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Algebraic Reconstruction for Magnetic Resonance
Imaging UnderB, Inhomogeneity

Yasser M. Kadah and Xiaoping Hu¥lember, IEEE

Abstract—In magnetic resonance imaging, spatial localization example, in spin-echo (SE) images, the distortion is present
is usually achieved using Fourier encoding which is realized along the readout (and to a lesser extent along slice selection
by applying a magnetic field gradient along the dimension of irections) and is moderate. Severe distortions are usually

interest to create a linear correspondence between the resonance tered with echo ol . . EPI) al the oh
frequency and spatial location following the Larmor equation. €ncountered with echo planar imaging (EPI) along the phase

In the presence of B, inhomogeneities along this dimension, the €ncoding direction. Possible image distortions include pixel
linear mapping does not hold and spatial distortions arise in the shift and/or deformation (i.e., compression or expansion),

acquired images. In this paper, the problem of image reconstruc- which is accompanied by intensity modulations [1], [3]. Pixel
tion under an inhomogeneous field is formulated as an inverse shift arises when a difference exists between the field at a

problem of a linear Fredholm equation of the first kind. The op- . . . g
erators in these problems are estimated using field mapping and 9iven pixel and that of the static magnetic field. On the other

the k-space trajectory of the imaging sequence. Since such inversehand, pixel deformations arise from a field gradient across
problems are known to be ill-posed in general, robust solvers, individual pixels, which also leads to intensity modulations
singular value decomposition and conjugate gradient method, a5 3 result of the nonunity Jacobian of the distorted space-
o emnoes o obar, coreces ndge v e o) 1 cqency mappig il eciing e dstorions s pesi
of the imaging sequence for well-conditioned matrix operators N SOMe cases, it may not be achieved in cases when the field
is discussed, and it is shown that nonlineak-space trajectories inhomogeneity maps different pixels in the original into an
provide better results. The reconstruction technique is applied to identical position in the image. In these cases, it is generally

sequences where the distortion is more severe along one of thengt possible to obtain a correct reconstruction of this image
image dimensions and the two-dimensional reconstruction prob- _ . " . :
without additional information.

lem becomes equivalent to a set of independent one-dimensional - .
problems. Experimental results demonstrate the performance and ~ Various methods have been suggested and implemented

stability of the algebraic reconstruction methods. to overcome the problem of inhomogeneity-induced image
Index Terms—B, inhomogeneity, distortion correction, fast distortiqns. These_ techniqugs can be generally classified ipto
imaging, image reconstruction, MRI. two main categories according to the way the inhomogeneity
inverse operator is designed. The first category includes the
methods based on field mapping. Field maps can be used to
correct shifts in the spatial domain by computing the expected
N Fourier imaging, spatial localization is achieved byixel displacement and unwarping the image [4]-[7], or to
applying linear magnetic field gradients to impose a preciseodify the k-space data in a pixel-specific manner as with
linear mapping between spatial locations and their resonanhe conjugate phase method [8], [9]. Other techniques use
frequencies as dictated by the Larmor equation. Imperfectiofield maps to derive analytical models for the distorted space-
of the static magnetic field, the magnetic field gradients, @requency mapping in different simplified forms that allow for
significant changes in the susceptibility within the imagefhst correction [10]. Finally, there was an attempt to solve the
field-of-view (FOV) can lead to image distortions and artifactitdhomogeneity problem algebraically by inverting a very large
[1], [2]. This problem is present to some degree with alipproximate matrix operator to derive a vector composed of
magnetic resonance imaging (MRI) techniques, but its severifie whole image [11].
widely varies amongst different imaging sequences as wellThe second category of correction techniques are those
as between different dimensions for the same sequence. ff@it do not require field mapping. The most important of
such methods is the one that uses two images acquired with
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that is based on solving for the inverse of the inhomogeneifandermonde in some cases, the Grammian operator being
operator such that the norm of the error is minimum can léermitian, and the deformation operator being sparse.
advantageous. In general, an operatod can be fully described by a

In this paper, we describe an algebraic model and an optinma&pping rule from the Hilbert space of its domain to that
solution to the problem aB, inhomogeneity distortion correc- of its range. The mapping rule is defined by the available
tion. The continuous case is first considered and shown to inéormation about the data-acquisition procedure. The recon-
a Fredholm integral equation of the first kind. A discretizatiostruction problem becomes one of finding an inverse operator
strategy is proposed to translate the continuous problem intd such that
a linear system of equations that can be solved numerically to
obtain the least-squares solution. Several numerical methods of (AT - A) =7 3)
different characteristics are described to compute this solution
in an accurate and stable fashion under linear constraints. Tiieere Z is the identity operator Then, the solution to the
dependence of the algebraic model on the imaging sequencginal problem of findingf is given by
is also considered, and it is shown that in general nonlinear
k-space trajectories provide better results than linear ones. AT(Fd) = (AT .A)(f) =I(f)="r 4)
Finally, the performance of the approach is demonstrated

by experimental data using single-shot and segmented Wifhgeneral, the mapping rule that defines the operator may
centric reordering blipped-EPI imaging sequences, where thét be one-to-one. In this case, the operatosiigular, and
problem is essentially one-dimensional (1-D) with the distoft is not possible to construct the inverse operator. In some
tion mainly occurring along the phase encoding direction. other cases, the operator maps different points in its domain
to different yet very close points in its range. If these points
Il. THEORY are too close, slight contamination with additive noise can
render them indistinguishable, making it difficult to compute
the inverse operator. In such cases, the operaiibpzsed[13]
and it is only possible to seek a regularized inverse operator
Consider the case of Fourier imaging of a 1-D object q§ gbtain an approximate solution.
spatial intensityf(x) in the presence of field inhomogeneity \when an operator over the Hilbert space is ill posed or
represented byAB(x). The resultant continuous-space of singular, its domain can be divided into the minimum-norm
this objectFy(k) takes the form space spanned by all minimum-norm solutions to the inverse
00 problem, and the null space of the operator. Since the null
Fy(k) :/ flx) - 7ABEUR) oxpl_jorka}ds. (1) and minimum-norm subspaces are orthogonal and together
-0 they are complete, least-squares solutions correspond to the
summation of two components: the minimum-norm solution

tion that depends on thé-space trajectory of the imaginga”d any available data, and any function in the null subspace.

sequence. This equation represents a linear Fredholm ife-MRI, the inhomogeneity operator may have blinds pots
gral equation of the first kind with kerneli;(z, k) = defmed. by the nu.II space in .|ts domam, aqd .the components
ITAB@)HR) expf _jonkz) [15]. That is, thek-space data of the input spatial dlstrlbgtlon that lie within these quts
can be expressed as the outcome of applying a linear oper&@not be recovered. In this case, several forms of optimal
7T to the original ortrue spatial intensity such that solutions can be considered. The f|_rst one is the minimum-
norm or minimal least-squares solution which corresponds to
Fy=T(f). (2) the special case when the null space component is chosen to be
zero. Given the definition of the null space and some general
Throughout this paper] will be referred to as théransfor- constraints on the solution basedapriori information about
mation operator since it performs the mapping between thbe imaged object, alternative solutions can be formulated
original object and the:-space taking into account the inho-by adding functions in the null space to the minimum norm
mogeneity effects. An equivalent formulation can be generatsdlution such that these constraints are satisfied [21].
by premultiplying (2) withZ ™, the conjugate operator. In this Observing that the operator in this problem is a linear
case, the operator equation is expressed in terms of the gperator, it is possible to obtain a solution based on full-
called Grammianoperator defined a§ = (7* - 7). Another rank operator composition achieved by reducing the size of the
interesting operator equation arises when (2) is premultipliedll space with over sampling. Oversampling can be achieved
by the inverse Fourier transform operatdf;. The operator by using multiple scans with different-space trajectories
in this equation will be referred to as thleformationoperator or taking more samples than dictated by the sampling re-
D = (F*.T) because the original object functignis mapped quirements of conventional Fourier imaging (see, [12]). In
directly to the resultant distorted spatial distributifin Since the absence of magnetic field inhomogeneities, oversampling
these three operator equations are equivalent, the choicenoluld be considered redundant. Nevertheless, when magnetic
the one to use depends on the desirable features each offield inhomogeneities exist, oversampling is needed to improve
as applied to the specific solution method at hand. Examplég conditioning of the operator equation and reduce the null
of such features include the transformation operator beispace.

A. Continuous Problem Formulation

Here, v is the gyro magnetic ratio ant(k) is a time func-
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B. Discretization k-space data take the form

For practical implementation, it is necessary to discretize 00 '
the original problem before attempting to obtain the solution.  Fu(ks, k) = // Fla, y) - B
The discretization can be achieved in a variety of ways that el
approximate the integral with a finite sum. In general, the - exp[—j2m(kz + kyy)] dz dy (8)

discretized problem takes the form wheref(-, -) is the true signal within the imaged slicg,(-, -)

N is the collectedi-space dataAB(-, -) is the corresponding
anKI(k, x,) - flan) = Fy(k) (5) inhomogeneity field map, and-) is a function of thek-space
n=1 time trajectory. Performing a 1-D inverse Fourier transform

) ) ) .. operation with respect td, on both sides of the above
wherew,, are weights that are functions of the dlscret|zat|0fbrmu|a we obtain

rule. Notice that in practice it is only possible to collect limited

extent, discrete samples in thespace. Thereforeollocation = (20, ky) = = F(@o, v) . IVAB(zo, y)-t(ky)
is invoked to convert the above equation to the desired finite- dios by e v
dimensional problem [15]. That is, to force the continuous - exp[—j27k,y] dy (9)

equation to hold at specified discrete points such that
N whereFy(-, -) is the inverse Fourier transform (-, -)with
o o respect to the first dimension. As can be seen, this form is
r;wnKI(knu ) fwn) = Flm), m=1,2,---, M. equivalent to the 1-D problem where the given data are the
B (6) k-space representation of the object, the inhomogeneity field
map, and thek-space time trajectory, while the unknown

In this case, the original integral equation is approximated 5y the spatial distribution along a line in the image defined
an M x N linear systemAf = Fy, whereA is anM x N by «+ = z,. Hence, by solving a set of 1-D problems that
matrix with entries[w, K7 (km, )] f is an N x 1 vector Sufficiently sample the image structure in tlkedimension,
with entries[f(z,,)], and F, is an M x 1 vector with entries (he 2-D problem is solved. _ o
[Fy(kn)]. That is, the discretization of the operatbris the It shoulq be noted _that the above dls.cussmn is general
matrix A, and the operatdF* is represented by the matex+, 0 EPI since no particular form fot(k) in (9) was as-
the conjugate transpose of the matAx The most common sumed. Examples of possible forms of this function include
approach to evaluate the weighis, is the midpoint rule *(*) = constantx k for single-shot blipped-EPI (i.e., single
where a numerical integration rule (e.g., Simpson’s rule) fcho acquisition in _vvh|ch the transition betwe_en different
applied to the continuous integral, yielding a sum with equ§fWs IS achieved using small gradient pulsesbops), and
and constant weights (ignoring edge effects). Therefore, uptd) = constantx || for segmented blipped-EPI with centric

a constant multiplier, the weights for the midpoint rule argordering (i.e., acquisition is performed using two echoes or
given as segmentsone for positivek, and one for negative, values of

the k-space area of interest, in a similar fashion to blipped-EPI
N. (7) starting from the center of the-space).

midpoint __
w,, =1,

n=12 -,

It should be noted that the discretization of an ill-posed. Example of a Matrix Operator
integral equation of the first kind yields afi-conditioned
linear system. In general, the higher the resolution of thf’ﬁ,‘
discretization, the closer the finite-dimensional problem to t
ill-posed continuous problem and, consequently, the more

As an example, the case of a single-shot blipped-EPI
aging sequence is examined in this section. The midpoint
{scretization method is used and the corresponding linear

» ) . dVstem is derived. In this particular case, the problem can be
condl_tloned the algebralc_ problem be_comes [15]' Given t mulated such that the discrete transformation operates
the size of common MRI inhomogeneity correction problem

% Vandermonde matrix of the form [16
is equal to the matrix size along the direction of interest (e.g., [16]

the phase-encoding direction for EPI), which is usually large 1 1 ... 1
(around 128), the ill conditioning of the algebraic problem Ao AL 0 An
is expected to be severe. Therefore, the numerical solution V= | a2 22
: — [ o (10)
methods to be used to solve this problem must be able to } ) .
maintain robust performance under these conditions in order N -
to obtain a stable inverse to this system. A ALY WY

This matrix is completely defined by only one row in the
form: [AoA1 - - - An], which is usually called the Vandermonde
coefficient vector. This can be of great advantage for reducing
In EPI, the data acquisition time is negligible along one dhe storage space when the matrix is large or when the number
dimensions and(k,, k,) can be considered as a function obf systems to be solved is large. For our problem, the elements
one component, i.et(k., k,) = t(k,). In this case, the 2-D of the Vandermonde coefficient vector corresponding to the

C. Inhomogeneity Problem in EPI: From
Two-Dimensional (2-D) to 1-D
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transformation operator take the form
Ap = eI 1AB@e vn) B oy i 97y, - AK] (11)

where Ak is the step size in thé&-space. The matrix cor-
responding to the Grammian operator of this Vandermonde
system is a member of the class of Hilbert matrices [20].
Also, the columns of the deformation operator are related to
the Vandermonde transformation operator through a Fourier
transform. Given that each column of the Vandermonde matrix
corresponds to samples of a complex exponential, it is ex-
pected that each column of the deformation matrix will contain
only a few nonzero elements. In fact, if the sampling scheme
happens to be appropriate for the particular frequency of a
given column, its corresponding deformation matrix column
will contain only one element. In other words, the number &fig. 1. lllustration of an actual deformation matrix obtained with single-shot
nonzero elements depends on the sampling scheme and bineed EPI. The mapping looks distorted from the ideal form of a diagonal
field inhomogeneity, but is generally much smaller than tHge:
size of the matrix. Hence, the deformation matrixsigarse
[14]. Moreover, the elements of this matrix are generalifhe imaging sequence. Therefore, the condition number of the
expected to be largely centered around the main diagongberators depends on the form k).
Therefore, it can be considered as a constant bandwidthn general, ill-posed operators are those which are close to
sparse matrix with a bandwidth determined by the maximusingular operators. Therefore, a good criterion for assessing
deviation from the diagonal. the well posedness of an operator is to check for possible

In addition to the possible computational and storage advaingularities under small perturbations in its parameters. When
tages of the deformation matrix formulation, it also provides asingularities exist, it is expected that the operator will generally
explicit visualization of the inhomogeneity induced distortiorbe ill posed in practice. On the other hand, if there are no
When there is no inhomogeneity at a particular locatiogingularities, the operator is expected to maintain its well
the matrix column corresponding to this location is equal feosedness.
the corresponding column of an identity matrix. Conversely, In order to apply this criterion here, an inhomogeneity
when there is an inhomogeneous field at a certain locati@perator is applied to two points at different locations in the
two possible scenarios can be encountered correspondingF@V (without loss of generality). Deriving the singularity
a shifted version of an identity matrix column, and a blugondition is equivalent to determining the conditions under
extending over a number of locations around the nonzero elghich the outcome of applying the operator in both cases
ment. Given the deformation matrix, it is possible to identifys the same. If such conditions exist, the operator contains
the presence of overlap among distortions from neighborisgnhgularities and practical matrix operators are expected to be
pixels by inspecting its rows. In particular, when a given roW conditioned, and vice versa. The signals from two points
contains more than one nonzero element, more than one pixelated atz; and z, with magnetic field inhomogeneities
in the original image contribute to a single pixel in the distorted B(z;) and AB(z») are given by
image. When there are such overlaps, shift-based correction
methods fail. Therefore, it may be advantageous to use this
matrix to analyze the inhomogeneity effects before resortin%d
to a particular correction method. An example of this matrix
is shown in Fig. 1. ro(k) = ei¥hee . irAB(w2)t(k) (13)

It should be noted that a similar analysis can also be
performed for the general case of nonlinggr) such as seg- Usually these signals are observed for a finite interval, say
mented blipped-EPI. In this case, the transformation operaferl/2, 1/2). In order to assess the independence of these sig-
is not a Vandermonde matrix and the deformation matrix i®ls, the inner product of the two signals over the observation
still sparse but expected to have a wider bandwidth becayssiod is evaluated as
of the extra blur associated with the point-spread functions of 1/2
such sequences. (ry, ro) = / e 2mk(@z—z1) | Liv(AB(z2)—AB(z))t(F) g

—1/2

7’1(/6) — e—j?wkaﬁ B ej'yAB(am)t(k) (12)

E. Imaging Sequence Dependence (14)

It is interesting to examine the dependence of the condititet An = x2 — 21 and Ab = y(AB(z3) — AB(z1)), and
number of the imaging operators on the imaging sequence. define the distortion functiod(k; Ab) = /(%) Assuming
can be seen from the above example, the operator matrix itha periodicity of thek-space and invoking Parseval’s identity
function of ¢(k), which is defined by thé-space trajectory of of the Fourier transform, the inner product can be written in
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the form usually the method of choice for this computation. Using SVD,

any N-dimensional matrix operatoA, can be expressed in
{ri, m2) = Z 8(n — An)D(n; Ab) = D(An; Ab). (15) a1 orthogonal representation of the form

of d(k; Ab), wheren is the spatial distance in pixels, and

6(.) is the Kronecker delta function. Hence, the result of the . ) .

inner product depends mainly on the value of the Fouridf1€reéoy is thenth singular value and,, andv, are members
transform of the distortion function. When singularities exisP! the ortho-normal sets of vectors in the columnstbfand

this inner product becomes equal to the square of the nofff¢ "ows ofV, spanning the space o¥-dimensional {V-D)

of either signal, indicating that the two signals are identica(®ctors- In the case when the system is well conditioned, the
In other words, when the contributions from two different’Verse of the matrix operatoh is given as

N
Here D(n; Ab) is the inverse discrete-time Fourier transform A=Uxv? = Z o, 3T (18)
n=1

pixels are identical, it is impossible to separate the individual N
contributions of these pixels. At = > =Ty (19)
Now consider the two main functional forms dfk), n=t 7

ngmel_y, linear an(_j nonlinear functions. In the first, such ®n the other hand, when the system is ill conditioned, small
Wlth.smgle-shot blipped-EPK(k) = ok, and the outcome of singular values may be of the same order as the usual numeri-
the inner product takes the form cal noise encountered in this computation. In this case, to avoid
(r1, T2 )tinear = 6(An — alAD). (16) artifacts from the basis vectors corresponding to those very
small singular values, the method of truncated SVD (TSVD)
As a result, the operator in this case will be singular at aten be used to provide stable solutions that are optimal in
points with locations and inhomogeneities satisfying = the least-square sense. In this method, the singular values are
aAb. Hence, the matrix operators in this case are ill corthresholded and only those above the threshold are included
ditioned. This can be intuitively seen becausék) = r»(k) in the summation of (19). With appropriate selections of the
everywhere whem, —x; = «Abfor t(k) = ok. This happens truncation level, TSVD is a regularization method. As with
(but may not if the inhomogeneity is not too large) for lineaany regularization method for ill-posed problems, the choice
t(k) since Fourier encoding is linear ih. This is not the of the truncation threshold is critical. For a fixed amount of
case wheri(k) is nonlinear regardless of the magnitude of theoise, the TSVD will begin to diverge if the truncation level
inhomogeneity. For example, consider the case of a segmeritedhcreased beyond a certain level. It should be noted that
blipped-EPI with centric reordering, whetg:) = «|k|. Inthis choosing the truncation level can be shown to be equivalent

case, the inner product takes the form to imposing a quadratic constraint on the solution.
o . 1 _
(r1; 72)nontinear = 3 (6(n — An + aAD) . B. Conjugate Gradient Method (CGM)
+6(n — An — aAb)) + 27 Among known robust linear system solvers, the CGM
1 1" proposed originally by Hestenes and Stiefel [18], [19] is
. < _ ) considered one of the most efficient. This method describes
n—An+aldb  n—An—alb a class of iterative techniques having the desirable property

(A7) of guaranteed convergence in a finite number of iterations.

. . . . _Also, even when the system is ill conditioned, good estimates
Two main conclusions can be drawn from (17). First, the innek .
Of the largest and smallest eigenvalues are not needed to

product becomes a singtefunction only_m the trivial Cas€ determine the algorithm parameters. The basic idea of this

when An = aAb = 0. Second, the maximum values of this . e . L -

form occur atn = £aAb, and is equal to approximately halfmethOd s to eliminate thg residual erer= A - Zs — b
' in a linear systemAx = b, along mutually A-orthogonal

the result in the trivial case. As a result, the matrix operator, : : .
for this sequence are expected to be better-conditioned tr(]ja?rnef:tmns spanning the space of the solution [19], [21]. The

for sequences having linear trajectories. Therefore, frc)mo{ggmal formulation of this technique requires the system to be

theoretical point of view, it is always advantageous to u real, square, symmetric, and positive definite for the algorithm

. . . . A Y38 work and provide the unigue solution to the system. In
nonlineark-space trajectories when inhomogeneity dlstortlorhs1iS work, a direct modification of the technique is applied
exist and are to be corrected for in the reconstruction. '

to complex Hermitian, positive semidefinite linear systems to
compute the minimal least-square solution. That is, it is used to

lll. NUMERICAL SOLUTION METHODS solve the normal equations of the system given the properties
of the Grammian matrix defined b6 = T* - T.
A. SVD Solver The conjugate gradient algorithm for solving the normal

As discussed above, eigen-decomposition or singular vag@uationA*Ax = A*b is described as follows:
decomposition (SVD) can be used to identify the null space of1) Set the initial solutionz, as the distorted object.
a given linear system and to obtain the least squares solution2) Compute the initial residual, = b— AZ,.

Given the superior numerical properties of the SVD, it is 3) Compute first directiom, = A*#,.
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4) Compute ¢, = ||A*7wl2 dm = |[Afw||2, and B is a P x N full-rank matrix andd is a P-dimensional
U, = Cn /- vector. The exact application of the general form of this

5) Update solution?,,+1 = Zm + am - Pm, and update equation involves a QR decomposition step, which is rather
residualv,,11 = 7 — am - A, computationally prohibitive, especially when the solver is

6) Computee,, = ||A*7,.41]||3/cm, and update direction chosen to be the CGM [21]. Nevertheless, in practice, it is
Pyl = A*Tq1 + e - P sufficient to adhere to the constraints only approximately. This

7) Increment countern = m + 1, and repeat steps 4)allows the constraints to be invoked with only a small added
through 6) until one of the following termination condi-complexity by concatenating the constraint equation to the
tions is satisfiede,, = 0, ¢, is below a given threshold, original linear system with a weighting factor and solving
or the number of iterations reached a predetermindite composite system. In this case, the solution satisfies the
number N. constraint more closely as the weighting factor gets larger.

Two main points about this a|gorithm are noted. F|rsﬂ should be noted, however, that numerical stability can be

the initial solution vector is chosen as the distorted imag@ffected rather severely for large values of this weighting

Unlike any other initials election, this particular choice usef@ctor. A reasonable value for this parameter is of the order
the available information to ensure that the solution after a®j the estimated average singular value of the linear system
number of iterations is better in the least-squares sense tfa@irix, usually of the order of ten. When ti8 matrix is

the distorted image. This choice may also reduce the numigégagonal, the solution method can be modified to solve only

of iterations needed to reach a given accuracy. Second, faeall pixels that are not assigned values by the constraints.
termination condition should ideally be that the norm of thé this case, the solution satisfies the constraints in the exact
residualy, goes to zero if the system has a full rankor whepense.

the parametet;. goes to zero if the system is rank-deficient.

Even though these conditions will eventually be met in a IV. METHODS

finite number of iterations, a large fraction of the iterations
contribute to an insignificant improvement in the solutior}é

In particular, whene;, is extremely small yet nonzero, theon a 15-T Siemens Magnetom Vision MR scanner. The

correction term is mult@plied by a very _smaII value and hen ﬁwages were acquired using either a single-shot blipped-EPI
_do not amount to a noticeable c_han_ge n the_ .reSU|t5' Therefoggquence or a segmented blipped-EPI with centric reordering
in our implementation, the termination condition was set;as with a TE of 70 ms and a TR of 200 ms. The EOV was
being smaller than a predetermingd threshqld. .. 31 cmx 31 cm and the matrix size was 12828. In our

| Inttheory, the IC?M rgac:lhes ?hudr:ﬁlqute squt|cr)]n c&r\;h.e Tr:n'm plementation, the field maps are computed from two images
cas ?(iﬁarlg ol |ont n elsSs M S eps,.fV\:herl. IS et acquired using a FLASH sequence with slightly different TE
S'Zf ortne |l;1ear Sys emd[ ] h oreover,fl th N _éne?_rt Sys et%lues prior to the actual data acquisition. The resultant field
ma(ljrlx C?r? © etx_r;gssfe alf ) etﬁum IO 'tr? iaentity ma ps are masked based on the image intensity to eliminate
and anofher matrbfs ot ranx rc, e algorthm CONVErges o aic field values in regions with very low signal [6]. Sub-

N no more thanrg + 1 steps. Hence, the convergence 'gelguently, the field map is smoothed using a spatial domain
fast in general and only a few steps may be needed to regs;

luti ith bl Th lexity of th w-pass filter for noise reduction [4]. These two steps were
a solution wrth reasona e2 accuracy. 1he compiexity ot thig, g tg pe crucial to the quality of the solution of the resultant
method is estimated ag(N=) flops/iteration/line, which can

o ) - linear system. For atv x N images, the field maps are used
be significantly lower than that of SVD when a few |terat|on§o construct' linear systems of equations based on the
are used.

space trajectory of the imaging sequence as discrete versions of

(9). The midpoint rule was used to perform this discretization

as described in (6) and (7). Each of these linear systems is
When the linear system matrix is ill conditioned, it isconcatenated with a set of equations corresponding to linear

always advantageous to impose certain constraints on twnstraints and supplied to either the TSVD solver or the CGM

solution based o priori information regarding the physical solver to obtain one column in the corrected image. The linear

system being imaged. In general, constraining improves tbenstraints are imposed to force the solution to approach zero

accuracy of the result and amounts to regularization in madatthe empty areas in the FOV. The threshold used with the

cases. One type of constraints that can be useful for oL®VD solver was selected to be unity for our experintefor

problem is linear equality constraints, which are often invoketle CGM solver, two iterations were used.

when certain parts of the FOV are knowa priori. For

example, when the FOV is larger than the imaged object, V. EXPERIMENTAL RESULTS

equality constraints can be applied to force the solution at the

points outside the object boundaries to be Zeho.general,

equality constraints can be expressedBasz = d, where

The reconstruction methods described here were applied to
xperimental data of phantoms and human volunteers acquired

C. Solution Constraining

In Figs. 2 and 3, the results of the two-iteration CGM on
phantom and human data acquired using single-shot blipped-

EPI and segmented blipped-EPI with centric reordering imag-
11t should be noted that in EPI Nyquist ghosts of significant energy are often

encountered and c. Application of equality constraints in the ghost regions?It should be noted that in general the choice of this threshold is a function

may force artifactual image energy into the central reconstruction region amidthe matrix size. However, for the relatively narrow range of matrix sizes

degrade image quality used in practical MR, this choice of unity apply well throughout.
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Fig. 4. Comparison of single-shot blipped-EPI and segmented blipped-EPI
with centric reordering for phantom data. Images in the left column represent
the FLASH comparison image and the field map. In the middle column, the
distorted and SVD corrected images with single-shot blipped-EPI, while those

nn in the right column are for segmented blipped-EPI.

Fig. 2. Correction of single-shot blipped-EPI data with two-iteration conju-
gate gradient iteration. Images from top to bottom are: field maps, distorted
images, corrected images, and FLASH comparison images.

Fig. 5. Comparison of single-shot blipped-EPI and segmented blipped-EPI
with centric reordering for human data. Images in the left column represent
the FLASH comparison image and the field map. In the middle column, the
distorted and SVD corrected images with single-shot blipped-EPI, while those
in the right column are for segmented blipped-EPI.

VI. DISCUSSION

In practice, the experimental information is often contam-
inated with additive noise. As a result, the processes of
eigenvalue decomposition and SVD are perturbed by this noise
thus producing all nonzero eigenvalue and singular value sets
even when the operator is singular. In this case, the theoretical
null space is equivalent to the noise subspace that can be
Fig. 3. Correction of data acquired using segmented blipped-EPI with centggteCted ysmg One,Of ma_ny |Ike||h00_d ratio Cmena'_lf a zero_—
reordering imaging sequence with two-iteration conjugate gradient iteratidfi€an white Gaussian noise model is assumed, this detection
Images from top to bottom are: field maps, distorted images, corrected imaggsocess amounts to a simple absolute value thresholding of the
and FLASH comparison images. resultant eigenvalues or singular values as in TSVD.

It is also important to consider the contamination of field
ing sequences are illustrated. By comparison to the FLASHaps with noise and its effect on the reconstruction. To assess
images, it can be seen that the correction improves the gdus problem, a combination of measurements and simulations
metric accuracy in both phantom and human images wittere performed to arrive at the following observations. After
both sequences while maintaining reasonable computatiopatforming a number of independent field mapping measure-
efficiency. ments for the same slice, the results from all measurements

In Figs. 4 and 5, the results of using the TSVD solverere found to be within only 4 Hz from their average, a good
to correct images acquired with single-shot blipped-EPI amd$timate of the true field map. From computer simulations,
segmented blipped-EPI with centric reordering are illustrateitl. was evident that when the field deviations are within 5
In Fig. 4, images obtained with single-shot blipped-EPI aridz, fairly accurate reconstruction is expected. Therefore, the
segmented blipped-EPI with centric reordering are shown eesults from the field mapping procedure are generally stable.
examples of linear and nonlinear trajectory sequences. TBmoothing and low-intensity masking of field maps were also
range ofB, variation was betweer 164 and+167 Hz. Even found to be of important value in improving the stability of
though the original image obtained with the latter sequenti®e procedure even further.
exhibits more severe distortion artifacts combining geometric When the matrix operator takes the form of a Vandermonde
shift and blurring, the quality of corrected images from thimatrix, the first solver that comes to mind is the Vandermonde
sequence is superior to that with single-shot blipped-EPI, imatrix solver proposed by Bjork and Pereyra [15] which is
agreement with the theoretical prediction. In Fig. 5, the sarkeown for its reduced complexity. However, when the matrix
comparison is applied to human data and a similar conclusisnill conditioned or rank-deficient as with cases of severe
can be drawn. The ranges Bf, variation in these images wereinhomogeneity, this solver cannot be used since regulariza-
from —94 to +100 Hz for the coronal scan. tion disrupts the characteristic form of the matrix required
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by the solver. Without regularization, the solution becomebat the use of nonlineak-space trajectories leads to better
dominated by numerical instabilities that are functions neoéconstructions undeBy, inhomogeneity.

only of the condition number of the system matrix but also It should be noted that the CGM does not explicitly identify
of the machine epsilon (a measure of the numerical accurabg null space of the system and that the remaining residual
of a machine defined as the smallest number that does notafé¢r algorithm termination lies in that space. It is therefore
truncated when added to unity [17]). Therefore, this solveiot possible to define the null space using CGM. As a result,
cannot be used for our application because of its lack tifis method cannot be used to derive a strategy for full-rank
robustness. system composition from oversampling as with SVD.

Two important features should be noted about the SVD so-An interesting special case of the CGM procedure occurs
lution method. First, it explicitly computes the inverse operatavhen only one iteration is used. In this case, the CGM amounts
and in doing that, it requires only information about the systetn an approximate correction method similar to the conjugate
matrix A. Given that the matrix operator is usually estimatephase method proposed by Maeefaal. [8]. In fact, it can
by field mapping before the actual acquisition of the distortdze shown that the conjugate phase method is a special case of
data, the process of SVD computation can be performed prtbe conjugate gradient iterative solver when the initial solution
to the actual data acquisition, assuming perfect registratisnzero and the number of iterations is exactly one. Hence,
between the field map and the subject imaged subsequergigveral strategies can be employed to take advantage of this
The second important feature of SVD is that it explicitiybservation. First, a generalized multistep conjugate phase
identifies the null space of the matrix operator. Hence, whemethod can be directly implemented by using the conjugate
different k-space traversal methods are available for dagadient iterations. An alternative approach to the conjugate
acquisition, they can be compared based on the dimensionajfitase method can also be proposed when the initial solution
of their corresponding null spaces. In other words, we cd® chosen as the distorted object. The possible advantage of
make ana priori choice of the scanning method that wouldising this method is the guaranteed lower error norm. This is
yield the best solution. For example, if the operator matrixot generally the case with the conjugate phase method.
forms for single-shot blipped-EPI and segmented blipped-EPI
with centric reordering sequences are examined, it can be
shown that the latter is more stable and is therefore expected VII. CONCLUSIONS

to maintain full rank under the same conditions that cause theg;, e algebraic reconstruction methods for MRI under se-
former to be rank-deficient. Moreover, if a full-rank solution;q o 1agnetic field inhomogeneity are described. The present
is required, it is possible to devisekaspace traversal Strategyapproach is based on estimating the operator that produces

to provide a full-rank operator equation from several scange gistorted images and computing the least-squares inverse

In this case, the tradeoff between the amount of acquired dgig, 1oy that can be applied to derive corrected images. The

and the solution accuracy can be directly addressed with tBG‘rrected images are, therefore, optimal in the Frobenius-

method. Although this solver is flexible, it is associated with 8,1, sense. This formalism allows a theoretical comparison of
rather high computational complexit)[V*) flops/line] that i aqing sequences with different trajectories in terms of the
is a determining disadvantage in many situations. stability of the algebraic reconstruction problem, suggesting
Even though the computational complexity of the SVDy,; nonjinear:-space trajectory sequences such as segmented
solver seems rather prohibitive in general, this might not kg, ne4-Epj with centric reordering provide better results than
the case for applications where repeated images of the Sae,, rajectory sequences as single-shot blipped-EPI. Two
slices are obtained. For example, in functional imaging, @ iM&ihods were described to compute the solution. The first
sequence of as many as hundreds of acquisitions of the Samg,qeq on TSVD and provides an optimal solution at the
slice is obtained to assess bra_in activation d_uring the tiresSt of high computational complexity. The second method,
course of an experiment. In this case, SVD inverse matlixe cGM, provides a fast approximation to TSVD solution
operator can be computed once and used to correct all imaggz, e the accuracy of this approximation is controlled by the
in the time series. The resultant complexity will be comparablg, sice of the number of iterations. Finally, these reconstruction
to that of the conjugate phase method while maintaining thgsthods were successfully demonstrated with experimental
least-squares optimality of the correction. data in which the distortion was mainly along one of the image

As suggested by the theory, given a field map, it is possiQignensions. The clinical potential of these methods remains to
to compare the performance of different scanning sequenggs -qqressed in future studies.

prior to the actual data acquisition by comparing the condition

numbers of their system matrices. An interesting observation

in this aspect is that only linear trajectory sequences may have

rank-deficient system matrices. This is a direct result of theif] F. Farzaneh, S. J. Riederer, and N. J. Pelc, “Analysis of T2 limitations

linear phase evolution characteristics, which are similar to and off-resonance effects on spatial resolution and artifacts in echo-

: : : ; planar imaging,"Magn. Reson. Medyol. 14, pp. 123-139, 1990.

those pf the Fourier transform matrix column.s. With nonhneqrm T. Sumanaweera, G. Glover, S. Song, J. Adler, and S. Napel, “Quanti-

scanning sequences such as segmented blipped-EPI or spiral, fying MRI geometric distortion in tissue Magn. Reson. Medyol. 31,

the phase evolution characteristics are rather distinct from Ppp. 40-47, 1994. , .

th f Fourier vectors and. hence. their svstem matric 3] T.S. Sumanaweera, G. H. Glover, T. O. Binford, and J. R. Adler, “MR
ose O ) » Y Y Cn susceptibility misregistration correction/EEE Trans. Med. Imagvol.

are of full rank. Therefore, our theoretical result indicates 12, pp. 251-259, June 1993.
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