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Algebraic Reconstruction for Magnetic Resonance
Imaging Under Inhomogeneity

Yasser M. Kadah and Xiaoping Hu*Member, IEEE

Abstract—In magnetic resonance imaging, spatial localization
is usually achieved using Fourier encoding which is realized
by applying a magnetic field gradient along the dimension of
interest to create a linear correspondence between the resonance
frequency and spatial location following the Larmor equation.
In the presence ofBBB0 inhomogeneities along this dimension, the
linear mapping does not hold and spatial distortions arise in the
acquired images. In this paper, the problem of image reconstruc-
tion under an inhomogeneous field is formulated as an inverse
problem of a linear Fredholm equation of the first kind. The op-
erators in these problems are estimated using field mapping and
the kkk-space trajectory of the imaging sequence. Since such inverse
problems are known to be ill-posed in general, robust solvers,
singular value decomposition and conjugate gradient method,
are employed to obtain corrected images that are optimal in
the Frobenius norm sense. Based on this formulation, the choice
of the imaging sequence for well-conditioned matrix operators
is discussed, and it is shown that nonlinearkkk-space trajectories
provide better results. The reconstruction technique is applied to
sequences where the distortion is more severe along one of the
image dimensions and the two-dimensional reconstruction prob-
lem becomes equivalent to a set of independent one-dimensional
problems. Experimental results demonstrate the performance and
stability of the algebraic reconstruction methods.

Index Terms—B0 inhomogeneity, distortion correction, fast
imaging, image reconstruction, MRI.

I. INTRODUCTION

I N Fourier imaging, spatial localization is achieved by
applying linear magnetic field gradients to impose a precise

linear mapping between spatial locations and their resonance
frequencies as dictated by the Larmor equation. Imperfections
of the static magnetic field, the magnetic field gradients, or
significant changes in the susceptibility within the imaged
field-of-view (FOV) can lead to image distortions and artifacts
[1], [2]. This problem is present to some degree with all
magnetic resonance imaging (MRI) techniques, but its severity
widely varies amongst different imaging sequences as well
as between different dimensions for the same sequence. For
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example, in spin-echo (SE) images, the distortion is present
along the readout (and to a lesser extent along slice selection
directions) and is moderate. Severe distortions are usually
encountered with echo planar imaging (EPI) along the phase
encoding direction. Possible image distortions include pixel
shift and/or deformation (i.e., compression or expansion),
which is accompanied by intensity modulations [1], [3]. Pixel
shift arises when a difference exists between the field at a
given pixel and that of the static magnetic field. On the other
hand, pixel deformations arise from a field gradient across
individual pixels, which also leads to intensity modulations
as a result of the nonunity Jacobian of the distorted space-
frequency mapping. While rectifying the distortions is possible
in some cases, it may not be achieved in cases when the field
inhomogeneity maps different pixels in the original into an
identical position in the image. In these cases, it is generally
not possible to obtain a correct reconstruction of this image
without additional information.

Various methods have been suggested and implemented
to overcome the problem of inhomogeneity-induced image
distortions. These techniques can be generally classified into
two main categories according to the way the inhomogeneity
inverse operator is designed. The first category includes the
methods based on field mapping. Field maps can be used to
correct shifts in the spatial domain by computing the expected
pixel displacement and unwarping the image [4]–[7], or to
modify the -space data in a pixel-specific manner as with
the conjugate phase method [8], [9]. Other techniques use
field maps to derive analytical models for the distorted space-
frequency mapping in different simplified forms that allow for
fast correction [10]. Finally, there was an attempt to solve the
inhomogeneity problem algebraically by inverting a very large
approximate matrix operator to derive a vector composed of
the whole image [11].

The second category of correction techniques are those
that do not require field mapping. The most important of
such methods is the one that uses two images acquired with
gradients of reversed polarity [12]. Since the inhomogeneity
effect does not change between the two images, the direction
of the resultant distortions is opposite between the two. Hence,
by comparing the two, it is possible to derive a distortion-free
image.

While existing correction techniques provide satisfactory
results in many situations, it should be noted that methods
in both categories correspond to approximate inverses of the
inhomogeneity distortion operator. Consequently, the correc-
tion results are not optimal. Therefore, a reconstruction method
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that is based on solving for the inverse of the inhomogeneity
operator such that the norm of the error is minimum can be
advantageous.

In this paper, we describe an algebraic model and an optimal
solution to the problem of inhomogeneity distortion correc-
tion. The continuous case is first considered and shown to be
a Fredholm integral equation of the first kind. A discretization
strategy is proposed to translate the continuous problem into
a linear system of equations that can be solved numerically to
obtain the least-squares solution. Several numerical methods of
different characteristics are described to compute this solution
in an accurate and stable fashion under linear constraints. The
dependence of the algebraic model on the imaging sequence
is also considered, and it is shown that in general nonlinear
-space trajectories provide better results than linear ones.

Finally, the performance of the approach is demonstrated
by experimental data using single-shot and segmented with
centric reordering blipped-EPI imaging sequences, where the
problem is essentially one-dimensional (1-D) with the distor-
tion mainly occurring along the phase encoding direction.

II. THEORY

A. Continuous Problem Formulation

Consider the case of Fourier imaging of a 1-D object of
spatial intensity in the presence of field inhomogeneity
represented by . The resultant continuous-space of
this object takes the form

(1)

Here, is the gyro magnetic ratio and is a time func-
tion that depends on the-space trajectory of the imaging
sequence. This equation represents a linear Fredholm inte-
gral equation of the first kind with kernel,

[15]. That is, the -space data
can be expressed as the outcome of applying a linear operator

to the original ortrue spatial intensity such that

(2)

Throughout this paper, will be referred to as thetransfor-
mation operator since it performs the mapping between the
original object and the -space taking into account the inho-
mogeneity effects. An equivalent formulation can be generated
by premultiplying (2) with , the conjugate operator. In this
case, the operator equation is expressed in terms of the so-
called Grammianoperator defined as . Another
interesting operator equation arises when (2) is premultiplied
by the inverse Fourier transform operator, . The operator
in this equation will be referred to as thedeformationoperator

because the original object functionis mapped
directly to the resultant distorted spatial distribution. Since
these three operator equations are equivalent, the choice of
the one to use depends on the desirable features each offers
as applied to the specific solution method at hand. Examples
of such features include the transformation operator being

Vandermonde in some cases, the Grammian operator being
Hermitian, and the deformation operator being sparse.

In general, an operator can be fully described by a
mapping rule from the Hilbert space of its domain to that
of its range. The mapping rule is defined by the available
information about the data-acquisition procedure. The recon-
struction problem becomes one of finding an inverse operator

such that

(3)

where is the identity operator. Then, the solution to the
original problem of finding is given by

(4)

In general, the mapping rule that defines the operator may
not be one-to-one. In this case, the operator issingular, and
it is not possible to construct the inverse operator. In some
other cases, the operator maps different points in its domain
to different yet very close points in its range. If these points
are too close, slight contamination with additive noise can
render them indistinguishable, making it difficult to compute
the inverse operator. In such cases, the operator isill posed[13]
and it is only possible to seek a regularized inverse operator
to obtain an approximate solution.

When an operator over the Hilbert space is ill posed or
singular, its domain can be divided into the minimum-norm
space spanned by all minimum-norm solutions to the inverse
problem, and the null space of the operator. Since the null
and minimum-norm subspaces are orthogonal and together
they are complete, least-squares solutions correspond to the
summation of two components: the minimum-norm solution
and any available data, and any function in the null subspace.
In MRI, the inhomogeneity operator may have blinds pots
defined by the null space in its domain, and the components
of the input spatial distribution that lie within these spots
cannot be recovered. In this case, several forms of optimal
solutions can be considered. The first one is the minimum-
norm or minimal least-squares solution which corresponds to
the special case when the null space component is chosen to be
zero. Given the definition of the null space and some general
constraints on the solution based ona priori information about
the imaged object, alternative solutions can be formulated
by adding functions in the null space to the minimum norm
solution such that these constraints are satisfied [21].

Observing that the operator in this problem is a linear
operator, it is possible to obtain a solution based on full-
rank operator composition achieved by reducing the size of the
null space with over sampling. Oversampling can be achieved
by using multiple scans with different-space trajectories
or taking more samples than dictated by the sampling re-
quirements of conventional Fourier imaging (see, [12]). In
the absence of magnetic field inhomogeneities, oversampling
would be considered redundant. Nevertheless, when magnetic
field inhomogeneities exist, oversampling is needed to improve
the conditioning of the operator equation and reduce the null
space.
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B. Discretization

For practical implementation, it is necessary to discretize
the original problem before attempting to obtain the solution.
The discretization can be achieved in a variety of ways that
approximate the integral with a finite sum. In general, the
discretized problem takes the form

(5)

where are weights that are functions of the discretization
rule. Notice that in practice it is only possible to collect limited
extent, discrete samples in the-space. Therefore,collocation
is invoked to convert the above equation to the desired finite-
dimensional problem [15]. That is, to force the continuous
equation to hold at specified discrete points such that

(6)

In this case, the original integral equation is approximated by
an linear system, , where is an
matrix with entries , is an vector
with entries , and is an vector with entries

. That is, the discretization of the operator is the
matrix , and the operator is represented by the matrix ,
the conjugate transpose of the matrix. The most common
approach to evaluate the weights is the midpoint rule,
where a numerical integration rule (e.g., Simpson’s rule) is
applied to the continuous integral, yielding a sum with equal
and constant weights (ignoring edge effects). Therefore, up to
a constant multiplier, the weights for the midpoint rule are
given as

(7)

It should be noted that the discretization of an ill-posed
integral equation of the first kind yields anill-conditioned
linear system. In general, the higher the resolution of this
discretization, the closer the finite-dimensional problem to the
ill-posed continuous problem and, consequently, the more ill
conditioned the algebraic problem becomes [15]. Given that
the size of common MRI inhomogeneity correction problems
is equal to the matrix size along the direction of interest (e.g.,
the phase-encoding direction for EPI), which is usually large
(around 128), the ill conditioning of the algebraic problem
is expected to be severe. Therefore, the numerical solution
methods to be used to solve this problem must be able to
maintain robust performance under these conditions in order
to obtain a stable inverse to this system.

C. Inhomogeneity Problem in EPI: From
Two-Dimensional (2-D) to 1-D

In EPI, the data acquisition time is negligible along one of
dimensions and can be considered as a function of
one component, i.e., . In this case, the 2-D

-space data take the form

(8)

where is the true signal within the imaged slice,
is the collected -space data, is the corresponding
inhomogeneity field map, and is a function of the -space
time trajectory. Performing a 1-D inverse Fourier transform
operation with respect to on both sides of the above
formula, we obtain

(9)

where is the inverse Fourier transform of with
respect to the first dimension. As can be seen, this form is
equivalent to the 1-D problem where the given data are the
-space representation of the object, the inhomogeneity field

map, and the -space time trajectory, while the unknown
is the spatial distribution along a line in the image defined
by . Hence, by solving a set of 1-D problems that
sufficiently sample the image structure in the-dimension,
the 2-D problem is solved.

It should be noted that the above discussion is general
for EPI since no particular form for in (9) was as-
sumed. Examples of possible forms of this function include

constant for single-shot blipped-EPI (i.e., single
echo acquisition in which the transition between different
rows is achieved using small gradient pulses orblips), and

constant for segmented blipped-EPI with centric
reordering (i.e., acquisition is performed using two echoes or
segments, one for positive and one for negative values of
the -space area of interest, in a similar fashion to blipped-EPI
starting from the center of the-space).

D. Example of a Matrix Operator

As an example, the case of a single-shot blipped-EPI
imaging sequence is examined in this section. The midpoint
discretization method is used and the corresponding linear
system is derived. In this particular case, the problem can be
formulated such that the discrete transformation operatoris
a Vandermonde matrix of the form [16]

...
...

...

(10)

This matrix is completely defined by only one row in the
form: , which is usually called the Vandermonde
coefficient vector. This can be of great advantage for reducing
the storage space when the matrix is large or when the number
of systems to be solved is large. For our problem, the elements
of the Vandermonde coefficient vector corresponding to the
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transformation operator take the form

(11)

where is the step size in the -space. The matrix cor-
responding to the Grammian operator of this Vandermonde
system is a member of the class of Hilbert matrices [20].
Also, the columns of the deformation operator are related to
the Vandermonde transformation operator through a Fourier
transform. Given that each column of the Vandermonde matrix
corresponds to samples of a complex exponential, it is ex-
pected that each column of the deformation matrix will contain
only a few nonzero elements. In fact, if the sampling scheme
happens to be appropriate for the particular frequency of a
given column, its corresponding deformation matrix column
will contain only one element. In other words, the number of
nonzero elements depends on the sampling scheme and the
field inhomogeneity, but is generally much smaller than the
size of the matrix. Hence, the deformation matrix issparse
[14]. Moreover, the elements of this matrix are generally
expected to be largely centered around the main diagonal.
Therefore, it can be considered as a constant bandwidth
sparse matrix with a bandwidth determined by the maximum
deviation from the diagonal.

In addition to the possible computational and storage advan-
tages of the deformation matrix formulation, it also provides an
explicit visualization of the inhomogeneity induced distortion.
When there is no inhomogeneity at a particular location,
the matrix column corresponding to this location is equal to
the corresponding column of an identity matrix. Conversely,
when there is an inhomogeneous field at a certain location,
two possible scenarios can be encountered corresponding to
a shifted version of an identity matrix column, and a blur
extending over a number of locations around the nonzero ele-
ment. Given the deformation matrix, it is possible to identify
the presence of overlap among distortions from neighboring
pixels by inspecting its rows. In particular, when a given row
contains more than one nonzero element, more than one pixel
in the original image contribute to a single pixel in the distorted
image. When there are such overlaps, shift-based correction
methods fail. Therefore, it may be advantageous to use this
matrix to analyze the inhomogeneity effects before resorting
to a particular correction method. An example of this matrix
is shown in Fig. 1.

It should be noted that a similar analysis can also be
performed for the general case of nonlinear such as seg-
mented blipped-EPI. In this case, the transformation operator
is not a Vandermonde matrix and the deformation matrix is
still sparse but expected to have a wider bandwidth because
of the extra blur associated with the point-spread functions of
such sequences.

E. Imaging Sequence Dependence

It is interesting to examine the dependence of the condition
number of the imaging operators on the imaging sequence. As
can be seen from the above example, the operator matrix is a
function of , which is defined by the-space trajectory of

Fig. 1. Illustration of an actual deformation matrix obtained with single-shot
blipped EPI. The mapping looks distorted from the ideal form of a diagonal
line.

the imaging sequence. Therefore, the condition number of the
operators depends on the form of .

In general, ill-posed operators are those which are close to
singular operators. Therefore, a good criterion for assessing
the well posedness of an operator is to check for possible
singularities under small perturbations in its parameters. When
singularities exist, it is expected that the operator will generally
be ill posed in practice. On the other hand, if there are no
singularities, the operator is expected to maintain its well
posedness.

In order to apply this criterion here, an inhomogeneity
operator is applied to two points at different locations in the
FOV (without loss of generality). Deriving the singularity
condition is equivalent to determining the conditions under
which the outcome of applying the operator in both cases
is the same. If such conditions exist, the operator contains
singularities and practical matrix operators are expected to be
ill conditioned, and vice versa. The signals from two points
located at and with magnetic field inhomogeneities

and are given by

(12)

and

(13)

Usually these signals are observed for a finite interval, say
. In order to assess the independence of these sig-

nals, the inner product of the two signals over the observation
period is evaluated as

(14)

Let and , and
define the distortion function . Assuming
the periodicity of the -space and invoking Parseval’s identity
of the Fourier transform, the inner product can be written in
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the form

(15)

Here is the inverse discrete-time Fourier transform
of , where is the spatial distance in pixels, and

is the Kronecker delta function. Hence, the result of the
inner product depends mainly on the value of the Fourier
transform of the distortion function. When singularities exist,
this inner product becomes equal to the square of the norm
of either signal, indicating that the two signals are identical.
In other words, when the contributions from two different
pixels are identical, it is impossible to separate the individual
contributions of these pixels.

Now consider the two main functional forms of ,
namely, linear and nonlinear functions. In the first, such as
with single-shot blipped-EPI, , and the outcome of
the inner product takes the form

(16)

As a result, the operator in this case will be singular at all
points with locations and inhomogeneities satisfying

. Hence, the matrix operators in this case are ill con-
ditioned. This can be intuitively seen because
everywhere when for . This happens
(but may not if the inhomogeneity is not too large) for linear

since Fourier encoding is linear in. This is not the
case when is nonlinear regardless of the magnitude of the
inhomogeneity. For example, consider the case of a segmented
blipped-EPI with centric reordering, where . In this
case, the inner product takes the form

(17)

Two main conclusions can be drawn from (17). First, the inner
product becomes a single-function only in the trivial case
when . Second, the maximum values of this
form occur at , and is equal to approximately half
the result in the trivial case. As a result, the matrix operators
for this sequence are expected to be better-conditioned than
for sequences having linear trajectories. Therefore, from a
theoretical point of view, it is always advantageous to use
nonlinear -space trajectories when inhomogeneity distortions
exist and are to be corrected for in the reconstruction.

III. N UMERICAL SOLUTION METHODS

A. SVD Solver

As discussed above, eigen-decomposition or singular value
decomposition (SVD) can be used to identify the null space of
a given linear system and to obtain the least squares solution.
Given the superior numerical properties of the SVD, it is

usually the method of choice for this computation. Using SVD,
any -dimensional matrix operator, , can be expressed in
an orthogonal representation of the form

(18)

where is the th singular value and and are members
of the ortho-normal sets of vectors in the columns ofand
the rows of , spanning the space of -dimensional ( -D)
vectors. In the case when the system is well conditioned, the
inverse of the matrix operator is given as

(19)

On the other hand, when the system is ill conditioned, small
singular values may be of the same order as the usual numeri-
cal noise encountered in this computation. In this case, to avoid
artifacts from the basis vectors corresponding to those very
small singular values, the method of truncated SVD (TSVD)
can be used to provide stable solutions that are optimal in
the least-square sense. In this method, the singular values are
thresholded and only those above the threshold are included
in the summation of (19). With appropriate selections of the
truncation level, TSVD is a regularization method. As with
any regularization method for ill-posed problems, the choice
of the truncation threshold is critical. For a fixed amount of
noise, the TSVD will begin to diverge if the truncation level
is increased beyond a certain level. It should be noted that
choosing the truncation level can be shown to be equivalent
to imposing a quadratic constraint on the solution.

B. Conjugate Gradient Method (CGM)

Among known robust linear system solvers, the CGM
proposed originally by Hestenes and Stiefel [18], [19] is
considered one of the most efficient. This method describes
a class of iterative techniques having the desirable property
of guaranteed convergence in a finite number of iterations.
Also, even when the system is ill conditioned, good estimates
of the largest and smallest eigenvalues are not needed to
determine the algorithm parameters. The basic idea of this
method is to eliminate the residual error
in a linear system , along mutually -orthogonal
directions spanning the space of the solution [19], [21]. The
original formulation of this technique requires the system to be
real, square, symmetric, and positive definite for the algorithm
to work and provide the unique solution to the system. In
this work, a direct modification of the technique is applied
to complex Hermitian, positive semidefinite linear systems to
compute the minimal least-square solution. That is, it is used to
solve the normal equations of the system given the properties
of the Grammian matrix defined by .

The conjugate gradient algorithm for solving the normal
equation is described as follows:

1) Set the initial solution as the distorted object.
2) Compute the initial residual .
3) Compute first direction .
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4) Compute , , and
.

5) Update solution , and update
residual .

6) Compute , and update direction
.

7) Increment counter , and repeat steps 4)
through 6) until one of the following termination condi-
tions is satisfied: , is below a given threshold,
or the number of iterations reached a predetermined
number .

Two main points about this algorithm are noted. First,
the initial solution vector is chosen as the distorted image.
Unlike any other initials election, this particular choice uses
the available information to ensure that the solution after any
number of iterations is better in the least-squares sense than
the distorted image. This choice may also reduce the number
of iterations needed to reach a given accuracy. Second, the
termination condition should ideally be that the norm of the
residual goes to zero if the system has a full rankor when
the parameter goes to zero if the system is rank-deficient.
Even though these conditions will eventually be met in a
finite number of iterations, a large fraction of the iterations
contribute to an insignificant improvement in the solution.
In particular, when is extremely small yet nonzero, the
correction term is multiplied by a very small value and hence
do not amount to a noticeable change in the results. Therefore,
in our implementation, the termination condition was set as
being smaller than a predetermined threshold.

In theory, the CGM reaches a unique solution or the minimal
least square solution in less than steps, where is the
size of the linear system [18]. Moreover, if the linear system
matrix can be expressed as the sum of the identity matrix
and another matrix of rank , the algorithm converges
in no more than steps. Hence, the convergence is
fast in general and only a few steps may be needed to reach
a solution with reasonable accuracy. The complexity of this
method is estimated as flops/iteration/line, which can
be significantly lower than that of SVD when a few iterations
are used.

C. Solution Constraining

When the linear system matrix is ill conditioned, it is
always advantageous to impose certain constraints on the
solution based ona priori information regarding the physical
system being imaged. In general, constraining improves the
accuracy of the result and amounts to regularization in most
cases. One type of constraints that can be useful for our
problem is linear equality constraints, which are often invoked
when certain parts of the FOV are knowna priori. For
example, when the FOV is larger than the imaged object,
equality constraints can be applied to force the solution at the
points outside the object boundaries to be zero.1 In general,
equality constraints can be expressed as , where

1It should be noted that in EPI Nyquist ghosts of significant energy are often
encountered and c. Application of equality constraints in the ghost regions
may force artifactual image energy into the central reconstruction region and
degrade image quality

is a full-rank matrix and is a -dimensional
vector. The exact application of the general form of this
equation involves a QR decomposition step, which is rather
computationally prohibitive, especially when the solver is
chosen to be the CGM [21]. Nevertheless, in practice, it is
sufficient to adhere to the constraints only approximately. This
allows the constraints to be invoked with only a small added
complexity by concatenating the constraint equation to the
original linear system with a weighting factor and solving
the composite system. In this case, the solution satisfies the
constraint more closely as the weighting factor gets larger.
It should be noted, however, that numerical stability can be
affected rather severely for large values of this weighting
factor. A reasonable value for this parameter is of the order
of the estimated average singular value of the linear system
matrix, usually of the order of ten. When the matrix is
diagonal, the solution method can be modified to solve only
for all pixels that are not assigned values by the constraints.
In this case, the solution satisfies the constraints in the exact
sense.

IV. M ETHODS

The reconstruction methods described here were applied to
experimental data of phantoms and human volunteers acquired
on a 1.5-T Siemens Magnetom Vision MR scanner. The
images were acquired using either a single-shot blipped-EPI
sequence or a segmented blipped-EPI with centric reordering
with a TE of 70 ms and a TR of 200 ms. The FOV was
31 cm 31 cm and the matrix size was 128128. In our
implementation, the field maps are computed from two images
acquired using a FLASH sequence with slightly different TE
values prior to the actual data acquisition. The resultant field
maps are masked based on the image intensity to eliminate
erratic field values in regions with very low signal [6]. Sub-
sequently, the field map is smoothed using a spatial domain
low-pass filter for noise reduction [4]. These two steps were
found to be crucial to the quality of the solution of the resultant
linear system. For an images, the field maps are used
to construct linear systems of equations based on the-
space trajectory of the imaging sequence as discrete versions of
(9). The midpoint rule was used to perform this discretization
as described in (6) and (7). Each of these linear systems is
concatenated with a set of equations corresponding to linear
constraints and supplied to either the TSVD solver or the CGM
solver to obtain one column in the corrected image. The linear
constraints are imposed to force the solution to approach zero
in the empty areas in the FOV. The threshold used with the
TSVD solver was selected to be unity for our experiment.2 For
the CGM solver, two iterations were used.

V. EXPERIMENTAL RESULTS

In Figs. 2 and 3, the results of the two-iteration CGM on
phantom and human data acquired using single-shot blipped-
EPI and segmented blipped-EPI with centric reordering imag-

2It should be noted that in general the choice of this threshold is a function
of the matrix size. However, for the relatively narrow range of matrix sizes
used in practical MRI, this choice of unity apply well throughout.
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Fig. 2. Correction of single-shot blipped-EPI data with two-iteration conju-
gate gradient iteration. Images from top to bottom are: field maps, distorted
images, corrected images, and FLASH comparison images.

Fig. 3. Correction of data acquired using segmented blipped-EPI with centric
reordering imaging sequence with two-iteration conjugate gradient iteration.
Images from top to bottom are: field maps, distorted images, corrected images,
and FLASH comparison images.

ing sequences are illustrated. By comparison to the FLASH
images, it can be seen that the correction improves the geo-
metric accuracy in both phantom and human images with
both sequences while maintaining reasonable computational
efficiency.

In Figs. 4 and 5, the results of using the TSVD solver
to correct images acquired with single-shot blipped-EPI and
segmented blipped-EPI with centric reordering are illustrated.
In Fig. 4, images obtained with single-shot blipped-EPI and
segmented blipped-EPI with centric reordering are shown as
examples of linear and nonlinear trajectory sequences. The
range of variation was between 164 and 167 Hz. Even
though the original image obtained with the latter sequence
exhibits more severe distortion artifacts combining geometric
shift and blurring, the quality of corrected images from this
sequence is superior to that with single-shot blipped-EPI, in
agreement with the theoretical prediction. In Fig. 5, the same
comparison is applied to human data and a similar conclusion
can be drawn. The ranges of variation in these images were
from 94 to 100 Hz for the coronal scan.

Fig. 4. Comparison of single-shot blipped-EPI and segmented blipped-EPI
with centric reordering for phantom data. Images in the left column represent
the FLASH comparison image and the field map. In the middle column, the
distorted and SVD corrected images with single-shot blipped-EPI, while those
in the right column are for segmented blipped-EPI.

Fig. 5. Comparison of single-shot blipped-EPI and segmented blipped-EPI
with centric reordering for human data. Images in the left column represent
the FLASH comparison image and the field map. In the middle column, the
distorted and SVD corrected images with single-shot blipped-EPI, while those
in the right column are for segmented blipped-EPI.

VI. DISCUSSION

In practice, the experimental information is often contam-
inated with additive noise. As a result, the processes of
eigenvalue decomposition and SVD are perturbed by this noise
thus producing all nonzero eigenvalue and singular value sets
even when the operator is singular. In this case, the theoretical
null space is equivalent to the noise subspace that can be
detected using one of many likelihood ratio criteria. If a zero-
mean white Gaussian noise model is assumed, this detection
process amounts to a simple absolute value thresholding of the
resultant eigenvalues or singular values as in TSVD.

It is also important to consider the contamination of field
maps with noise and its effect on the reconstruction. To assess
this problem, a combination of measurements and simulations
were performed to arrive at the following observations. After
performing a number of independent field mapping measure-
ments for the same slice, the results from all measurements
were found to be within only 4 Hz from their average, a good
estimate of the true field map. From computer simulations,
it was evident that when the field deviations are within 5
Hz, fairly accurate reconstruction is expected. Therefore, the
results from the field mapping procedure are generally stable.
Smoothing and low-intensity masking of field maps were also
found to be of important value in improving the stability of
the procedure even further.

When the matrix operator takes the form of a Vandermonde
matrix, the first solver that comes to mind is the Vandermonde
matrix solver proposed by Bjork and Pereyra [15] which is
known for its reduced complexity. However, when the matrix
is ill conditioned or rank-deficient as with cases of severe
inhomogeneity, this solver cannot be used since regulariza-
tion disrupts the characteristic form of the matrix required
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by the solver. Without regularization, the solution becomes
dominated by numerical instabilities that are functions not
only of the condition number of the system matrix but also
of the machine epsilon (a measure of the numerical accuracy
of a machine defined as the smallest number that does not get
truncated when added to unity [17]). Therefore, this solver
cannot be used for our application because of its lack of
robustness.

Two important features should be noted about the SVD so-
lution method. First, it explicitly computes the inverse operator
and in doing that, it requires only information about the system
matrix . Given that the matrix operator is usually estimated
by field mapping before the actual acquisition of the distorted
data, the process of SVD computation can be performed prior
to the actual data acquisition, assuming perfect registration
between the field map and the subject imaged subsequently.
The second important feature of SVD is that it explicitly
identifies the null space of the matrix operator. Hence, when
different -space traversal methods are available for data
acquisition, they can be compared based on the dimensionality
of their corresponding null spaces. In other words, we can
make ana priori choice of the scanning method that would
yield the best solution. For example, if the operator matrix
forms for single-shot blipped-EPI and segmented blipped-EPI
with centric reordering sequences are examined, it can be
shown that the latter is more stable and is therefore expected
to maintain full rank under the same conditions that cause the
former to be rank-deficient. Moreover, if a full-rank solution
is required, it is possible to devise a-space traversal strategy
to provide a full-rank operator equation from several scans.
In this case, the tradeoff between the amount of acquired data
and the solution accuracy can be directly addressed with this
method. Although this solver is flexible, it is associated with a
rather high computational complexity [ flops/line] that
is a determining disadvantage in many situations.

Even though the computational complexity of the SVD
solver seems rather prohibitive in general, this might not be
the case for applications where repeated images of the same
slices are obtained. For example, in functional imaging, a time
sequence of as many as hundreds of acquisitions of the same
slice is obtained to assess brain activation during the time
course of an experiment. In this case, SVD inverse matrix
operator can be computed once and used to correct all images
in the time series. The resultant complexity will be comparable
to that of the conjugate phase method while maintaining the
least-squares optimality of the correction.

As suggested by the theory, given a field map, it is possible
to compare the performance of different scanning sequences
prior to the actual data acquisition by comparing the condition
numbers of their system matrices. An interesting observation
in this aspect is that only linear trajectory sequences may have
rank-deficient system matrices. This is a direct result of their
linear phase evolution characteristics, which are similar to
those of the Fourier transform matrix columns. With nonlinear
scanning sequences such as segmented blipped-EPI or spiral,
the phase evolution characteristics are rather distinct from
those of Fourier vectors and, hence, their system matrices
are of full rank. Therefore, our theoretical result indicates

that the use of nonlinear-space trajectories leads to better
reconstructions under inhomogeneity.

It should be noted that the CGM does not explicitly identify
the null space of the system and that the remaining residual
after algorithm termination lies in that space. It is therefore
not possible to define the null space using CGM. As a result,
this method cannot be used to derive a strategy for full-rank
system composition from oversampling as with SVD.

An interesting special case of the CGM procedure occurs
when only one iteration is used. In this case, the CGM amounts
to an approximate correction method similar to the conjugate
phase method proposed by Maedaet al. [8]. In fact, it can
be shown that the conjugate phase method is a special case of
the conjugate gradient iterative solver when the initial solution
is zero and the number of iterations is exactly one. Hence,
several strategies can be employed to take advantage of this
observation. First, a generalized multistep conjugate phase
method can be directly implemented by using the conjugate
gradient iterations. An alternative approach to the conjugate
phase method can also be proposed when the initial solution
is chosen as the distorted object. The possible advantage of
using this method is the guaranteed lower error norm. This is
not generally the case with the conjugate phase method.

VII. CONCLUSIONS

Stable algebraic reconstruction methods for MRI under se-
vere magnetic field inhomogeneity are described. The present
approach is based on estimating the operator that produces
the distorted images and computing the least-squares inverse
operator that can be applied to derive corrected images. The
corrected images are, therefore, optimal in the Frobenius-
norm sense. This formalism allows a theoretical comparison of
imaging sequences with different trajectories in terms of the
stability of the algebraic reconstruction problem, suggesting
that nonlinear -space trajectory sequences such as segmented
blipped-EPI with centric reordering provide better results than
linear trajectory sequences as single-shot blipped-EPI. Two
methods were described to compute the solution. The first
is based on TSVD and provides an optimal solution at the
cost of high computational complexity. The second method,
the CGM, provides a fast approximation to TSVD solution
where the accuracy of this approximation is controlled by the
choice of the number of iterations. Finally, these reconstruction
methods were successfully demonstrated with experimental
data in which the distortion was mainly along one of the image
dimensions. The clinical potential of these methods remains to
be addressed in future studies.
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