other hand, the results indicate that the discrim-
ination between different arrhythmia types is difficult using such features.
The results of this work are supported by statistical analysis that provides
a clear outline for the potential uses and limitations of these features.

Index Terms—Arrhythmia detection, chaos theory, ECG, statistical clas-
sifiers.

I. INTRODUCTION

Conventional methods of monitoring and diagnosing arrhythmia rely
on detecting the presence of particular signal features by a human ob-
server. Due to the large number of patients in intensive care units and
the need for continuous observation of such conditions, several tech-
niques for automated arrhythmia detection have been developed in the
past ten years to attempt to solve this problem. Such techniques work
by transforming the mostly qualitative diagnostic criteria into a more
objective quantitative signal feature classification problem. Classical
techniques have been used to address this problem such as the anal-
ysis of electrocardiogram (ECG) signals for arrhythmia detection using
the autocorrelation function [1], using frequency domain features [2],
using time frequency analysis [3], and wavelet transform [4], [5]. Other
techniques used adaptive filtering [6], sequential hypothesis testing [7],
[8], as well as morphological features. Even though fairly good results
have been obtained using such techniques, they seem to provide only
a limited amount of information about the signal because they ignore
the underlying nonlinear signal dynamics.

In the last two decades, there has been an increasing interest in ap-
plying techniques from the domains of nonlinear analysis and chaos
theory in studying biological systems [9]. In [10] and [11], the ECG
signal was subjected to a variety of tests designed to detect nonlinear
dynamics and showed evidence that the dynamics underlying the car-
diac signals is nonlinear and indicate the possibility of deterministic
chaos. Even though the results from such research did not form a def-
inite proof of that, they showed that the dynamics was consistent with
such a process.

In the field of chaotic dynamical system theory, several features can
be used to describe system dynamics including correlation dimension
(D2), Lyapunov exponents (�k), approximate entropy, etc. These fea-
tures have been used to explain ECG signal behavior by several studies
(cf., [12]). Nevertheless, these studies applied such techniques only
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to a few sample ECG signals that did not allow the extraction of a
general statistical description of the dynamics of different arrhythmia
types. Moreover, the details of implementation of feature extraction
techniques were not discussed. Given that such techniques are particu-
larly sensitive to parameter variations, it is not possible to directly uti-
lize these results or attempt to draw conclusions based on these studies
about the robustness of their implementations. Therefore, a study that
involves the analysis of ECG chaotic behavior based on a large number
of signals using a more-detailed implementation of the feature extrac-
tion steps would be rather useful to show the advantages and the limi-
tations of such class of nonlinear analysis.

In this paper , we address the problem of characterizing the nonlinear
dynamics of the ECG signal and its variation with different arrhythmia
types. The implementation details to automatically compute two impor-
tant chaotic system parameters namely, the correlation dimension and
largest Lyapunov exponent, are discussed. The proposed implementa-
tions were used to compute these features for a large number of indepen-
dent ECG signals belonging to five different ECG signal types from the
MIT-BIH Arrhythmia Database [13]. The results are studied to detect
statistically significant differences among different arrhythmia types.
Finally, statistical classification techniques are used to assess the pos-
sibility of detecting and classifying arrhythmia using such parameters.

II. CORRELATION DIMENSION ESTIMATION

The mathematical description of a dynamical system consists of two
parts: thestatewhich is a snapshot of the process at a given instant
in time and thedynamicswhich is the set of rules by which the states
evolve over time. In the case of the heart as a dynamical system, the
available information about the system is a set of ECG measurements
from skin-mounted sensors. There is no mathematical description of
the underlying dynamics of the heart. That is, we deal only with observ-
ables whose mathematical formulation and total number of state vari-
ables is not known. Therefore, to study the dynamics of such system,
we first need to reconstruct the state space trajectory. The most common
method to do this is using delay time embedding theorem to create a
larger dimensional geometric object by embedding into a largerm-di-
mensional embedding space [14]. The embedding dimensionm must
be large enough for delay time embedding to work. When a suitablem
value is used, the orbits of the system do not cross each other. This con-
dition is tested using the false nearest neighbor (FNN) algorithm [9].
The dimensionm in which false neighbors disappear is the smallest
dimension that can be used for the given data.

The simplest way to think about the dimensionD of an object is
that it represents the exponent that scales the bulkb of an object with
linear distancer (i.e., b� rD). The Grassberger–Procaccia algorithm
uses a correlation integralC(r) to represent the bulk, which is defined
as the average number of neighbors each point has within a given dis-
tancer [14]. The correlation dimensionD2 is defined as the slope
of the linear region of the plot oflog(C(r)) versuslog(r) for small
values ofr. In practice, the determination of the linear scaling region
is not an easy task because of the presence of noise, which makes it not
practical to compute the slope for very small values ofr. Moreover,
this determination was found to be not repeatable using manual se-
lection. In our implementation, we tried this approach combined with
computerized regression and the results were not satisfactory. Then,
we improved our implementation using a second-order regression for
the whole curve. The linear regression was then obtained for the part
of this curve that appeared linear by vision. More consistent values for
D2 were obtained. Finally, we developed an automatic algorithm to de-
termine the linear region to eliminate the need for human interaction.
This algorithm computes the second derivative of thelog(C(r)) versus
log(r) curve and searches for the longest plateau with values below a
certain threshold (used here as 0.1). If more than one linear region are

TABLE I
COMPUTED VALUES FOR DYNAMICAL SYSTEM FEATURES

(MEAN � STANDARD DEVIATION)

TABLE II
P -VALUES OF POOLED T-TEST FORD

TABLE III
P -VALUES OF POOLED T-TEST FOR�

found to have the same length, the one that yields the maximumD2

value (i.e., smaller values ofr as perD2 definition) is chosen.
To estimate a suitable value for the embedding time lagL, previous

work suggested selecting the value at which the autocorrelation func-
tion reaches 0,1=e, 0.5, or 0.1 [14], or as the value at which the first
minimum of the mutual information function occurs [9]. Here, we fol-
lowed another approach where the time window length is used to cal-
culateL [15]. In particular, the time window length (W ) is defined
by the time spanned by each embedding vector asW = (m � 1)L.
After determiningm using FFN, we select the optimal time window
length (W ) as the window length that maximizes the plateau length in
the aboveD2 estimation scheme [15]. In this paper, the first zero of
the FNN criterion suggested a value ofm = 8 and the optimal window
length was found to be around 583 ms (i.e., 210 samples at 360 sam-
ples/s). Consequently, the time lag (L) was estimated to be 83 ms.

III. L YAPUNOV EXPONENTS

Lyapunov exponents quantify the sensitivity of the system to initial
conditions, which is an important feature of chaotic systems and de-
scribes how small changes in the state of a system grow at an exponential
rate and eventually dominate the behavior. Lyapunov exponents are de-
fined as the long time average exponential rates of divergence of nearby
states. If a system has at least one positive Lyapunov exponent, then the
system is chaotic. The larger the positive exponent, the more chaotic
the system becomes (i.e., the shorter the time scale of system pre-
dictability). Lyapunov exponents will be arranged such that�1 � �2 �
� � � � �n, where�1 and�n correspond to the most rapidly expanding
and contracting principal axes, respectively. Therefore,�1 may be
regarded as an estimator of the dominant chaotic behavior of a system.

In this paper, the largest Lyapunov exponent,�1, is calculated as
a measure of the chaotic behavior of the system using the Wolf al-
gorithm.1 We used the provided software implementation of Wolf’s

1Http://www.users.iterport.net/~wolf
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TABLE IV
RESULTS FORCLASSIFICATION PROBLEM USING DIFFERENTCLASSIFIERS(INCONCLUSIVE DECISION RATES IN PARENTHESES)

algorithm. This software is divided into two programs: database gener-
ator (BASGEN) and fixed evolution time (FET). BASGEN is a prepro-
cessing step that generates a database that is used by FET to determine
the closest points to any specific point. FET does the main job of cal-
culating the average exponential rate of divergence of short segments
of the reconstructed orbit. There are a lot of parameters that need to
be defined for the two programs. The parameters for BASGEN were
taken as: embedding dimensionm = 4, time delayL = 60, and grid
resolution ires= 20. It should be noted that for Lyapunov exponent
calculations, the embedding dimensionm was chosen asD2 rounded
to the next highest integer [10]. Also, the grid resolution refers to the
fact that BASGEN places the reconstructed data into a grid of dimen-
sionm, with a resolution of ires cells/side. This grid will be used later
by FET to efficiently find nearest neighbors (NNs) to any point. The
parameters for FET were set as follows. The time step was chosen as
the sampling period. The evolution time (evolve) was chosen as 25. The
minimum separation at replacement (dismin) was selected to be 0.01.
When a replacement is decided, points whose distance from the kept
point is less thandisminare rejected. The maximum separation at re-
placement (dismax) was chosen as 15% of the data range. Finally, the
maximum orientation error (thmax) is selected to be 30.

IV. RESULTS AND DISCUSSION

The proposed techniques were implemented and applied to ECG sig-
nals from the MIT-BIH Arrhythmia Database [13]. The data set used
for this paper was composed of five different types including normal
(NR), ventricular couplet (VC), ventricular tachycardia (VT), ventric-
ular bigeminy (VB), and ventricular fibrillation (VF). Each type was
represented by 64 independent signals for the design set and another 32
signals for the test with each signal 3 s long. The VF signals were sam-
pled at 250 samples/s, while the others were sampled at 360 samples/s.

The results for computingD2 and�1 for different ECG signal classes
are shown in Table I. We observe noninteger correlation dimensionD2

values and positive sign of�1 for all types. The results generally support
the hypothesis that cardiac electrical activity reflects a low-dimensional
dynamic system behavior [10]. Thep-values of the pooled t-test based
onD2 are shown in Table II. Thep-values of the pooled t-test based
on�1 are shown in Table III. The results confirm that normal ECG sig-
nals can be statistically differentiated from abnormal by both dynamical
system features. On the other hand, these features are not successful in

TABLE V
RESULTS FORDETECTION PROBLEM USING DIFFERENT CLASSIFIERS

(INCONCLUSIVE DECISION RATES IN PARENTHESES)

discriminating between different abnormal signals. In particular, when
usingD2, there is a statistically significant difference between all pairs
at the 5% level except between VB and VF, which are significant at the
10% level. Moreover, therewas nostatistically significant difference be-
tween VT and VF. This may somewhat be explained by the presence of
similarities in dynamics between these types. Given the common na-
ture of VT and VF of producing higher heart rate, this might explain
the similarity between them in their underlying dynamics. This is par-
ticularly apparent in their�1 values. Similarly, for�1 it is not possible
to find statistically significant difference between VT, VF, and VB. The
lack of separation between VB and both VT and VF in their�1 values
may be explained by the clinical observation that VB can lead to VT in
some conditions [17]. Given that�1 values describe the sensitivity to
the initial condition, this explains the observed similarity in this domain
where VB eventually leads to the same chaotic behavior as VT and VF.
These statistically insignificant differences represent fundamental limi-
tations of these dynamical features in differentiating between abnormal
arrhythmia types.

Using the calculatedD2 and�1 values as feature vector for each
case in the test set, the results of classifying the five different ECG
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types are listed in Table IV using three different classifiers [16]. The
results for detecting the presence of abnormality are shown in Table V.
In Tables IV and V, the inconclusive decision rates usually encountered
with k-NN classifiers appear within parentheses. Even though the ECG
signal classes have been shown to be statistically different (with the
exception of VT and VF), the observed poor classification results indi-
cate that their distributions have significant overlap. This suggests the
only possibility of using the proposed features in detecting the pres-
ence of abnormality rather than to specify the type of abnormality. The
three classifiers implemented provide different receiver operating char-
acteristics. Nevertheless, the results of these classifiers provide a gen-
eral conclusion about the classification accuracy and the upper limits in
the sensitivity and specificity values obtainable using the proposed fea-
tures. For example, the minimum distance classifier appears to provide
the best specificity in both the detection and classification problems.
This comes at the price of lowest sensitivity. On the other extreme, the
k-NN results generally indicate the highest detection rate among the
three classifiers at the price of lowest specificity. The Bayes minimum
error classifier seems to provide results in the middle. Among the dif-
ferent values ofk of the k-NN classifier, the value ofk = 1 in the
classification problem andk = 5 in the detection problem seem to pro-
vide better results (observing the inconclusive decision rates).

The signal window length for this analysis was chosen such that it
is less than 10 s. This is to satisfy the ANSI/AAMI EC13-1992 stan-
dard, which requires alarms for abnormal ECG signals to be activated
within 10 s of their onset. The variation of the number of points within
this duration was not found to be crucial as long as the ECG signal is
sufficiently sampled.

V. CONCLUSION

The use of ECG signal features from nonlinear dynamical modeling
was studied. The results from a large data set of actual ECG signals
from five different classes were presented. The statistical analysis of
the results suggests that the use of such features can be advantageous
to ECG arrhythmia detection. They also illustrate the limitations of
such features in classifying the type of ECG abnormality. Future work
should address the use of such features among other classical statistical
ECG features as well as more sophisticated classification techniques to
improve the results.
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A Wavelet-Based Heart Rate Variability Analysis for the
Study of Nonsustained Ventricular Tachycardia

Szi-Wen Chen

Abstract—It has been reported that the sympathovagal balance (SB) can
be quantified by heart rate (HR) via the low-frequency (LF) to high-fre-
quency (HF) spectral power ratio LF/HF. In this paper, an investigation
of the relationship between the autonomic nervous system (ANS) and non-
sustained ventricular tachycardia (NSVT) is presented. A wavelet trans-
form (WT)-based approach for short-time heart rate variability (HRV) as-
sessments is proposed for this aspect of analysis. The study was conducted
on an RR-interval database consisting of 87 NSVT, 61 ischemic and five
normal episodes. First, instantaneous SB estimates were generated by the
proposed method. Then, waveforms of the WT-based SB evolutions were
quantitatively examined. Numerical results showed that while a majority of
SB waveforms (about 71%) derived from the non-NSVT population ( i.e.,
ischemic and normal) appeared to come near oscillating with certain fixed
levels, approximate 75% of SB evolutions underwent significantly rapid in-
creases prior to the onset of NSVT, suggesting that an abrupt sympatho-
vagal imbalance might partly account for the occurrence of NSVT.

Index Terms—Autonomic nervous system, heart rate variability, nonsus-
tained ventricular tachycardia, wavelets.

I. INTRODUCTION

Nonsustained ventricular tachycardia (NSVT), defined as three or
more consecutive ventricular premature beats (VPBs) with a rate of
more than 120 beats/minute and lasting less than 30 s [1], is usually
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