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ABSTRACT 

 

 

The last decade has seen unprecedented growth in both the production of 

biomedical data and amount of published literature discussing it.  Tissue 

engineering laboratories at Alexandria University aim to regenerate dental 

tissues by tissue engineering principles and technology (dentine formation 

process). Dentine formation is governed by biological mediators or growth 

factors (protein) and interactions amongst different proteins. Dentine 

formation needs the support of continuous updated information about 

protein-protein interactions. Thus, having a scalable, robust system for protein 

interaction discovery provides a major information extraction tool for 

molecular biologists to automatically extract and transfer updated biological 

data about protein-protein interactions from unstructured form, to a 

structured form to be used in their respective applications. 

 

Thus in this thesis, we present PIELG: a system for extracting information 

about protein ς protein interactions from abstracts of biomedical papers. The 

data obtained from this system will be first confirmed partially in their 

laboratory.  Then they will use those extracted information about protein ς 

protein interactions in Dentine formation process. Our approach is based on 

first splitting abstracts into simple sentences. Then, the system tags biological 

entities with the help of biomedical and linguistic ontologies. Finally, the 

system extracts complete interactions by analyzing the matching contents of 

syntactic roles and their linguistically significant combinations. 
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PIELG handles complex sentences and extracts multiple and nested 

interactions specified in a sentence. The scope of our experiments is limited to 

abstracts describing human protein function. The corpus of the PIELG is 

selected in order to evaluate the proposed protein-protein interaction 

validation method. This corpus is selected to be about proteins currently 

considered to have roles in the dentine formation process and involved in 

dentinogenesis. We performed experimental evaluations of the PIELG 

systems. 

 

The interactions extracted by the PIELG system are manually examined for 

precision and recall. The sensitivity of the system is given by the recall 

measure, calculated as the ratio between the interactions extracted correctly 

and the interactions present in text. Precision is a measure of correctness of 

the system by measuring the number of times the results are extracted 

correctly in comparison with the total number of results.  Our experimental 

results show that the PIELG system presented here achieves better 

performance without the need of manual pattern creation (by user) which is 

required for the other systems. 
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Publications 

 

The preliminary contribution regarding protein - protein interactions 

extraction system has been published in [1].  More advanced contribution 

regarding protein - protein interactions extraction system has been published 

in [2].   
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CHAPTER 1 

INTRODUCTION

  

 

Information Extraction (IE) is a task of Natural Language Processing (NLP) to 

extract useful information from a set of text. One of applications of IE is to 

help researchers who struggle with large amount of research papers. In research 

domains with great scientific successes, such as molecular-biology, research 

papers are numerically exploding. Knowledge buried in natural language 

representations are hard to be searched manually in a practical speed. The last 

decade has seen unprecedented growth in both the production of biomedical 

data and the amount of published literature discussing it. 

 

 Advances in computational and biological methods have remarkably changed 

the scale of biomedical research. Complete genomes can now be sequenced 

within months and even weeks, using computational methods which expedite 

the identification of tens of thousands of genes and large-scale experimental 

methods. The data generated by these experiments is highly connected; the 

results from sequence analysis and micro-arrays depend on functional 

information and signal transduction pathways cited in peer-reviewed 

publications for evidence.  

 

Though scientists in the field are aided by many online databases of 

biochemical interactions, currently a majority of these are created by domain 

experts. Information extraction from text has therefore been pursued actively as 

an attempt to extract knowledge from published material and to speed up the 

creation process significantly. Thus there is an increasing need for IE tools to 

support extracting such knowledge from text and building databases. If we 
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have accumulation of such knowledge database, novel knowledge is also 

expected to be found by reconstructing the knowledge accumulation. 

 

The growth in both the production of biomedical data and the amount of 

published literature discussing proteins and their interactions are seen 

unprecedented. Proteins are the macromolecules that make a living organism 

tick. For example, the transportation of oxygen in blood, the working of a 

nervous system and the movement of muscles are all highly dependent on 

proteins and their interactions. Thus, knowledge about the interactions between 

proteins is valuable information to the scientists who study the biology of 

living beings. This information can be used to gain insight into, for example, 

how cancer cells work or what triggers epilepsy, and to ultimately find better 

cures for these diseases or to prevent them altogether.  

 

The number of different proteins is huge and the exact number is still not 

known. In any case, the number of proteins in the human body alone runs in the 

hundreds of thousands and consequently the number of possible interactions is 

far greater. Furthermore, the interactions between proteins are like chemical 

chain reactions with the product of one interaction being the input, inhibitor or 

catalyst for the next. It is the knowledge about these networks of interactions 

that are the most useful to the scientists. All in all, what is required by the 

modern biologists developing, for example, new drugs, are huge databases with 

information about the proteins and their interactions that affect| directly or 

indirectly the disease or process under study. Moreover, the information must 

be in a computer intelligible format suitable to be the input to various tools 

used to visualize and further process the information.  

 

The problem is that most of the information about proteins is scattered in 

scientific papers and the subject of one paper is usually no more than a few 

proteins and one or two interactions. The information would have to be 
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gathered from these papers manually; reading through every relevant paper and 

picking up the information as it is found. However, there are few problems 

associated with this approach.  

 

Finding all the relevant articles is not the problem. To allow the scientists to 

search through these publications, the biomedical field has devised online 

bibliographic databases such as the MEDLINE [3] and PubMed [4]. It is the 

sheer number of articles published every day that swamps any attempt to 

follow anything but a very specific portion of the biomedical field manually. 

Take MEDLINE which contains abstracts of biomedical papers as an example: 

containing abstracts from 4800 journals and in 40 languages, there has been a 

constant rate of 1500 new citations added every day since 2002, totaling to 

approximately 571000 citations added in year 2004 alone. Looking at the 

numbers, it is easy to understand that it is impossible for any single individual 

or organization to read through all the published papers. The need for some 

automation is imminent.  
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1.1 Justification of the Study 

 

Genomic and proteomic research in the last decade has resulted in the 

production of a large amount of information about protein function. The 

generated data is highly connected; hence such data is made easily available. 

Scientists in that field are aided by many online databases covering different 

aspects of protein function, such as proteinïprotein interaction. However, since 

they are dependent on human experts, they rarely store more than a few 

thousand of the best-known protein relationships and do not contain the most 

recently discovered facts and experimental details.  

 

Tissue engineering laboratories at Alexandria University aim to construct a 

biological association network (BAN) for the process of dental pulp formation 

in normal and pathogenic cases. They will carry out some structured studies on 

one or several proteins in this BAN. So they need continues updated 

information about protein- protein interactions. Thus, having a scalable, robust 

system for protein interaction discovery provides a major information 

extraction tool for molecular biologists to automatically extract and transfer 

updated biological data about protein-protein interactions from unstructured 

form, to a structured form to be used in their respective applications.   

Information extraction from text has therefore been pursued actively as an 

attempt to extract knowledge from published material and to speed up the 

creation process significantly. An automated extraction tool would not only 

save time and effort, but would also pave the way to discover new unknown 

information implicitly conveyed in text. This thesis presents a fully automated 

extraction system, named PIELG, to identify protein interactions in abstracts of 

biomedical text.  PIELG is a protein interaction extraction system using link 

grammar parser. The system will provide biologists and people in Tissue 



 

 

̹̽ 

engineering laboratories with continuous updated information about protein-

protein interactions. 

 

1.1.1 Tissue engineering 

 

Tissue loss or organ failure is one of the most tragic as well as costly problem 

in human health care. Currently, the major approaches to tissue or organ loss 

are either reconstructive or transplantation surgery. In a sense, transplantation 

can be viewed as the most extreme form of reconstructive surgery, 

transplanting tissue from one individual to another, or implanting foreign body 

materials. As with successful undertaking; insufficient, rejection due to 

immune systeméetc has appeared. It is within the previous context that the 

field of tissue engineering has emerged. In essence, new and fundamental 

living tissue is fabricated using living cells, which are usually associated in one 

way or another with a matrix or scaffolding to guide tissue development. 

Living cells can migrate into the scaffold or can be associated with the matrix 

in cell culture before transplantation. 

 

Tissue engineering construct should resemble native tissues as closely as 

possible. At present, histology and biochemical methods are commonly used to 

compare tissue engineered constructs with natural tissues. These techniques are 

useful to assess the general structure of the implant, although, they don't 

provide a comprehensive description of the tissue at the molecular level. The 

shift in the life sciences become possible with the beginning of understanding 

life at the molecular level and it progresses, largely because of evidences in 

information technology and mathematical analysis[5],[6].  
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1.1.2 Bioinformatics 

 

Bioinformatics is the computational techniques for management and analysis 

of biological data and knowledge.  It is the science in which biology, 

information technology, computer science, mathematics and statistics merge 

into a single discipline. The science began in 1972 with Professor Margaret 

Dayoff. [7]. She and her coworkers at the National biochemical Research 

Foundation (NBRF) assembled the proteins sequences into database. Then 

around 1979 at the European Molecular Biology laboratory (EMBL) professor 

Walter Goad and her coworkers' assembled DNA sequences and the translated 

DNA sequences into databases which are called EMBL Data bank of Japan 

(DDBJ) came into existence followed by the GeneBank database in 1992 [8].  

 

1.1.3Tissue engineering and bioinformatics 

 

Since then databases continue to grow. Now these databases can generally be 

classified into protein databases and DNA databases. Recently EMBL, SP and 

PIR united together to give the Uniport database. Meanwhile, in the last ten 

years different powerful techniques toke the control in the field of genome 

sequencing whereas the field of protein structure ï function relationship did not 

advance with the same rate.   Database are not only limited on those of DNA 

and proteins but we can find scientific literature, books and taxonomy 

databases (as PubMed, bookshelf and taxonomy database respectively 

generated by the National Institute of health) as well. Mining these databases 

needs certain programs that can analyze their data with respect to certain 

keywords given by the researcher. In the field of tissue engineering, 

bioinformatics is widely applied especially in material science and scaffold 

design and formation. 
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1.1.4 Alexandria University's project  

 

Tissue engineering laboratories at Alexandria University were established in 

1999, their focus is to emphasize the stem cell research. Their junior 

researchers have isolated bone marrow mesenchymal stem cells and utilized in 

alveolar bone regeneration [9].  Currently, they developed experience in the 

model of regenerating dental tissues by tissue engineering principles and 

technology. Throughout their research work, they utilize isolated pulp stem 

cells seeded onto porous scaffold to foster pulp healing and repair by 

dentinogensis. Realizing the fact that Dentine formation process is governed 

by biological mediators or growth factors (naturally occurring protein) that 

regulate cell proliferation, differentiation and mineralization have drawn our 

attention that biological interactions amongst different protein have strong link 

to pulp repair and healing. Using classical research methods will take a long 

period of time to stand on this relationship. In this case bioinformatics becomes 

the method of choice to study this relationship. 

 

The aim of their project is based on three steps: 

 

1. Firstly, mining the databases for relation between different factors and the 

proteins involved in the dentinogensis process. Then biological association 

network (BAN) will be developed based on different bioinformatics tool to 

build a possible relation between all the parameters in dentinogeesis. 

2. This BAN will be tested in their laboratory to stand on its validity. 

3. Using bioinformatics in 3D structure modeling, one or several proteins will 

be chosen to study their structure and how it can affect the dentinogenesis 

process in normal and pathogenic cases.  
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1.1.5 PIELG  and Tissue Engineering 

 

The information extraction systems will provide the area of proteomics with 

unlimited and updated knowledge towards the novel sequencing applications 

which will increase number of new drug targets, therapeutics molecules and 

biological disease marker.  So, the data obtained from the PIELG system will 

help people in the tissue engineering laboratories at Alexandria University in 

Dentine formation process.  

 

Their project in its first step aimed to develop biological association network 

(BAN) based on different bioinformatics tool to build a possible relation 

between all the parameters in dentinogeesis. The PIELG system will be 

combined with visualization tool (Cytoscape) for evaluating and drawing the 

extracted interaction by drawing its pathways. Cytoscape is an open source 

bioinformatics software platform for visualizing molecular interaction 

networks.  Then this BAN will be tested in their laboratory to stand on its 

validity. They study the structure of specific proteins and how it can affect the 

dentinogenesis process in normal and pathogenic cases. The data obtained from 

the PIELG system will be confirmed partially in their laboratory.  

 

1.2 Objectives of the Proposed System 

 

This thesis presents the PIELG system. PIELG is a Protein Interaction 

Extraction System using a Link Grammar Parser from biomedical abstracts.  

PIELG is a fully automated extraction system to extract protein interactions in 

natural language texts. Our approach tags protein names with the help of 

protein names and linguistic ontologies. PIELG uses a dependency based 

English grammar parser, the Link Grammar Parser, to identify the roles. The 

system extracts complete interactions by analyzing the matching contents of 
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syntactic roles and their linguistically significant combinations. Our scheme 

follows the following steps:- 

 

1. The user has to give as input some keywords (protein names) which 

he\she thinks best represents and characterizes the required protein. 

2. PIELG starts retrieving all PubMed's abstracts satisfying user's 

specification. 

3. PIELG identifies all interaction words which best represent and 

characterize the required protein- protein interaction. 

4. PIELG takes all synonyms and hyponyms of the chosen interaction 

words. A hyponym of a word is essentially similar in meaning but is 

more specific. 

5. PIELG now searches for all occurrences of the interaction words 

identified in step 4. 

6. PIELG runs the chosen documents through the link grammar parser 

which tags the words according to the part of speech and assigns a 

syntactic structure to the sentence. 

7. Having identified all sentences where either the interaction words or one 

of its synonyms and hyponyms acts as a main verb. Each occurrence of 

the interaction word or one of its synonyms and hyponyms is considered 

to be one occurrence of the required interaction.  

8. PIELG uses rules to identify the subject and object (if present) of the 

verb as well as the modifiers of all three (verb, subject and object).  So, 

by finding the subject, object as well as all available modifiers, almost 

all information about that instance of the event can be extracted from the 

document. 

9. PIELG extracts the complete interaction.  

 

The system uses Phrasal-prepositional Verbs Patterns to overcome preposition 

combinations problems. PIELG is purely implemented with Perl under Linux 
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platform. The scope of our experiments is limited to abstracts describing 

human protein function. The corpus of the PIELG is selected in order to 

evaluate the proposed protein-protein interaction validation method. This 

corpus is selected to be about proteins currently considered to have roles in 

dentine formation process and involved in dentinogenesis. We performed 

experimental evaluations with two other state-of-the-art extraction systems ï 

the BioRAT and IntEx indicate that PIELG system achieves better 

performance.  

 

The evaluation of the performance for the PIELG system is measured with two 

traditional meters: precision and recall. The recall and precision are 47.4% and 

62. 65%. For further evaluation, the PIELG system is augmented with a 

graphical package for extracting protein interaction information from sequence 

databases. We used Cytoscape
1
 which is a good tool for drawing directed 

graphs that can be adapted for drawing interaction pathways. The augmentation 

process is done for two reasons. The first reason is to visualize the extracted 

pathways. The second reason is to evaluate the extracted interaction by drawing 

the pathways for the extracted interaction. Then we compare those pathways 

with the stored pathways in Cytoscape. Our experimental results show that the 

PIELG system presented here achieves better performance without the need of 

manual pattern creation (by user) which is required for other systems. 

 

 

 

 

 

                                                           

1
 http://www.cytoscape.org/ 

http://www.cytoscape.org/
http://www.cytoscape.org/
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1.3 Thesis Organization 

 

This section describes the structure of this thesis. 

 

 Chapter 1 is an introduction of the central issues and the new approach 

proposed in this thesis and presents the justification of the study. 

Chapter 2 covers the background of information extraction and its basic 

component technologies, including named entity recognition, entity relation 

detection and event extraction. 

Chapter 3 surveys the classical approaches for Information Extraction, ranging 

from rule-based approaches and symbolic learning to statistical models. The 

related work is surveyed. 

Chapter 4 presents an architectural overview of the PIELG system.  

Chapter 5 and 6 explain and illustrate the individual modules of PIELG system.  

Chapter 7 provides the results of the PIELG system with an analysis of the 

results. A detailed evaluation of the system is presented with the visualization 

process for the results of PIELG system using Cytoscape which is a good tool 

for drawing directed graphs that can be adapted for drawing interaction 

pathways. Then we evaluate the extracted interactions by drawing the pathways 

for them. Then we compare those pathways with the stored pathways in 

Cytoscape. 

Chapter 8 is the conclusion. 
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CHAPTER 2 

INFORMATION EXTRACTION  

  

 

Human knowledge about the world is complicated. Even after decades of 

research, there is still no effective way to represent the full range of real world 

knowledge. Although it is impossible to obtain a universal representation of 

knowledge, we can make the problem tractable by confining the domain of the 

text. Then it is possible to represent the underlying world knowledge or 

semantics in a simple format like templates. Text has been a major way to store 

and convey information in human society. With the development of the internet 

and digital media, a user can have instant access to a huge amount of text. The 

volume of text available on the web is accumulating at a constantly increasing 

speed. The world in text is full of information and how to locate the specific 

information a user needs becomes a critical issue. The automated handling of 

text is an active research area, spanning several disciplines. These include the 

following:  

 

1. Information retrieval, which mostly deals with finding documents that 

satisfy particular information need within a large database of documents.  

2. Natural language processing (NLP), a broad discipline concerned with all 

aspects of automatically processing both written and spoken language. A 

central goal of Natural Language Processing (NLP) is to be able to 

understand the underlying meaning of texts and translate them into 

machine comprehensible representations. Then the computational power of 

machines would enable us to manipulate the information in more user-

friendly ways, such as producing summaries or answering questions. 
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3. Information extraction (IE), a subfield of NLP, centered on finding explicit 

entities and facts in unstructured text. It is the practical way to get one step 

closer to the goal of NLP. It is domain-dependent. 

 

2.1 Information Retri eval (IR) 

  

Information retrieval is concerned with identifying documents that are most 

relevant to a userôs need within a very large set of documents. More precisely, 

given a large database of documents, and a specific information needðusually 

expressed as a query by the userðthe goal of information retrieval methods is 

to find the documents in the database that satisfy the information need. 

Naturally, the task has to be performed accurately and efficiently [11].  

 

2.1.1 Boolean queries and index structures.  

 

There are several ways to express, as well as to satisfy, the information need. A 

simple and common way for a user to express her need is through a Boolean 

query. Under this setting, the user provides a term (e.g. OLE1), or a Boolean 

term combination (e.g. OLE1 and lipid). The result is the set of all the 

documents in the database satisfying the query constraints, e.g. containing both 

the query terms OLE1 and lipid. This query paradigm is used by the biomedical 

literature database and search engines over the World Wide Web. It is 

supported by an index covering all the terms in the whole database of 

documents. Each term may be a single word (e.g., blood) or a phrase (e.g., 

blood pressure) [12]. 

 

It is common practice to omit from the index terms that are frequent and nonï

contentïbearing, such as prepositions. These terms are usually referred to as 

stop words and are viewed as delimiters when processing text. The index 

structure contains all the terms, typically sorted alphabetically for quick access, 
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and holds for each term a reference to all the documents in the database that 

contain it. When a user poses a query, the index structure is efficiently searched 

for the query terms occurring in it, and all the documents found to contain the 

terms (or the Boolean combination of the terms) are retrieved. Further 

information on this subject is available in books concerning databases and 

information access, such as the one by [12]. 

 

2.2 Natural language processing: General techniques 

 

Natural language processing is concerned with all aspects and stages of 

converting spoken, handwritten, or printed text from a raw signal to 

information that can be used by either humans or automated agents. In the 

context of bioinformatics, we are concerned only with printed text that is 

already stored in a machine accessible format and therefore concentrate on 

common text processing operations [13] as used by typical text mining 

systems. These include the tokenization and zoning tasks, part of speech 

tagging, and (shallow) parsing. 

 

2.2.1Tokenization.  

 

The first step in text analysis is the process of breaking the text up into its 

constituent unitsðor its tokens. This process is known as tokenization. Tokens 

may vary in granularity depending on the particular application. Consequently, 

tokenization can occur at a number of different levels: the text could be broken 

up into chapters, sections, paragraphs, sentences, words, syllables, or 

phonemes. For any level of tokenization, many different algorithms exist for 

breaking up the text. The most common form of tokenization in mining systems 

is the fragmentation of text into words and sentences. The main challenge of 

fragmentation at the sentence boundaries is distinguishing between a period 
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that signals an end of sentence and a period that is part of a previous token like 

the shorthand Mr., Dr., etc. 

 

2.2.2 Part-of-speech tagging. 

  

Part-of-speech tags are a set of word-categories based on the role that words 

may play in the sentence in which they appear. Part of Speech (POS) Tagging 

is the annotation of words with the appropriate POS tags, based on their context 

within the sentence. POS tags convey information about the semantic content 

of a word. Nouns usually denote tangible and intangible entities while 

prepositions express relationships between entities. While sets of tags may 

vary, most part-of-speech tag sets make use of the same basic categories. The 

most common set contains seven different tags: Article, Noun, Verb, Adjective, 

Preposition, Number, and Proper Noun. Some systems use a much more 

elaborate set of tags. For example, the complete Brown Corpus [14] tag-set has 

87 basic tags. 

 

Several approaches exist to POS tagging. The most common taggers are either 

rule-based taggers or probabilistic ones based on hidden Markov models 

(HMMs). HMM-based taggers, [15] estimate the probability of a sequence of 

part-of-speech tags to be assigned to a given sequence of words, based on a 

probabilistic (Markov) model. In order to estimate the model parameters, the 

tagger undergoes a training phase, using an annotated corpus, such as the WSJ 

corpus in the Penn Treebank [16].  

 

The latter consists of about one-million tagged words. Using a tri-gram model 

(that is, a model in which the current word-tag depends only on the tags 

assigned to the two preceding words), HMM-based taggers have achieved 94ï

96% accuracy on held-out test sets, i.e., sets other than the ones used for 

training the model. On the other hand, typical rule-based approaches [17] rely 
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on rules that use contextual information to assign tags to unknown or 

ambiguous words. These rules are often known as context frame rules. For 

instance, a context frame rule might say: ñIf an ambiguous/unknown word X is 

preceded by a determiner and followed by a noun, tag it as an adjective.ò 

 

In addition to contextual information, many rule-based taggers use 

morphological information to aid in the disambiguation process. For example 

[18] if an ambiguous/unknown word ends with an "ing" suffix and is preceded 

by a verb; it may be tagged as a verb. Another source of hints for the correct 

tagging of words can be obtained from orthography such as capitalization and 

punctuation. For some languages, such as English and German, information 

about capitalization proves extremely useful in the tagging of unknown nouns; 

usually capitalized nouns would be tagged as proper nouns. In other languages, 

such as Hebrew and Arabic, there are no capital letters; hence, no hints can be 

derived from orthography. 

 

Initially, rule-based taggers required human-tagged training sets, for what is 

known as supervised learning of rules. However, more recently, several 

researchers [19] started to work on unsupervised rule-learning, or 

bootstrapping. Starting with an untagged text corpus and a coarse, generic 

tagger, the tagger assigns tags to the corpus. An expert reviews the tagged text 

and corrects any mistake found. In practice, the expert does not typically have 

to correct more than 20% of the words. The corrected tagging is then run again 

through the tagger, where special emphasis is placed on words which were 

erroneously tagged in the first phase. This iterative process, of expert review 

followed by a tagger rerun, may be repeated until an acceptable error rate is 

reached. 
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2.2.3. Parsing and shallow parsing. 

 

 Parsing is the process of determining the complete syntactic structure of a 

sentence or a string of symbols in a language. A parser usually takes as its input 

a sequence of tokens that were extracted from the original text by a lexical 

analyzer. The output from the parser is typically an abstract syntax tree, whose 

leafs correspond to the individual words (lexemes) in the text, and whose 

internal nodes represent syntactic structures, identified by grammatical tags, 

such as Noun, Verb, Noun Phrase, Verb Phrase, etc. Efficient and accurate 

parsing of unrestricted text is not within the reach of current techniques. 

Standard algorithms are too expensive to use on very large corpora and are not 

robust enough. 

 

A practical alternative is shallow parsing. This is a coarser process of breaking 

documents into non-overlapping word sequences or phrases, such that 

syntactically related words are grouped together. Each phrase is then tagged by 

one of a set of predefined grammatical tags such as Noun Phrase, Verb Phrase, 

Prepositional Phrase, Adverb Phrase, Subordinated clause, Adjective Phrase, 

Conjunction Phrase, and List Marker. Shallow parsing has the benefit of both 

speed and robustness of processing, which comes at the cost of compromising 

the depth and fine-granularity of the analysis. Shallow parsing is generally 

useful as a preprocessing step, either for bootstrappingðextracting information 

from corpora for use by more sophisticated parsersðor for end-user 

applications such as information extraction. Shallow parsing allows the 

identification of relationships between the object, the subject, and any other 

spatial or temporal phrase within a sentence. 
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2.2.3.1. Full versus shallow parsing in IE.  

 

We introduced the concepts of parsing and shallow parsing in the previous 

section. Based on actual empirical evaluation, it was found that it is enough to 

focus just on the core constituents of sentences and use shallow parsing 

augmented by smart skips. These skips enable the information extraction 

engine to skip irrelevant parts, and focus just on the important phrases of each 

sentence [20]. Researchers have attempted before to use full parsing as a 

component in their information systems and have concluded that it was not 

worthwhile to invest the extra effort. Specifically, full parsing was included in 

the SRI TACITUS system [21] (implemented for MUC-3) and the NYU 

PROTEUS system [22] (implemented for MUC-6). Both of these systems did 

not gain any improvement in accuracy due to the full parsing employed. The 

main problem with using full parsing is that due to the combinatorial explosion 

of possible parses it is both slow and very error prone. 

 

A full parsing approach has not been used in practical applications on the basis 

of the following three reasons. First, full parsers in general tend to be slower, 

and need a larger memory than shallow analysis because they handle the full 

possible structure of whole sentences even when the full structure is not 

necessary. Second, it is often argued that the results of full parsers have more 

ambiguity because full parsers produce the full structure of a sentence whereas 

shallow methods produce a partial structure by ignoring the part of the 

sentences that does not match the pattern. Third, full parsers have lower 

coverage than shallower analyzer because of the complexity of process. 

 

2.2.3.2. Syntactic Role versus Semantic Role.  

 

Syntactic role labeling, done using syntactic parsers (like Link Grammar 

Parser, Charniak Parser etc.), considers the roles played by the constituent 
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syntactically with respect to the main verb phrase of the sentence. Whereas 

Semantic role Labeling, uses features derived from different syntactic views 

and combines them within a phrase based chunking paradigm as described in 

works by [23]. Semantic role labels are assigned to the constituents of each 

parse using SVM classifiers. The task of semantic role labeling involves 

tagging groups of words in a sentence with the semantic roles they play with 

respect to the particular predicate in the sentence. Identifying Semantic roles 

needs domain and semantic knowledge. New areas of research in this field are 

coming up like Semantic tagging (FrameNet) [24] based on frame semantics. 

Semantic Parsers for English language will be more useful and meaningful for 

extraction task compared to Syntactic parsers. But constructing semantic 

parsers is a difficult task and they will be more domain-dependent.  

 

2.3 Information Extraction (IE)  

 

The success of information extraction system depends on the performance of 

the various subtasks involved. Figure (2-1) gives an overview of the subtasks in 

information extraction. Information extraction systems that combining NLP 

tools typically have three to four major components:  

 

1. Tokenization or zoning - splitting the document into words, sentences, or 

paragraphs. 

2. Morphological and Lexical analysis - assignment of part-of-speech (POS) 

tags, identifying Noun Phrases, Verb Phrases, or disambiguating word 

sense, Named Entity Recognition.  

3. Syntactic analysis - shallow parsing, or full parsing.  

4. Domain analysis - anaphora resolution, combining together all the 

information with respect to the domain on hand. 
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Figure (2-1): Architecture of a typical Information Extraction system. [25] 

 

2.3.1 Information extraction for bioinformatics 

 

Most efforts concerned with biomedical literature mining to date focus on 

automated information extraction. For instance, identifying all the positions in 

the text that mention a protein or a kinase (entity extraction), or finding all 

phosphorylation relationships to populate a table of phospohrylated proteins 

along with the responsible kinase (relationship extraction) are both IE tasks.  

 

Most of the IE systems focused on extracting interactions between genes and 

proteins. Biologists are also interested in their corresponding protein-protein 

interaction pathways. Besides, extracting interactions between proteins alone 

without information such as locations on where the interactions occur can be 

misleading to biologists. In the case of sentences describing gene location on 

chromosomes, the constituents forming the sentence are gene and chromosome 

names, words describing location, and terms denoting experimental methods 

that validate the location of a gene on a chromosome. Names of genes and 
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chromosomes are identified by Named Entity Recognition. It is a simple 

heuristics (e.g. terms in all-capital letters which include numbers are regarded 

as gene names). The experimental methods as well as localization indicators 

are provided in a predefined list. 

 

After all the mentioned name entities in a text have been identified, we need to 

recognize their relations. Relation extraction is a task to extract pairs of named 

entities which have target relations, e.g. pairs of interacting proteins. The 

sequential event extraction is a task to extract sequences of relations (which 

represent events in this case), e.g. sequences of protein interactions. 

Recognition of relations between entities can help us to connect events. A 

survey of techniques used in protein name extraction is presented in the next 

section. A survey of techniques used in protein interaction extraction is 

presented in the next chapter. 

 

2.3.2 Survey of Named Entity Recognition techniques  

 

Text usually contains all kinds of names, for example person names, company 

names, sports teams, chemicals and lots of other names from a specific domain. 

Other common units can also fall into this category, such as time expressions, 

numbers or job titles. These names are referred to as named entities (NE) in 

Information Extraction. Failing to recognize them as a unit would affect the 

accuracy of deeper analysis of text, such as chunking or parsing. Therefore 

named entity recognition becomes a basic component technology for 

Information Extraction or Natural Language Processing in general. Entity 

extraction in biomedical domain or named entity identification is the process of 

identifying the words or phrases of interest such as genes, proteins, protein 

families, drugs, chemicals and pathways in text.  
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The simplest and most frequently used approach is a dictionary matching 

approach where the entity names are compiled as a dictionary and a string 

match with an entry in the dictionary tags the words or phrases as gene or 

protein names. A variety of publicly available databases provide the resources 

for entity names. NCBIòs LocusLink [26] and UniProt [27] are among the 

databases that provide gene and protein names and their synonyms.  

 

The use of standardized dictionaries containing the names and synonyms of 

proteins, genes and small molecules has been shown to be an effective way for 

recognizing these entities in free form text [28]. Although applications of this 

technique have reported high rates of recall and precision, this technique 

remains limited as protein, gene, and small molecule names not present in the 

dictionaries produce large amounts of false negatives. This method is used in 

PIELG system to identify protein names in the text.   

 

Others have addressed the issue of false negatives by using templates capable 

of recognizing common naming patterns for genes, proteins, and small 

molecules [29]. These techniques, which scan potential names by looking for 

patterns of capitalization, numbering, and use of hyphens have been shown to 

capture many of the entities missed by the dictionary approach alone, thereby 

reducing the amount of false negatives. However, these techniques have also 

been shown to generate a large number of false positives by recognizing words 

that match the templates but are in fact not protein, gene, or small molecule 

names. 

 

Entity identification has also been thoroughly researched over the years. 

Various approaches have been applied to detect named entities in text, such as 

Decision Tree [30], Maximum Entropy [31] [32] and Hidden Markov Model 

[33]. The HMM model is simple and effective in capturing the sequential 

relations between words inside and around a name. Many named entity 
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recognition implementations are based on this model. Recently Support Vector 

Machines were also applied to this task with good performance reported [34]. 

Entity Identification systems generally use rule based approaches and machine 

learning techniques to mark the phrases of interest in text. Rule based 

approaches rely on regular expressions and heuristic rules to identify gene 

names. In [29] they follow a combination of regular expressions and expansion 

rules to identify single word and multi-word gene names. In [35] they also 

follow a rule based approach to identify biological entities in text.  

 

Alternative approaches have addressed the problems of name recognition 

through the use of machine learning, and through the use of statistics. Some of 

the machines learning approaches followed for NER include decision trees, 

Bayesian classifiers, iterative error reduction, boosted wrapper induction and 

support vector machines. The ABGene system from Tanabe and Wilbur [36] 

uses the Brillôs tagger [17] to learn transformation rules to tag the gene and 

protein names in text. The rules are based on the word occurrences, 

neighboring words and part of speech tags of the words and the neighbors. 

Although these techniques have reported incremental gains in overall recall and 

precision over the template and dictionary based approaches, it has been shown 

that these techniques are also limited by the quality and extent of the training 

sets used to train the algorithms. 

 

Advanced Text Mining (TM) such as semantic enrichment of papers, event or 

relation extraction, and intelligent Question Answering (QA) have increasingly 

attracted attention in the biomedical domain. For such attempts to succeed, text 

annotation from the biological point of view is indispensable. Research in 

entity recognition has resulted in the development of various corpora for the 

purpose of providing a benchmark for the entity recognition systems. The 

GENIA corpus, a hand-annotated corpus of abstracts from over 2000 Medline 

articles on human blood transcription factors uses the GENIA ontology to tag 
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concepts in text. The recent JBLPBA challenge used the GENIA corpus as the 

test data for its shared task on Entity recognition. The participants in the task 

used various machine learning approaches, sometimes using a combination of 

approaches such as the support vector machines and Hidden Markov Model of 

Zhou [37]. The results from the task can be obtained from their webpage
2
. The 

BioCreative
3
 corpus is more general in nature, deliberately constructed with 

challenging false positives by the National Library of Medicine. 

 

BioInfer
4
 (Bio Information Extraction Resource) is a new public resource 

providing an annotated corpus of biomedical English. The annotation scheme 

captures named entities and their relationships along with a dependency 

analysis of sentence syntax. They further present ontologies defining the types 

of entities and relationships annotated in the corpus. Currently, the corpus 

contains 1100 sentences from abstracts of biomedical research articles 

annotated for relationships, named entities, as well as syntactic dependencies 

[38]. Supporting software is provided with the corpus. The corpus is unique in 

the domain in combining these annotation types for a single set of sentences, 

and in the level of detail of the relationship annotation.  

 

In [39] they have completed a new type of semantic annotation, event 

annotation, which is an addition to the existing annotations in the GENIA 

corpus. As in BioInfer, they do not allow annotators to annotate an event unless 

an expression mentioning the event type appears in the text. However in their 

attempt they deliberately dissociate annotation from linguistic structures, and 

events in their annotation are not necessarily organized around verbs. That is, 

an event does not necessarily correspond to a constituent such as a clause or 

phrase, governed by a verb. Expressions which indicate occurrences of an event 

and expressions which describe its participants (arguments) can be scattered 

                                                           

2
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html 

3
 http://www.mitre.org/public/biocreative/ 

4 http://mars.cs.utu.fi/BioInfer/ 
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throughout a sentence without constituting a single constituent in the linguistic 

structure. The corpus has already been annotated with POS (Parts of Speech), 

syntactic trees, terms, etc. The new annotation was made on half of the GENIA 

corpus, consisting of 1,000 Medline abstracts. It contains 9,372 sentences in 

which 36,114 events are identified. The major challenges during event 

annotation were (1) to design a scheme of annotation which meets specific 

requirements of text annotation, (2) to achieve biology-oriented annotation 

which reflects biologistsô interpretation of text, and (3) to ensure the 

homogeneity of annotation quality across annotators. To meet these challenges, 

we introduced new concepts such as Single-facet Annotation and Semantic 

Typing, which have collectively contributed to successful completion of a large 

scale annotation [40]. 

 

2.4 Biological Context 

 

The role of biology in the IE process is to be the specific context in which the 

language of the documents is processed and analyzed. It does not differ much 

from any other domain to which information extraction could be applied, but 

there are, of course, some variation points that cause the challenges presented 

by the biology domain to differ in their details. It should also be noted that the 

interest here is not in biology in general, but rather in biology and biochemistry 

that is applied to medicine, i.e. biomedicine. 

 

2.4.1 Central Biological Concepts 

 

Before venturing any further into the challenges presented by the biology 

domain, the central biological concepts and terminology that will be 

encountered in this thesis need to be introduced and defined.  
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DNA (deoxyribonu-cleic acid): - which is the genetic code of the cell. Cells in 

all living things contain DNA in their nucleus. It consists of a chain of four 

types of bases, called adenine (A), guanine (G), thymine (T) and cytosine (C). 

The DNA chain can be divided into segments called genes that contain the 

information needed to build proteins. 

 

Proteins: - they are polymer chains of amino acids. There are 20 different 

kinds of amino acids that can be used to build a protein. All functions in a 

living organism depend on them; proteins do everything from making muscles 

move to controlling biochemical processes and transporting materials, such as 

oxygen (the oxygen binding hemoglobin of red blood cells is a protein), and 

carrying signals, such as nerve impulses. The process of transforming the 

instructions in a gene into a protein involves two steps:  transcription and 

translation. 

 

In the transcription phase, the DNA containing the gene produces a messenger 

RNA (mRNA), which is transported out of the cell nucleus into the cell 

cytoplasm. The mRNA resembles the original DNA, but with the thymine (T) 

substituted with Urasine (U). In the translation phase the sequence of the 

mRNA are read in triplets called codons. A special kind of transport RNA 

(tRNA) carrying the correct amino acid attaches to each codon. When the 

tRNAs attach themselves to the mRNA side-by-side, the amino acids they carry 

form polypeptides that then form the protein. 

 

2.4.2 Protein-protein interactions 

  

Proteomics is aimed at understanding protein-protein interactions. The function 

of a protein can be characterized more precisely through knowledge of protein-

protein interactions. Protein-protein interactions are important for many 

biological functions. Protein-protein interactions play an important role in vital 
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biological processes (cell cycle control, metabolic and signaling pathways). 

They link many proteins in the cell into large connected interaction networks. 

Each protein can have one or more of many roles in the network. Moreover, 

networks of interacting proteins provide a first level of understanding the 

cellular mechanism.   

 

Protein interaction information is stored in mostly manually curated databases. 

However, the amount of biomedical literature is increasing rapidly. Thus, it is 

difficult for database curators to detect and curate protein interaction 

information manually. Most of the protein interaction information remains 

uncovered in the biomedical literature. Development of information extraction 

and text mining techniques for automatic extraction of protein interaction 

information from free text is crucial. 

 

Even the simplest process in an organism or a single cell involves many 

proteins that interact to carry out a specific function or task. Each protein has 

its own role to play and so the process can be thought of as a network of 

interactions. These biochemical networks are called pathways. There are three 

different types of pathways, of which the most interesting in the context of this 

thesis are the signaling pathways, because they represent protein-protein 

interactions. Each protein can have one or more of many roles in the pathway. 

For example, some protein might inhibit a biochemical process, while some 

other protein might bind with another protein to promote the same.  

 

2.5 Biomedical Sources of Information  

 

Human Genome sequencing marked the beginning of the era of large-scale 

genomics and proteomics, which in turn led to a humongous amount of 

information. Most of it is unstructured text of published literature. The most 
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used online source of biomedical resource is PubMed
5 

 database, which is 

maintained by National Center of Biotechnology Information (NCBI). It 

contains over 13 million scientific abstracts. Biomedical papers, journals and 

other publications are the sources from which the information can be extracted. 

Thus the structure and language used in them is central to the problem. Many 

of the things that are going to be said apply equally to any other field of 

science, so these things do have a bearing on the information extraction process 

in general. 

 

PubMed is accessed by millions of users from all over the world on a daily 

basis. A typical search for relevant literature within PubMed starts with a 

Boolean query; the user provides a term or a Boolean term combination (e.g., 

OLE1 and lipid). The result is the set of all the abstracts in PubMed satisfying 

the query constraints. We note that the lack of uniformity in nomenclature used 

by authors aggravates the problem of synonymy. 

 

The structure of scientific papers is quite the same across disciplines: abstract, 

introduction, methods, results, discussion [41]; plus supplementary front and 

back matter, such as heading, acknowledgements, various indexes and 

bibliography listings. Each of the parts has its own characteristics which make 

it more or less interesting as the source of factual information. Of these parts, 

the most interesting in the light of automatic information extraction is the 

abstract. The abstract contains a brief summary of the key findings of the paper 

and thus, the basic facts should already be extractable from therein. There are 

also other properties that make abstracts the most important source for 

information extraction systems. First of all, abstracts are usually available 

electronically in plaintext format, as opposed to being in PDF or some other 

non-plaintext format. Secondly, and this is also very important from the 

                                                           

5
 www.ncbi.nlm.nih.gov/entrez/query.fcgi 
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commercial point of view, abstracts are usually available free of charge, 

whereas the rest of the subject matter can require a costly subscription. This the 

reason that causes PIELG system to extract information about protein-protein 

interaction from abstracts of biomedical papers. 

 

In contrast to the abstract, the discussion part is the least interesting. The reason 

is that the discussion part is least likely to present new factual findings, and 

instead it usually contains suggestions for new research [42], generalizations 

and educated hypothesis about what could be found. It is these guesses, 

expressed in sentences and wordings that closely resemble the expression of 

facts, that can mislead the information extraction system to extract uncertainties 

and mere guesses as truths. Thus, it seems that some of the sections of the 

papers can be categorically excluded from the IE process without loss of 

information. 
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CHAPTER 3 

INFORMATION EXTRACTION SYSTEM :  A  SURVEY  

  

 

Compared to the last two years, the field of information extraction for biology 

has made tremendous strides. It has witnessed the emergence of software tools 

that are able to handle the task. Most of the tools were developed to carry out 

specific tasks. Each tool seems to have developed its own methodology. It 

follows different strategy, with different details and usually adapts to the task at 

hand. Most of the early work on automated understanding of biomedical papers 

concentrated on analytical tasks such as identifying protein names, or relied on 

simple techniques such as word co-occurrence, and pattern matching. Then, 

work based on more general natural language parsers that could handle 

considerably more complex sentences is involved. Then the emergence of more 

sophisticated natural language technologies that can handle anaphora as well as 

extracting a broader range of information is considered.  

 

This situation has motivated us to present a classification scheme for these 

tools based on the underlying computational technique, and to shed light on the 

background application that caused this differentiation. We hope that this part 

of the thesis will help the reader to have a comprehensive and comparative 

overview of the tools developed until now, to make the most of them, and to 

evaluate our contribution to the problem of comparing genomic sequences. 

 

3.1 Information Extraction Techniques 

 

There has been a wide range of varying techniques published for extracting 

proteins relationships from scientific literature. Existing protein-protein 
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interaction works can be roughly divided into two categories: co-occurrence 

based approaches [42] and rule-based approaches [43]. The simplest way to 

extract protein relations from the literature is to detect the co-occurrence of 

protein names in a text [44]. It simply uses co-occurrence statistics of two 

proteins to predict their relation. However, by its nature, the name co-

occurrence detection yields very little or no information about the type of 

described relation and therefore the co-occurrence data may be misleading. 

This way, they can only extract well-known PPIs but may not be able to find 

new emerging PPIs.  

 

On the other hand rule-based approaches utilize pre-defined phrase pattern 

rules. As a result, they are unable to discover new phrase patterns without the 

known keywords. Once the rule set reaches a certain size, it is very difficult to 

insert additional rules for further performance improvement. Moreover, rule-

based approaches may require redefining of the whole pattern rules when they 

are applied to a new domain. Therefore other researchers [45] adopt a machine 

learning method to generate these interaction extraction rules automatically. 

But, previous machine learning approaches, when applied to this domain, suffer 

from the trade-off between recall and precision. Typically, when precision is 

high, recall is very low, and when recall is very high, precision is low. 

 

3.1.1 Co-occurrence based approaches 

 

A simpler approach that relies on co-occurrence of genes/proteins within 

sentences, rather than on machine learning methods or advanced NLP, was 

used by [28]. Its goal was to extract information about protein interactions 

among a predefined set of related proteins from scientific text pertaining to 

them. Using a list of protein names and a list of interaction words, they look for 

sentences that have occurrences of two protein names separated by an 

interaction word, to identify relationships among the proteins. An extension to 
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this work is described by [46], where they use a module for protein name 

detection (an issue we touch on briefly later) and exclude negations. The latter 

means that interaction facts are extracted only from sentences that affirmatively 

report the interaction. The exclusion of negation is an interesting point and 

merits some discussion. The concern about negation sentences (e.g., ñWe have 

found no evidence that protein A is involved in the regulation of gene Bò) is 

often expressed in the context of mining the biomedical literature.  

 

The assumption underlying this concern is that we want to avoid, for instance, 

relating protein A and protein B in a regulatory pathway if according to the 

literature the two are not related. This is indeed a valid point if we aim to 

automate the construction of pathways through the literature. However, under 

different scenarios, for instance, when investigating a set of proteins and genes 

in which protein A is produced just before gene B is expressed, an edge 

between A and B marked with a ñnegative regulationò label and linked to the 

relevant article stating the negative result is extremely valuable. Hence, the 

reconsideration of negation, its role, and its treatment is pertinent. 

 

Moreover, since these methods depend on the co-occurrence of terms, within a 

sentence, a phrase, or an abstract they can only reveal relationships that are 

already reported in the literature and do not attempt to detect new relations. We 

qualify this with the observation that one could follow Swansonôs methodology 

[47], and use the ñtransitiveò relationsði.e., the indirect-links among entitiesð

as clues for yet-unknown relationships. For instance, if there is a report relating 

protein A to B, and another report relating B to C, it may suggest a possible 

(yet-unreported) relation between proteins A and C. It is also important to note 

that as large-scale experiments using microarrays and other high-throughput 

techniques are becoming more popular, the co-occurrence of gene and protein 

names in the literature may become more of an indicator of their inclusion in 

large-scale experiment rather than of an actual functional relationship between 
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them. When using the literature to interpret the results of large-scale 

experiments, it is crucial that the literature-mining engine could actually 

provide an independent insight into the functional and biological 

relationshipsðbeyond the mere fact that they participated together in a large 

scale experiment. Methods that strongly rely on co-occurrence alone are 

insufficient to address this need. 

 

3.1.2 Rule-based approaches 

 

3.1.2.1 Pattern matching 

 

More sophisticated information extraction approaches rely on the matching of 

pre-specified templates (patterns) or rules (such as precedence/following rules 

of specific words). The underlying assumption is that sentences conforming 

exactly to a pattern or a rule express the predefined relationship(s) between the 

sentence entities. In some cases, these rules and patterns are augmented with 

additional restrictions based on syntactic categories and word forms in order to 

achieve better matching precision. The pattern-based systems have been 

applied to extract proteinïprotein interaction [48] and pathway information 

[49]. 

 

Another popular approach uses pattern matching. As an example, a set of 

simple word patterns and part-of-speech rules were manually coded, for each 

verb, to extract special kinds of interactions from abstracts [50]. The method 

obtains a recall rate of about 85% and a precision rate of about 94% for yeast 

and Escherichia coli, which is the best among all reported results. However, 

manually writing patterns for every verb is not practical for general purpose 

applications.  
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In [49] they describe how to generate English expression patterns related to 

proteinïprotein interactions. They also present a theory which, focusing on 

how to improve the patterns. They used dynamic programming to extract 

sentence patterns. A minimum description length (MDL)-based pattern-

optimization algorithm is designed to reduce and merge patterns. This has 

significantly increased generalization power, and hence recall and precision 

rates, as confirmed by our experiments. They also demonstrated that this 

proposal of automatically generating and optimizing sentence patterns and 

using them to mine a targeted area of knowledge is feasible. This approach 

works in other domains, too. The F-score of this approach is 2.98% lower 

compared other approaches in the training set.  

 

In [50] they propose a system of extracting the relationships between proteins 

by searching frequently seen keywords, their patterns created by surface clues, 

and a protein dictionary. This technique used only surface clues based on the 

word patterns that were presented by the word positions. The patterns 

representations were defined by the position between the keyword, protein 

names, and other characteristic words, such as prepositions in the sentences. 

Each sentence containing the pattern was filtered with the rules based on the 

grammatical part of speech information. They obtained a recall of 86.8% and a 

precision of 94.4%. This system may become a powerful tool for creating a 

database, such as protein interaction, from a huge variety of public databases. 

This suggests that it can be practically used as support to extract protein 

interaction data when a protein dictionary becomes available.  

 

3.1.2.2 Natural Language Processing-based systems 

 

A parsing technique that many previous approaches used is shallow parsing 

[51]. Shallow parsing is more robust than full parsing, but it only separates 

phrases of sentences, i.e. it only yields merely local syntactic relations. More 
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advanced systems utilizing shallow parsing techniques have been described to 

extract protein interactions [52], enzyme reactions and protein structure 

information [53], or functional relations between proteins [54]. Unlike word-

based pattern matchers, shallow parsers perform partial decomposition of a 

sentence structure. They identify certain phrasal components and extract local 

dependencies between them without reconstructing the structure of an entire 

sentence. The precision and recall rates reported for shallow parsing 

approaches are 50ï80% and 30ï70%, respectively. Interestingly, most of the 

described systems are designed to extract only one specific aspect of protein 

function information.  

 

The most promising candidates for a practical information extraction system 

are ones based on full-sentence parsing as they deal with the structure of an 

entire sentence and therefore are potentially more accurate. Systems using full 

parsing can find deep syntactic relations, e.g. a relation between a passive verb 

and its semantic subject, from the whole of a sentence. Using this generic NLP 

tool, extraction patterns in a well generalized format could be obtained. Full 

parsing is used both in a phase of construction of extraction patterns and in a 

phase of pattern matching (i.e. the actual IE prediction task). Full parsing 

constructs more general extraction patterns from a less training corpus, than 

shallow parsing. Full parsing, can identify both the subject of the whole 

sentence and the semantic subject that has been shared. 

 

A general full parser with grammars applied to the biomedical domain was 

used to extract interaction events by using bidirectional incremental parsing 

with combinatory categorical grammar (CCG) in [55]. This method first 

identifies relevant keywords and localizes the target verbs. They used pattern 

matching around the keywords for NP candidates.  It scans the left and right 

neighborhood of the verb respectively. Then they validate the noun phrase 

candidates with CCG. The lexical and grammatical rules of CCG are even more 
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complicated than those of a general CFG. The recall and precision rates of the 

system were reported to be 48% and 80%, respectively. 

 

Another full parser utilizes a lexical analyzer and context free grammar (CFG) 

[56]. Context-free grammars provide an easily extendible platform for 

extracting interactions from free text and are powerful enough to describe most 

natural language structure while being able to be restricted enough to allow for 

efficient parsing. They also describe a methodology for creating a corpus for 

analyzing techniques that can be extended and potentially used to do 

comparative analysis between techniques in the future. It extracts protein, gene 

and small molecule interactions with a recall rate of 63.9% and a precision rate 

of 70.2%. This approach provides a level of abstraction for adding new rules 

for extracting other types of biological relationships beyond protein, gene and 

small molecule relationships. The potential is to be able to mine the larger set 

of scientific literature available in order to populate structured representations 

for capturing interaction data for further computational analysis. 

 

A general full parser with grammars applied to the biomedical domain was 

used to extract interaction events by filling sentences into argument structures 

in [57].  They used a parser that converts the variety of sentences that describe 

the same event into a canonical structure (argument structure) regarding the 

verb representing the event and its arguments such as (semantic) subject and 

object. In this work, they introduce two preprocessors that resolve the local 

ambiguities in sentences to improve the efficiency. One of the preprocessors is 

a term recognizer that glues the words in a noun phrase into one chunk so that 

the parser can handle them as if it is one word. The other is a shallow parser 

[58] that reduces the lexical ambiguity. An HPSG-based parsing system 

(XHPSG) is used as a full parser. As a shallow parser, they adopt ENGCG.  

Information extraction itself is done using pattern matching on the canonical 

structure. Event information is then extracted by domain-specific mapping 



 

 

̼̿ 

rules from argument structures to frame representations. Using a general-

purpose grammar for syntactic analysis makes it possible to modularize the 

system, so that the IE system as a whole becomes easy to be tuned to specific 

domains, and easy to be maintained and improved. No recall or precision rate 

was given.  

 

Similar methods such as preposition-based parsing to generate templates were 

proposed [59].  They developed a medical parser that extracts information, fills 

basic prepositional-based templates, and combines the templates to capture the 

underlying sentence logic. They tested their parser on 50 unseen abstracts and 

found that it extracted 246 templates processing only abstracts with a template 

precision of 70%. In comparison with many other techniques, more information 

was extracted without sacrificing precision. Future improvement in precision 

will be achieved by correcting three categories of errors. 

 

 

3.1.3 Machine learning Approaches   

 

The above researchers essentially need some linguistic rules to extract the 

biological interactions, and most of them use many different hand-crafted rules. 

But it is time-consuming to construct hand-crafted rules which require much 

human effort, and these systems are difficult to be applied to other domains. 

Therefore other researchers adopt a machine learning method to generate these 

interaction extraction rules automatically. But, previous machine learning 

approaches, when applied to this domain, suffer from the trade-off between 

recall and precision. Typically, when precision is high, recall is very low, and 

when recall is very high, precision is low. 

 

In [60] they proposed an evaluation conducted by NIST to measure IE 

technologies. They used Maximum Entropy Model to integrate lexical, 
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syntactic and semantic features for relation detection and characterization 

(RDC) task containing 24 relation types on news articles with Automatic 

Content Extraction (ACE1, 2004). It shows a better performance than Culotta 

and Sorensen, 2004 on ACE corpus. Furthermore, although supervised learning 

has been reported by  [61] for PPI extraction, only preliminary pattern 

induction has been implemented, which is basically corpus statistics on POS 

patterns without any pattern generation to cover new similar patterns which are 

not available in corpus.  

 

In [60] they used sentence classification approach for sub-cellular location 

relations. Itôs not suitable for PPI extraction, since there may be more than one 

PPI and judgment needed when thereôre more than two proteins existing in a 

sentence. On the other hand, Marcotte EM, et al 2001ôs supervised learning text 

classification can only decide PPI information which is only mentioned in the 

text without the extraction function. Palakal M, et al, 2002 only use HMM to 

decide the direction of PPI provided, which is a much simpler task than PPI 

extraction itself.  

 

In [61] they have proposed a supervised learning approach to extract protein-

protein interaction using Maximum Entropy (ME) from the output of a shallow 

parser. This model achieves promising performance of a 90.9 F-score, 93.9% 

recall and 88.0% precision on IEPA corpus provided. This method overcomes 

the limitation of the state-of-the-art co-occurrence based and rule-based 

approaches. It incorporates corpus statistics of various lexical, syntactic and 

semantic features. They find that the use of shallow lexical features contributes 

a large portion of performance improvements in contrast to the use of parsing 

or partial parsing information. Yet such lexical features have never been used 

before in other PPI extraction systems. Furthermore it can be easily adapted to 

extract other relations among biomedical entities given in the training corpus 

instead of re-writing phrase pattern rules. In summary, this approach is the first 
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systematic study of supervised learning and the first attempt of feature-based 

supervised learning for PPI extraction. 

 

In [62] they propose a two-phase machine learning-based biological interaction 

extraction method. First, the system focuses on improving a recall in extracting 

interactions between biological entities by using a supervised interaction 

learning method. Second, the system removes the incorrect biological 

interactions by verifying the extracted results with a Maximum Entropy (ME) 

classification method. They obtained 53% recall and 25% precision in the first 

place. Despite of the low performance in the initial extraction, they could 

successfully verify the incorrect interactions with the ME classifier and raise 

the precision up to 56% with tolerable degrading of the recall from 53% to 

48%. Accordingly, this system splits compound or complex sentences into 

simple sentences with a syntactic parser, and then this system transfers those 

simple sentences to finite LSP sequences for more efficient process. Finally 

this system uses full articles, instead of abstracts, to extract more detailed 

information using more rich contextual information. Because the syntactic 

structure and expression styles are different among these four articles, some 

performance has been lost in a cross-validation test.  

 

3.2 Most common PPI's Extraction Systems 

 

In the following section we will introduce some of the most popular protein- 

protein interaction extraction systems.  

 

3.2.1 PIES, a Protein Interaction Extraction System 

 

The Protein Interaction Extraction System (PIES) [63] aims to automate a large 

portion of the tasks of extracting, manipulating, managing, and visualizing 



 

 

̸̽ 

protein interaction pathways. PIES
6
 is constructed on top of three main 

technologies: Kleisli, BioNLP, and Graphviz. Kleisli is a broad-scale data 

integration system that is used for downloading Medline abstracts and for 

general manipulation and management of pathway/interaction databases. 

BioNLP is a natural language-based information extraction system. Graphviz is 

a graphical layout package developed for directed graphs that we use for 

visualization of the extracted pathways. PIES can be augmented with various 

means for extracting protein interaction information from sequence databases, 

for example, by using Kleisli's power to integrate sequence comparison tools to 

detect gene fusion events in sequence databases. 

 

PIES uses pattern matching rules to determine actor-patient roles in order to 

determine which protein plays the role of the "actor" (or subject) and which 

protein plays the role of the "patient" (or object) in the interaction mentioned in 

this sentence. It is worth stressing that PIES extracts the direction of 

interactions; that is, who inhibits whom and who activates whom. This level of 

information is in contrast to co-occurrence-based methods that simply say two 

proteins interact but without giving the direction of the interaction. 

 

PIES automates the task of creating and visualizing pathways on-the-fly, as 

well as supports sophisticated large-scale manipulations of pathways including 

automatic integration of interaction pathway databases. It is fully operational 

and web access can be arranged on a case-by-case basis with the author. PIES 

has good functionalities when it comes to manipulation of pathways. However, 

currently it does not support explicit annotations by the user on individual 

protein interaction. Such annotations are a useful addition to the evidence 

sentences extracted automatically by PIES. It would be useful for PIES to 

support this.  

 

                                                           

6
 http://www.comp.nus.edu.sg/~wongls/talks/psb01-talk/ 
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Currently, this support is only an indirect one. User can then add his 

annotations and re-export the annotation database back to PIES. The textual 

display of PIES does provide information on the context of the extracted 

information in the form of evidence sentences and links to the original Medline 

abstracts. However, the graphical display does not provide this information. 

Further research should be carried out on the graphical presentation of the 

context information in a visually appealing and explicit manner. Finally, the 

BioNLP module currently specializes in extracting inhibit vs. activate type of 

interactions. While its specificity on abstracts discussing this type of interaction 

appears high, a formal accuracy study remains to be done.  

 

3.2.2 MedScan  

 

MedScan
7
 is a completely automated natural language processing-based 

information extraction system, which interprets these semantic structures using 

a pathway-oriented ontology and extracts protein function information. The 

NLP module deals with the domain-independent sentence structure 

decomposition, while the information extraction module can be reconfigured 

towards different tasks [64]. NLP component of a MedScan is a biomedical 

domain oriented NLP engine that processes sentences from MEDLINE 

abstracts and produces a set of semantic structures representing the meaning of 

each sentence [65]. It is based on a context-free grammar and a lexicon 

developed specifically for MEDLINE. Processing is done in two steps.  

 

First, a syntactic parser constructs a set of alternative syntactic structures of an 

input sentence. Since syntactic knowledge is ambiguous in its nature, a single 

sentence usually yields many alternative parses. Next, semantic processor 

transforms each of them into a corresponding semantic tree. In MedScan, 

information extraction is controlled by a set of explicit declarative rules that 
                                                           

7
 http://www.ariadnegenomics.com/products/pathway-studio/medscan/ 
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specify which parts of an input semantic tree should be taken into consideration 

and what information should be retrieved. The MedScan information extraction 

mechanism follows the input tree structure in a top-down manner, applying a 

set of context-free and context dependent transformation rules. 

 

MedScan is used to extract 2976 interactions between human proteins from 3.5 

million sentences from MEDLINE abstracts dated after 1988. The precision of 

the extracted information was found to be 91%. Comparison with the existing 

protein interaction databases BIND
8
 and DIP

9
 revealed that 96% of extracted 

information is novel. The recall rate of MedScan was found to be 21%. 

MedScan is a high precision information extraction system capable of 

extracting various types of protein function information encoded in a form of 

extendable ontology. Utilization of ontology provides an ability to change the 

scope of extracted information, making the entire system more flexible, and 

along with high performance, favorably differentiates it from the other systems. 

 

The context free grammar is hard to construct and to manipulate. This system 

needs a large amount of memory hence for lexicon or ontology and so on. 

However, the volume of data can be increased several times by implementing a 

reasonable set of improvements to the system, extending the ontology towards 

the description of experimental data and application of logical inference 

methods in order to convert the experimental result into the protein function 

information. It might still represent a considerable interest to the users of the 

technology. They therefore envision two major goals of further improvement of 

MedScan: the improvement of the NLP grammar and the enrichment of the 

ontological rules to include some of the information presented in a form of raw 

experimental data. 
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 http://bond.unleashedinformatics.com/ 

9
 http://dip.doe-mbi.ucla.edu/ 
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3.2.3  PreBIND and Textomy  

 

PreBIND and Textomy [66] is an information extraction system that was 

designed to locate protein-protein interaction data in the literature and present 

these data to curators and the public for review and entry into BIND database. 

Its approach hypothesizes that the formidable task-size of backfilling the 

database could be reduced by using Support Vector Machine technology to first 

locate interaction information in the literature. PreBIND and Textomy are two 

components of a literature mining system designed to find protein-protein 

interaction information and present this to curators or public users for review 

and submission to the BIND database. PreBIND and Textomy differ from other 

methods by a combination of four factors:- 

 

1. Support Vector Machine (SVM) technology is used to identify articles 

about bimolecular interactions and confirm sentences that mention specific 

protein-protein interactions. 

2. Protein names and their gene-symbols are derived from a non-redundant 

sequence database.  

3. This information extraction (IE) system is coupled to a human-reviewed 

data-entry queue for a publicly available bimolecular interaction database 

(BIND). 

4. PreBIND and Textomy allows user feedback into the SVM training set that 

can constantly improve the performance of the system's ability to detect 

abstracts that describe bimolecular interactions. 

 

It provides a reasonable classifier for finding interaction data in the over 14 

million PubMed abstracts that are available to us. The SVM method performed 

better than a naïve-Bayesian classifier. SVM is a statistical approach, which 

appears to perform well in recognition and classification of phrases, without 

focusing on actual meaning. Cross-validation estimated the support vector 
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machine's test-set precision, accuracy and recall for classifying abstracts 

describing interaction information as 92%, 90% and 92% respectively.  

 

The system would be able to recall up to 60% of all non-high throughput 

interactions present in another yeast-protein interaction database. The system 

was applied to a real-world curation problem and its use was found to reduce 

the task duration by 70% thus saving 176 days. Machine learning methods are 

useful as tools to direct interaction and pathway database backfilling; however, 

this potential can only be realized if these techniques are coupled with human 

review and entry into a factual database such as BIND. Backfilling interaction 

data from the biomedical literature is an ongoing task that will not be 

completed for some time. 

 

3.2.4  BioRAT 

 

BioRAT
10

 is a new information extraction tool, specifically designed to perform 

biomedical IE, and which is able to locate and analyze both abstracts and full-

length papers. BioRAT [67] is a Biological Research Assistant for text mining, 

and incorporates document search ability with domain-specific IE. BioRAT can 

be regarded as a research assistant that is given a query and, autonomously, 

finds a set of papers reads them and highlights the most relevant facts in each. 

BioRAT uses natural language processing techniques and domain-specific 

knowledge to search for patterns in documents, with the aim of identifying 

interesting facts. These facts can then be extracted to produce a database of 

information, which has a higher óinformation densityô than a pile of papers.  

 

The heart of BioRAT is an IE engine, based on the GATE toolbox, produced at 

Sheffield University [68]. GATE is a general purpose text engineering system, 
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whose modular and flexible design allows us to use it to create a more 

specialized biological IE system. BioRAT performs as well as existing systems, 

when applied to abstracts; and that significantly more information is available 

to BioRAT through the full-length papers than via the abstracts alone. 

Typically, less than half of the available information is extracted from the 

abstract, with the majority coming from the body of each paper. However, 

Extra time is required to obtain the full length papers, and there are difficulties 

in converting them into a usable plain text format. These costs are outweighed 

by the fact that more than twice as much relevant information can then be 

extracted automatically. However, scalability of automated information 

extraction systems requires that all steps in the process are automated. The 

recall performance of BioRAT on the abstracts alone is 20%. Overall, BioRAT 

achieved 43% recall and over 50% precision on full-length papers.  

 

3.2.5 GeneScene 

 

GeneSene
11

 is a toolkit that provides an overview of published literature 

content. They combined a linguistic parser with Concept Space, a co-

occurrence based semantic net. Both techniques extract complementary 

biomedical relations between noun phrases from MEDLINE abstracts. The 

parser extracts precise and semantically rich relations from individual abstracts 

and prepositions as entry points into phrases in the text. The parser also 

recognizes coordinating conjunctions and captures negation in text, a feature 

usually ignored by others. Concept Space extracts relations that hold true for 

the collection of abstracts.  

 

The Gene Ontology, the Human Genome Nomenclature, and the Unified 

Medical Language System, are also integrated in GeneScene. Currently, they 
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are used to facilitate the integration of the two relation types, and to select the 

more interesting and high-quality relations for presentation. GeneScene [69] 

fill s in a set of basic templates of patterns of prepositions around verbs and 

nominalized verbs. It also has a set of rules for combining these templates to 

extract information from more complex sentences. 

 

Genescene stores Medline abstracts relevant to several biomedical topics, e.g., 

AP-1, p53, yeast, together with the relations extracted from these abstracts. 

Cascaded finite state automata structure the relations between individual 

entities. The automata are based on closed-class English words and model 

generic relations not limited to specific words. A user study focusing on p53 

literature is discussed. All MEDLINE abstracts discussing p53 were processed 

in Genescene. Two researchers evaluated the terms and relations from several 

abstracts of interest to them. The results show that the terms were precise 

(93%) and relevant, as were the parser relations (precision 95.5%). The 

Concept Space relations were more precise when selected with ontological 

knowledge (precision 78%) than without (60%).   

 

Genescene provides biomedical researchers with research findings and 

background relations automatically extracted from text and experimental data. 

These provide a more detailed overview of the information available. The 

extracted relations were evaluated by qualified researchers and are precise. A 

qualitative ongoing evaluation of the current online interface indicates that this 

method when used to search the literature is more useful and efficient than 

keyword based searching. In GENIES, more complicated patterns with 

syntactic and semantic constraints are used [44]. GENIES even uses semantic 

information. However, GENIES' recall rate is low. In the above methods, 

patterns are hand-coded without exception. Because there are many verbs and 

their variants describing protein interactions, manually coding patterns for 

every verb and its variants is not feasible in practical applications. 
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The most promising candidates for a practical information extraction system 

are ones based on full-sentence parsing as they deal with the structure of an 

entire sentence and therefore are potentially more accurate. An example of such 

a system is GENIES [44], which utilizes a parser and a semantic grammar 

consisting of a large set of nested semantic patterns (incorporating some 

syntactic knowledge) reflecting most frequently used sentence structures. 

Unlike other systems, GENIES is capable of extracting a wide variety of 

different relations between biological molecules as well as nested chains of 

relations. However, the downside of the semantic grammar-based systems like 

GENIES is that they may require complete redesign of the grammar in order to 

be tuned to a different domain.  

 

3.2.6 Link Grammar Parser ɀ Based systems    
 

In the last few years, natural language processing has become a rapidly-

expanding field within bioinformatics, as the literature keeps growing 

exponentially [70] beyond the ability of human researchers to keep track of, at 

least without computer assistance. Natural language processing techniques rely 

on syntactic and semantic knowledge that is often manually encoded for a 

particular domain. Initially NLP is used for machine translation, speech 

recognition and also knowledge representation. NLP-based methods perform a 

substantial amount of sentence parsing to decompose the text into a structure 

from which relationships can be readily extracted.  

 

Many natural language processing approaches at various complexity levels 

have been used successfully to extract various classes of data from biological 

texts, including protein-protein interactions. Recently, extraction systems have 

also used Link Grammar to identify interactions between proteins. Their 

approach relies on various linkage paths between named entities such as the 
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gene and protein names. Ding et al. proposed an interaction extraction method 

based on Link Grammar Parser [71]. They made a great leap in biomedical 

information extraction area because link grammar itself is a robust and 

powerful framework. It can handle lots of irregularities and attempt to interpret 

sentences even when they are ungrammatical or contain some unknown words. 

However, their work is limited to counting the length of link paths only, 

neglecting the abundant grammatical information along the paths. In fact, the 

grammatical information is most valuable for interaction extraction. Basically, 

we cannot extract accurate information of interactions until the grammatical 

information is exhaustively exploited.  

 

3.2.6 .1 ProtExt 

 

The ProtExt system [72] extends the idea of Ding et al., 2003. They proposed a 

novel template language (PETL) for extracting protein-protein interactions. 

Their system extract protein-protein interactions embedded in sentences more 

accurately and customizable. It produces satisfactory results and the template 

language can be further extended to extract regulation of biological pathways. 

Their information extraction approach relies on the matching of pre-specified 

templates (patterns) or rules. The underlying assumption is that sentences 

conforming exactly to a pattern or a rule express the predefined relationship(s) 

between the sentence entities. They didn't report the values of Precision and 

Recall. They need to consider a template optimizer to speed the matching 

which can pack numerous templates into one template using a more 

sophisticated data structure. Manually writing patterns for every verb is not 

practical for general purpose applications. 
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3.2.6.2 IntEx 

 

The IntEx [73] system splits complex sentences into simple clausal structures 

made up of syntactic roles. Their extraction system handles complex sentences 

and extracts multiple and nested interactions specified in a sentence. IntEx 

system achieves better performance without the labor intensive pattern 

engineering requirement. However, researchers are also interested in contextual 

information such as the location and agents for the interaction and the signaling 

pathways of which these interactions are a part. They don't extract the detailed 

contextual attributes (such as bio-chemical context or location) of interactions 

might give extra information to the biologist. They don't identify the 

relationships among interactions extracted from a collection of sentences (such 

as one interaction stimulating or inhibiting another) to construct ñProtein 

Interaction Pathwaysò from abstracts and full text articles. They didn't Attempt 

to improve the parse output of the Link Grammar System by augmenting the 

dictionaries of the Link Grammar Parser with medical terms with their linking 

requirements. Every paper evaluates on a different test set, and so it is quite 

difficult to compare systems. The comparison between the Precision and Recall 

of IntEx and our system (PIELG) will be present in chapter 8.   

 

3.2.6.3 BioPPIExtractor  

 

The BioPPIExtractor system [74] applies Conditional Random Fields model to 

tag protein names in biomedical text, then uses a Link Grammar Parser to 

extracts complete interactions. Their main aim is to introduce CRFs-based 

protein name recognition method and evaluate its contribution to the overall 

protein ï protein interaction performance. Their experimental results show that 

introduction of this method indeed helps to improve the PPI performance. 

However, the recall errors of BioPPIExtractor are due to the complicity of the 

protein interaction expression so they faced a difficulty to compile the 
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appropriate extraction rules and, therefore, many interactions are missed out. 

The leading cause of precision errors of BioPPIExtractor is the nonexistence of 

not perfect extraction rules.   

 

3.3 Conclusions  

 

We have surveyed the prominent methods used for information extraction. We 

have demonstrated its application in the context of biomedical literature mining 

and protein-protein interactions. Several have shown that template and simple 

rule based algorithms can be used to recognize interactions achieving high rates 

of recall and precision ([28]; [75]). However, this technique has been found to 

be overall limited in the set of interactions that can be extracted by the extent of 

the recognition rules that are implemented, and also by the complexity of 

sentences being processed. Specifically, complicated cases such as interaction 

descriptions that span several sentences of text are often missed by these 

approaches. Others have addressed the issue of complex sentence structures 

and some limited work has been done on extracting interactions spanning 

several sentences through the use of parts of speech analysis [57], and natural 

language based approaches [78].These approaches, like the rule-based systems, 

have also reported high levels of recall and precision.  

 

The protein-protein interaction extraction is a relation extraction task. In the 

relation extraction with news domain, some work has also been reported. In 

[79] they utilize a kernel-based classification approach to extract relations by 

computing kernel functions between parse trees. In [80] they use a similar 

approach as [81] method and further extend it to estimate kernel functions 

between augmented dependency trees. Due to the computation complexity, 

speed is still a serious problem for kernel approaches to be used in practical 

applications. The abundance of biomedical literature motivates an intensive 

pursuit for effective text-mining tools. Such tools are expected to help uncover 
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the information present in the large and unstructured body of text, while 

addressing three main problems: 

 

¶ The sheer magnitude of the available text collections; 

¶ The ambiguity and non-uniformity of the nomenclature used in the context 

of genomics and proteomics. 

¶ The linguistic-complexity of the scientific documents, stemming from the 

diversity of the authors in terms of expertise, style, and native languages. 

 

As literature mining challenges in the context of bioinformatics vary widely in 

aspects such as scope, data sources, and ultimate goals, no single tool can 

currently perform all the required tasks. However, a combination of methods is 

likely to address many of the problems. To successfully mine the biomedical 

literature, it is important to realize the merits and the limitations of the different 

literature-mining methods. Moreover, it is essential to coherently state the 

actual biomedical problems we expect to address by using such methods.  

 

Most of the previous mentioned biomedical information extraction systems 

focus on verbs which represent target events by themselves (i.e. ñactivateò), 

there are many cases that combinations of verbs, prepositions and certain nouns 

form proper IE forms. PIELG investigates and classifies forms which are 

needed to extract interacting protein pairs to see what forms are required in 

addition to ones that consist of only one verb. PIELG coves many linguistic 

variations of the interaction words in various contexts. The system covers nine 

classes based on constituents of the verbs including the nominal form as shown 

latter. Also, PIELG success to extract of detailed contextual attributes of 

interactions by interpreting modifiers like: location/position modifiers (in, at, 

on), agent/accompaniment modifiers (by, with), purpose modifiers (for, and 

theme/association modifiers (of). 
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CHAPTER 4 

SYSTEM ARCHITECTURE  

  

 

The structure or architecture of most Information Extraction systems has a 

common theme as described early in chapter 3. This theme is probably due to 

the nature of the problem, but also a result of the use of common components 

and building blocks, such as linguistic parsers. PIELG System extracts protein-

protein interactions from biomedical text. Our Information Extraction system is 

organized in cascaded modules such that the output of one module is the input 

of the next module. 

 

A typical session in using PIELG involves the user providing an initial search 

specification (keywords). The keywords may be one protein name or pairs of 

protein names wanted to detect their interaction properties. Then PIELG 

downloads PubMed abstracts satisfying that specification. Each abstract is 

analyzed to identify sentences that mention interaction of proteins. These 

sentence clauses are then processed to obtain the interactions between proteins 

using syntactic roles of the sentence and their linguistically significant 

combinations.  

 

The actor and patient of each interaction are identified.  These interaction 

evidence sentences are then grouped by actor and patient. Then PIELG extracts 

interaction information from abstracts and titles of scientific papers, and 

presents the extracted information in textual forms. PIELG is purely 

implemented with Perl under Linux platform. The architecture of the PIELG 



 

 

̻̾ 

system is shown in Figure (4-1). The following sections briefly explain the 

workings of its modules. 

 

 

 

 

 

 

 

 

 

Figure (4-1): PIELG System Architecture. 

 

4.1 Sentence Segmentation and Tokenization    

 

The first phase of an Information Extraction system is usually the lexical 

analysis, which consists of dividing the input text into sentences and tokens, i.e. 

tokenization, and doing a lexical analysis. Each token represents the smallest 

linguistic unit; it can be a word (e.g. "run"), a numeric expression (e.g. "21st"). 

The lexical analysis is usually based on the use of morphological analyzers. In 

English, the morphological analysis can be based simply on the use of a word 

list.  
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PIELG system for extracting interactions requires sentence segmentation since 

only the proteins within a sentence are considered when identifying 

interactions. This module identifies sentence and word boundaries. It splits the 

retrieved abstracts into sentences including titles of each paper. The title of a 

paper may include important information like the title of this paper: - Dentin 

matrix protein-1 regulates dentin sialophosphoprotein gene transcription 

during early odontoblast differentiation. This is done by using simple regular 

expressions, to identify sentence boundaries, assuming any period followed by 

a space and an uppercase letter is a sentence boundary. The word and sentence 

segmentation step is simplified. The result of the morphological analysis is 

usually basic linguistic features. Tokens can be also tagged for other 

information. For example, in the context of bioinformatics, a token could 

receive a tag identifying it as a biomedical term that could be the part of gene 

or protein name.  

 

4.2 Named Entity identification and conversion    

 

Most efforts concerned with biomedical literature mining to date focus on 

automated information extraction, using crated lexica for identifying relevant 

phrases and facts in text. Named entity identification or Entity extraction is the 

process of identifying protein names in the text. The simplest and frequently 

used approach to entity identification is a dictionary matching approach. Entity 

names are compiled as a dictionary. A string match with an entry in the 

dictionary tags the words or phrases as protein names. A variety of publicly 

available databases provide the resources for entity names.  
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Some of the major current sources for gene-related terms: genome and 

proteome databases such as LocusLink
12

 , UniProt
13

, and the HUGO
14

 gene 

nomenclature contain many of the names and synonyms denoting known genes 

in various organisms. These databases provide gene and protein names and 

their synonyms. PIELG distills its dictionary of protein names from EXpaxy
15

 

and iHOP
16

 databases. The dictionary of PIELG carries about 1000 entries. 

However, we do not do any synonym grouping or name clustering. Since our 

main goal is aimed at proposing a method for extracting protein-protein 

interactions, the current named entity recognizer is sufficient for this purpose. 

 

Named entity conversion process is important for entity extraction. It is the 

process of converting each protein name into a personal name. Before 

conversion we need to make sure that each protein name has one identical 

representation. It is noticed that a protein name may have different appearances 

and lots of identical representations. For example, the protein name Dentin 

matrix protein-1 may appear as Dentin matrix protein 1. Also, its abbreviation 

may appear in the text as DMP-1 or DMP 1. This module tries to normalize 

protein names using a dictionary so that different names of the same protein are 

mapped to a standard name.  

 

The conversion process aimed to get the Link Grammar Parser handles texts 

with protein names of multiple words. This is done by converting each protein 

                                                           

12
 http://www.ncbi.nlm.nih.gov/sites/ entrez?db=gene. 

13
 http://beta.uniprot.org. 

14
 http://www.genenames.org/ 

15
 http://www.expasy.ch. 

16
 http://www.ihop-net.org. 
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name into a personal name. This is necessary because link parser does not have 

an unbounded dictionary which may hold the vocabulary of all protein names. 

Common personal names are already known to the Link Grammar parser and 

doing this can prevent it from guessing the biochemical names.  For example, 

Bone morphogenetic proteins will be replaced by BMPs and Electron probe 

micro-analysist will be replaced by EPMA. If we do not do the conversion, then 

perhaps few sentences can be well parsed by the parser. Besides, doing this 

usually can reduce the number of words in sentences, which is helpful to 

processing. This will reduce the total processing time of the total system. If we 

take the following sentence as an example Dentin matrix protein-1 is verified 

by real-time reverse transcruption-polymerase chain reaction it will be 

converted to DMP-1 is verified by real-time RT-PCR. 

 

4.3 Simple Filtering and Transformation  

   

Simple filtering is the process used to reduce the processing time for an 

abstract. It filters out sentences that do not contain any interactions. Sentences 

are again searched for the protein pairs. The sentences that contain at least two 

protein names are alone chosen for processing.  

 

The Transformation process is needed to make the Link parser able to handle 

text with some expressions including protein names. The expressions of 

multiple words properly would have required a wrapper around the parser. This 

wrapper is the transformer that will transfer those expressions into personal 

names from the text before passing it to the parser. The re-transformer is then 

inserted in the name back after parsing, for example, gene expression of Alp 

and expression of the transcription factor RUNX2. Besides, doing this usually 
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can reduce the number of words in sentences, which is helpful to processing. 

This will reduce the total processing time of the total system. 

 

4.4 Preprocessor    

 

The details of preprocessing vary from one system to another but certain steps 

are considered by all system designers. Preprocessor allows removing of 

numerous structure ambiguities, which clearly benefits the parsing quality and 

execution time. The tagged sentences need to be pre-processed to replace 

syntactic constructs, such as parenthesized nouns and domain specific 

terminology that cause the parser to produce an incorrect output. This problem 

is overcome by replacing such elements with alternative formats that is 

recognizable by the parser. The preprocessor forces the Link Grammar parser 

to recognize the biological names as noun forms. Since the parser recognizes 

words that start with an uppercase letter as a noun therefore, the pre-processor 

converts each protein personal name to a word starting with an uppercase letter.  

 

The parser is also not designed for parentheses in the sentences. The sentences 

in the abstracts are analyzed, and it is found that the text inside parentheses 

often referred to alias names of the entities mentioned. So, the words in the 

parentheses are removed to improve the parse output as they provide no 

additional information in many sentences. However, there is some loss of 

information regarding the interactions due to this process which bring down the 

recall of the extraction system.  

 

The pre-processor performs minor punctuation corrections on the spacing of 

commas and semi-colons in the text. It filters out some adverbs such as 
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however, hence, also, furthermore etc. The preprocessor removes some 

information that is unrelated to biochemical interactions, such as a window of 

time: (1994-2008), probabilities, mathematical notations: (p _ 0.03), special 

characters, and so forth. The rationale of doing this is that it can save some 

computational effort during parsing without losing crucial information related 

to interactions and make sentences more understandable to Link Grammar 

Parser.  The tagged sentences need to be preprocessed to replace domain 

specific terminology that causes the Link Grammar Parser to produce an 

incorrect output. This problem is overcome by replacing such elements with 

alternative formats that are recognizable by the parser. 

 

4.5 Link Grammar Parser and Link Grammar  

 

Link grammar (LG) introduced by Sleator and Temperley [82] is a 

dependency-based grammatical system. The Link Grammar Parser is a 

syntactic parser of English based on link grammar, an original theory of 

English syntax. The basic idea of link grammar is to connect pairs of words in a 

sentence with various syntactically significant links. Given a sentence, the 

system assigns to it a syntactic structure, which consists of a set of labeled links 

connecting pairs of words. The Link parser is freely available from the internet. 

While the parser with full source code could be downloaded from the Link 

parser homepage, there was no clear statement of the license under which it 

could be used commercially. However, since no notion of this could be seen on 

the official homepage, the use of the parser under such obscure promise of a 

license was rejected. 

 

Link Grammar Parser is available as ANSI C program and Perl module. As 

most of PIELG system was coded in Perl language, a wrapper was written for 
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LG Parser in Perl to handle its input and output. The wrapper overrides the 

input and output buffers of LG parser. The Perl module Lingu::LinkParser runs 

and the wrapper feeds the input buffer with the sentence and collects the output 

parse from the output buffer. Then the output is parsed using regular 

expressions to extract the linkages, and these linkages can be accessed through 

the wrapperôs Perl API. A detailed description of this module is covered in 

Chapter 5. 

 

4.6 Interaction Word Tagger  

 

Once protein names have been found, the relationships between them need to 

be ascertained. The words that convey a biologically significant action between 

two protein names are labeled as interaction words. For example in sentence 

óóDMP-1 regulates DSPP during early odontoblast differentiation.ôô, the main 

verb ñregulateò, describes the action performed by ñDMP-1ò on ñDSPPò, is an 

example of interaction word. Some other example of interaction words are 

ñbindò, ñdown-regulationò, ñphosphrylationò, bind, associate and complex etc. 

This can be done in a number of ways depending on the Information Extraction 

(IE) task. The system uses dictionary look-up method to identify interaction 

words in the sentences. 

 

We use a category/keyword dictionary for identifying terms describing 

interactions. The category/keyword dictionary is adapted from [44] with 

additional categories and keywords found to be prevalent in our corpus. A list 

of interaction words, which consists of 45 noun and 53 verb roots, was 

compiled from the literature. In order to broaden the list of potential interaction 

words, all inflected variants of known interaction words are also considered. 

Further, also all predictable spelling and derivational variants are considered.  
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Table (4-1) Direct and Indirect Interaction Words 

Direct interaction 

verbs 

Indirect interaction  

 verbs 

bind (bound) 

interact (-s,-ed) 

stabilize (-s,-d) 

phosphorylate(-s,-d) 

ubiquinate(-s,-d) 

sumoylate(-s,-d) 

degrade(-s,-d) 

block(s). 

induc(-es,-ed) 

trigger(-s,-ed) 

block(s),  

enhance(s) 

synergize(s) 

cooperate(s) 

localizes 

regul(-ates,-ion) 

activate(s) 

inhibit(s) 

control(s) 

translocate(s) 

antagonize(s) 

amplif(-y,-ies) 

transduce(s) 

degrade(s) 

trigger(s). 

 



 

 

̹̿ 

The dictionary is enriched manually with additional verbs that are known to 

refer to interactions. The direct and indirect physical interaction words are split 

into as shown in Table (4-1).  

Example If the word labeled appears in the corpus as an interaction word, we 

also consider the words label, labels, labeling, labeled to be potential 

interaction words. Similarly, for the word rebinds we also consider the words 

re-binds, rebind, re-bind, rebound, re-bound, rebinding, rebinding. Table (4-2) 

shows some examples of interaction words. 

Table (4-2):  Examples of interaction words. 

Category Keywords Category Keywords Category Keywords 

Activate 

 

 

 

 

 

 

accumulat 

(e,ed,es,ion) 

activat 

(e,ed,es,or, 

ion) 

elevat 

(e,ed,es,ion) 

hasten (ed,es) 

Incite (ed,es) 

increas (ed,es) 

Induc 

(e,ed,es,tion) 

promot 

(e,ed,es) 

stimulat 

(e,ed,or,ion) 

transactivat 

Break 

Bond 

 

 

 

cleav 

(e,ed,es) 

demethylat 

(e,ed,es,ation

) 

Dephosphory

lat 

(e,ed,es,ation

) 

sever 

(e,ed,es) 

 

Inactivate 

 

inhibit 

(s,ed,ion) 

reduc 

(e,ed,es,tion) 

repress 

(ed,es,ion) 

supress 

(ed,es,ion) 

Cause influenc 

(e,ed,es) 

Modify  modifi 

(ed,cation) 

Contain contain 

(s,ed,es) 

 

Process 

apoptosis 

myogenesis 

Create 

Bond 

methylat 

(e,ed,es,ation
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(e,ed,es,ion) 

up-regulat 

(e,ed,es,or,ion) 

Upregulat 

(e,ed,es,or) 

) 

phosphorylat 

(e,ed,es,ation

) 

Association associat 

(e,ed,es,ion) 
Release disassembl 

(e,es,ed) 

discharg 

(e,es,ed) 

Attach add (s,ition) 

bind (s),bound 

catalyz 

(e,ed,es) 

Complex 

Generate express 

(ed,es,ion) 

overexpress 

(ed,es,ion) 

produc 

(e,ed,es,tion) 

Signal mediat 

(e,ed,es) 

modulat 

(e,ed,es,ion) 

participat 

(e,ed,es,ion) 

regulat 

(e,es,ed,ion) 

Inactivate block (s,ed) 

decreas 

(e,ed,es) 

deplet 

(e,ed,es,ion) 

down-regulat 

(e,ed,es,ion) 

down-regulat 

(e,ed,es,ion) 

impair (s,ed) 

inactivat 

(e,ed,es,ion) 

Substititut

e 

replac 

(e,ed,es) 

substitut 

(e,ed,es,ion) 
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4.7 Interaction Extractor (IE)  

 

Interaction Extractor (IE) extracts interactions from simple sentence clauses 

produced by the Link Grammar parser. Sentences are made up of different 

syntactic constituents like Noun Phrases, Verb phrase, Modifying Phrases etc. 

Each of this syntactic ñrolesò has some meaning and context in the sentence 

they are talked about. Each of these constituent plays a role (e.g. subject of 

main verb) based on the theme or the event the sentence is talking about. To 

keep the Interaction Extractor as generic as possible, we used only three basic 

constituents types based on the órolesô they play: 

 

Subject - subject of main verb. 

Object - one or more object of main verb for the given subject. 

Modifying Phrase (MVP) - One of more MVP for both subject and object. 

Given these syntactic constituents we identity the roles based on the 

information they contain. For example in sentence óóDMP-1 regulates DSPP 

during early odontoblast differentiation.ôô subject ñDMP-1ò contains one 

protein name, object ñDSPPò contains one protein name, and modifying phrase 

ñduring early odontoblast differentiationò contains one protein name. Detailed 

description of this module is covered in Chapter 6. The highly technical 

terminology and the complex grammatical constructs that are present in the 

biomedical abstracts make the extraction task difficult, even a simple sentence 

with a single verb can contain multiple and/or nested interactions.  

 

For example: "Phosphophoryn signals DSPP by directly stimulating DMP-1. Here the 

sentence has two interactions "Phosphophoryn, signals, DSPP" and "Phosphophoryn, 
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stimulating, DMP-1". Thatôs why our IE system is based on a deep parse tree 

structure presented by the LG and it considers a thorough case based analysis 

of contents of various syntactic roles of the sentences. Detailed description of 

this module is covered in Chapter 6. 
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CHAPTER 5 

L INK GRAMMAR  

  

 

Many approaches to NLP have been pursued in the past few decades, but few 

are as popular as the Link Grammar parser. Link grammar (LG) is an original 

theory of English syntax. It was written by Davy Temperley, Daniel Sleator, 

and John Lafferty of Carnegie Mellon University [81] to simplify English 

grammar with a context-free grammar.  Link grammar [82] is a theory of 

syntax which builds relations between pairs of words, rather than constructing 

constituents in a tree-like hierarchy. Link grammar is a dependency based 

grammatical system; its basic idea is to connect pairs of words in a sentence 

with various syntactically significant links. Rather than examining the basic 

context of a word within a sentence, the Link Grammar is based on a model 

that words within a text form "links" with one another. It considers words as 

blocks with connectors coming out. There are different types of connectors and 

may point to the right or to the left. A left-pointing connector connects with a 

right-pointing connector of the same type on another word. The two connectors 

together form a link.  

 

The link grammar consists of sets of words, each of which has a linking 

requirement. This linking requirement can be seen as a block with connectors 

above each word. A connector is satisfied by matching it with a compatible 

connector. In Link Grammar, a linkage is a single successful parse of a 

sentence: a set of links in which none of the connecting arcs cross. The words 

of a syntactic structure are connected in such way. The links satisfy the linking 

requirements for each word of the sentence (satisfaction). The links do not 

cross and all words form a connected graph. These links are used not only to 

identify parts of speech (nouns, verbs, and so on), but also to describe in detail 
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the function of the word within the sentence. If a phrase consists of two 

adjectives and two nouns you really want to know which adjective modifies 

which noun. The LG does that. 

 

In Link Grammar vernacular, a linkage is a single successful parse of a 

sentence: a set of links in which none of the connecting arcs cross. The 

following diagram Figure (5-1) shows how linking requirement for the 

sentence ñThe dog chased a catò is satisfied. 

 

 

Figure (5-1): Link Grammar Representation of a Sentence 

 

The arcs between the words are ñlinksò and the labels show the link type. In the 

example below the link between ñdogò and ñchasedò is ñSò (connects Subject-

noun to verbs), the link between ñchasedò and ñcatò is ñOò (connects verbs to 

direct or indirect Objects) and the link between ñtheò and ñdogò is ñDò 

(connects determiners to nouns). A sample parse of the sentence, "A camel is a 

horse designed by a committee" is depicted in Figure (5-2). 

 

 

 

Figure (5-2): A sample parse, with links. 
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The primary parts of speech are labeled with .n and .v to indicate that these 

words are nouns and verbs, respectively. The labels of the links between words 

indicate the type of link. For example, the J connector in this sentence indicates 

a connection between prepositions and their objects; in this case, the verb 

designed is connected to by a committee, identifying a prepositional phrase.  

 

Each word in the lexicon of link grammar must satisfy the linking requirements 

[81], which is stored in a dictionary. These requirements are specified by 

means of a formula of connectors combined by binary associative operators. 

When a link connects to a word, it is associated with one of the connectors of 

the formula of that word, and it is said to satisfy that connector. No two links 

may satisfy the same connector. A sequence of words is a sentence of the 

language defined by the grammar if there exists a way to draw links among the 

words so as to satisfy each word's formula, and the following meta-rules: 

 

1. Planarity:  The links are drawn above the sentence and do not cross. 

2. Connectivity: The links suffice to connect all the words of the sequence 

together. 

3. Ordering:  When the connectors of a formula are traversed from left to 

right, the words to which they connect proceed from near to far. In 

other words, consider a word, and consider two links connecting that 

word to words to its left. The link connecting the nearer word (the 

shorter link) must satisfy a connector appearing to the left (in the 

formula) of that of the other word. Similarly, a link to the right must 

satisfy a connector to the left (in the formula) of a longer link to the 

right. 

4. Exclusion: No two links may connect the same pair of words. 
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5.1 Some Important Links 

 

The following is a list explaining the significance of some of the important 

linkages of the link grammar system which are used in our scheme: 

 

¶ A and AN: Connects pre-noun modifiers like adjectives or nouns to the 

following noun. e.g. - the huge man sat there, the tax proposal is to be revised. 

¶ B: Connects transitive verbs back to their objects in relative clauses and 

questions. e.g. - the man he killed, what did you eat? Also, connects the main 

noun to the finite verb in subject-type relative clauses. e.g. the teacher who 

taught me was tall. 

¶ DP: Connects possessive determiners to gerunds in cases where the gerund is 

taking its normal complement. e.g. your telling Jane to leave was a mistake. 

¶ I:  Connects infinitive verb forms to certain words such as modal verbs and 

ñtoò. e.g. he has to be present, they should do their work. 

¶ J: Connects prepositions to their objects. e.g.  the man with the dog is here. 

¶ M:  Connectsnouns to various kinds of post-noun modifiers like prepositions 

and participles. e.g. the man with the umbrella, the lady to whom I proposed. 

  

¶ MV:  connects verbs and adjectives to modifying phrases that follow e.g. the 

man slept in the room, it was hotter yesterday. 

¶ MX:  Connects nouns to post-nominal noun modifiers surrounded by commas. 

e.g. the man, who killed him, was arrested. 

¶ O, OD and OT: Connects transitive verbs to their objects, direct or indirect. 

e.g. he played cricket, I gave you a book. 

¶ P: Connects forms of the verb ñbeò to prepositions, adjectives and participles. 

e.g. he is playing; the boys are in the field, she was angry. 

¶ PP: Connects forms of ñhaveò to past participles e.g. he has gone. 

¶ R: Connects nouns to relative clauses.  
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¶ RS: Connects the relative pronoun to the verb. e.g. ï the man who chased us. 

¶ S, SI, SX and SXI: Connects subject nouns to finite verbs. e.g. - a child likes 

sweets. 

¶ TO: Connects verbs and adjectives which take infinitival complements to the 

word ótoò. e.g. - they planned to party.  

 

5.2 The Link Grammar Parser 

 

The Link Grammar Parser  (LGP) [75] is a syntactic parser of English, 

based on link grammar. Given a sentence, Link Grammar Parser assigns to it a 

syntactic structure, which consists of a set of labeled links connecting pairs of 

words. These links are used not only to identify parts of speech (nouns, verbs, 

and so on), but also to describe in detail the function of that word within the 

sentence. LGP has around seven hundred definitions that capture many 

phenomena of English grammar. It can handle: noun-verb agreement, 

questions, imperatives, complex and irregular verbs (wanted, go, denied, etc.), 

different types of nouns and many other things. The dictionary of LG parser 

has about 60000 word forms, with wide coverage of syntactic constructions. 

 

The parser is robust and can skip the portions of sentences it cannot understand 

and assign some structure to the rest of sentence. Its ability to handle unknown 

vocabulary is remarkable and this feature is most useful when parsing unknown 

alphanumeric gene/protein names and sentences which very compound and 

complex, as most of the sentences from the abstracts biomedical domain are. 

As we were looking for a dependency-tree based parser, we selected LG parser. 

The LG parser gives the links to extract the constituents like Subject, Object 

and modifier in a sentence. 

 

The Link Grammar Parser also produces a constituent representation of a 

sentence (showing noun phrases, verb phrases, etc.). For example, in a Subject-
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++++Time 0.00 seconds (51.89 total). Found 3 linkages 
+-------------------------------------Xp-----------------------------+ 
|                              +----------------MVp-------------+           | 
+-Wd-+-Ss-+---Pv---+---MVp--+---Jp--+        +-Js+           | 
|          |    |           |               |           |            |     |           | 
WALL DGI is.v associated.v with mutations.n in DSPP . 

 

Verb-Object (S-V-O) language like English, the verb would look left to form a 

subject link, and right to form an object link. Nouns would look right to 

complete the subject link, or left to complete the object link. A sample parser 

output is depicted in Figure (5-3) for the sentence; DGI is associated with 

mutations in DSPP.  

 

 

 

 

 

 

Figure (5-3): A sample parser output with links. 

 

The primary parts of speech are labeled with .n and .v to indicate that these 

words are nouns and verbs, respectively. The labels of the links between words 

indicate the type of link. For example, the Mv connector in this sentence 

indicates a connection between the verb and its modifying phrase. In this case, 

the verb associated is connected to with mutations, identifying a modifying 

phrase. 

 

The parser has an internal timer. If the timer runs down before a complete or 

partial linkage has been found, the parser will output whatever it has found so 

far (termed a fragmented linkage). Link Grammar Parser has many 

Applications such as: - AbiWord [83] checks, information extraction of 

biomedical texts and events described in news articles, as well as experimental 

machine translation. Another sample parser output is depicted in Figure (5-4) 

for the sentence; DMP-1 regulates DSPP during odontoblast differentiation. 

 

http://www.link.cs.cmu.edu/link/dict/section-X.html
http://www.link.cs.cmu.edu/link/dict/section-MV.html
http://www.link.cs.cmu.edu/link/dict/section-W.html
http://www.link.cs.cmu.edu/link/dict/section-S.html
http://www.link.cs.cmu.edu/link/dict/section-P.html
http://www.link.cs.cmu.edu/link/dict/section-MV.html
http://www.link.cs.cmu.edu/link/dict/section-J.html
http://www.link.cs.cmu.edu/link/dict/section-J.html
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++++Time 0.00 seconds (51.89 total).Found 1 linkage (1 with no P.P. 

viol ations)Unique linkage.cost vector = (UNUSED=0 DIS=0 AND=0 LEN=11) 

+----------------------------------pX--------------------------------------+ 

+     |-----------------pJ-----------------|                               + 

+     |--------------A--------------+      +-----pMV------|                + 

+     |-------A--------+     |      |            +---sO---+---sS---+--dW---+ 

|       |        |        |     |      |            |                |     | 

LEFT  DMP - 1 regulates.v DSPP during early.a odontoblast.a differentiation.n. 

 

 

Figure (5-4): The linkage given by the Link Grammar Parser for the sentence 

"DMP-1 regulates DSPP during odontoblast differentiation." 

 

5.2.1 Link Grammar Parser's Dictionary 

 

The parser uses a dictionary that contains the linking requirements of each 

word. For example, the words the, chased, dog, and cat are shown below with 

their linking requirements. The D within the box below in Figure (5-5) "the" 

indicates that another word must connect with D to the right of the in order for 

the link requirements to be satisfied for that word. 

 

 

Figure (5-5): Some linking requirements 

 

For these words to form a sentence, the parser must find them in an order 

which satisfies the above three requirements. When a word has more than one 

row of connectors, only one side (left or right) of each row may be connected 

(e.g. cat has a row D and a row O/S, so D must be connected along with either 

O or S). When only one row exists on a single level (e.g. cat has D), one 

connector must be linked. The meaning of each link used here is indicated 

above. Thus, the following arrangement is correct: The cat chased the dog. The 

http://www.link.cs.cmu.edu/link/dict/section-X.html
http://www.link.cs.cmu.edu/link/dict/section-J.html
http://www.link.cs.cmu.edu/link/dict/section-A.html
http://www.link.cs.cmu.edu/link/dict/section-MV.html
http://www.link.cs.cmu.edu/link/dict/section-O.html
http://www.link.cs.cmu.edu/link/dict/section-S.html
http://www.link.cs.cmu.edu/link/dict/section-W.html
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unused connectors are grayed out in this example in Figure (5-6). Since our 

second "the" connects to dog as a determiner, chased actually spans the length, 

connecting to "dog". You can mentally shuffle these words to see that cat and 

dog could be swapped, and likely would be if our program had any semantic 

knowledge. Moving other words around, however, will break the link criterion 

and deem the parse ungrammatical. 

 

 

Figure (5-6): Linking requirements and inferred links. 

 

All of these requirements are stored in the Link Parser's dictionary files. The 

files use a "link dictionary language" to list the requirements for each word, 

and are themselves an interesting study in pattern representation. A highly 

optimized custom algorithm processes the data in these files, analyzing the 

possible links. This algorithm is yet another fascinating study in and of itself. 

Because the researchers at CMU had the generosity and intelligence to make 

their project research open to developers like us, we can examine the ingenuity 

of their methods. We can use and modify their well-conceived Application 

Program Interface (API). We can extend and combine the functionality of their 

system with that of other language processing technologies. And, of course, 

Perl makes it all possible, practical, and inevitable. 

 

The parser uses a dictionary that contains the linking requirements of each 

word and the possible part of speech assignments for the entries. It has a 

dictionary of about 60000 word forms. Also, it has coverage of a wide variety 

of syntactic constructions. The parser is robust; it is able to skip over portions 
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of the sentence that it cannot understand, and assign some structure to the rest 

of the sentence. It is able to handle unknown vocabulary, and make intelligent 

guesses from context and spelling about the syntactic categories of unknown 

words. It has knowledge of capitalization, numerical expressions, and a variety 

of punctuation symbols.  

 

5.2.2 LGPôs Dictionary Enhancement 

 

The word dictionaries of the Link Grammar Parser are from conversational 

English which do not include the biological named entities. The LG parsers' 

lexicon can be easily enhanced to produce better parses for biomedical text 

[84]. We use two methods to extending the lexicon of the Link Grammar 

Parser. The first method is to use the LinkGrammar-WN [85] which aims to 

import lexical information from WordNet. WordNet [86] is an online lexical 

reference system that in recent years has become a popular tool for Artificial 

Intelligence (AI) researchers. The LinkGrammar-WN v1.0 release contains 

14,392 noun word forms not available within the original LGP lexicon, thus 

increasing the size of the LGP lexicon by 25%.  

 

The second extension method is to use the extended Link Grammar Parser [87] 

where the lexicon is extended by the lexicon from UMLS' [88] 
 
Specialist 

lexicon enabled to general-purpose language processing tools. That enables 

Link Grammar Parser to manipulate medical text. The typically non-technical 

vocabularies must be augmented with a large medical lexicon.  It applies a 

heuristic method to import lexical definitions of about 200,000 word senses 

into the LG dictionary, more than tripling its size from the UMLS's Specialist 

lexicon. This extension of Link Grammar's dictionary [89] effects on its 

performance. This extension can significantly improve efficiency, parsing 

performance and significantly reduced ambiguity. The extended parser 

manipulates biomedical text well.  

http://cogsci.princeton.edu/~wn/
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5.3 Lingua::LinkParser  

 

The Link Grammar Parser itself is a complex piece of software implementing a 

complex theory of language. The Perl module Lingua::LinkParser [90] directly 

embeds the parser API, providing an object-oriented interface that you can use 

from your Perl programs. Objects may be created to represent sentences, 

linkages, links, individual words, and the parser itself. The PIELG system uses 

the Perl module Lingua::LinkParser [90]. It is a Perl module implementing the 

Link Grammar Parser under Linux platform. This module is available at CPAN 

[91] directly, embeds the parser. As an example, consider the following code: 

 

use Lingua::LinkParser; 

use strict; 

 

my $parser = new Lingua::LinkParser;        # create the parser 

my $text   = "Moses supposes his toses are roses."; 

   

my $sentence = $parser->create_sentence($text); # parse the sentence 

my $linkage  = $sentence->linkage(1);        # use the first linkage 

   

print $parser->get_diagram($linkage);         # print it out 

 

This code will output as shown in Figure (5-7). 

 

 

 

 

 

 

 

Figure (5-7): The output of the code  

 

Without delving into all the details, this diagram reveals some interesting 

things about the parser. First, supposes and are have v labels, indicating that 

    +-------------------------Xp---------------------------------------+ 

    |                     +------Ce------+                                               | 

    +-----Wd-----+---Ss---+             +--Dmc--+-Spx-+-Opt-+    | 

    |                      |             |               |             |          |          |     | 

LEFT-WALL Moses supposes.v his toses[!].n are.v roses.n . 
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they're verbs. The word "roses" is labeled n for noun, as is "toses". The [!] tag 

next to "toses" indicates that the parser isn't familiar with this word, which 

usually means that it isn't a word at all. So even with a word it's never seen 

before, the Link Grammar can identify the part of speech. 

 

5.4 The Link Parser Application Program Interface 

(API)  

 

The original version of the parser was designed around a standard interface, 

where the user types in a sentence, and the parser displays the linkages that it 

finds. This is fine for showing how the grammar and parser work, but in order 

to make actual use of the information that the parser provides, it is necessary to 

have access to its inner workings.  

 

The Link Parser Application Program Interface (API) [92] was written to give 

users flexibility in using the parser in their applications. The 

Lingua::LinkParser module provides access to the parser API using Perl objects 

to easily analyze linkages. The API makes it easy to incorporate the parser into 

other applications. The API provides a set of basic data structures and function 

calls that allow the programmer to easily design a customized parser. The 

module organizes data returned from the parser API into an object hierarchy 

consisting of, in order, sentence, linkage, sub-linkage, and link. 

 

Examples of the kind of capability the API provides include:  

 

¶ Open up more than one dictionary at a time.  

¶ Parse a sentence with different dictionaries or parsing parameters, and 

compare the results.  

¶ Limit the time and memory that the parsing process takes.  
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¶ Use different "cost functions" for ranking linkages.  

¶ Save linkages from a sentence, and access individual links.  

¶ Post-process a sentence with more than one set of post-processing rules.  

¶ Extract the domains that links participate in, to perform transformations 

on a linkage.  

¶ Recover the constituent structure corresponding to a phrase-structure 

grammar.  

 

 

The API provides a set of basic data structures and function calls that allow the 

programmer to easily design a customized parser. The API is written in ANSI 

C, and runs in both Linux and Windows environments. The following Example 

helps us to understand the Link Grammar API. To use the information within a 

program requires access to the links themselves. Continuing with the program 

above, we will extract from the $linkage object an array of $word objects. 

These will spring into existence, along with a links() method to return an array 

of $link objects. Well, just watch: 

 

 

 

my @words = $linkage->words; 

    foreach my $word (@words) { 

        print "\"", $word->text, "\"\n"; 

        foreach my $link ($word->links) { 

            print "  link type '", $link->linklabel,  

              "' to word '", $link->linkword, "'\n"; 

        }  

    }  
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An excerpt from the output:  

 

    "Moses" 

      link type 'Wd' to word '0:LEFT-WALL'  

      link type 'Ss' to word '2:supposes.v' 

 

    "supposes.v" 

      link type 'Ss' to word '1:Moses' 

      link type 'Ce' to word '4:toses[!]' 

 

    "his" 

      link type 'Dmc' to word '4:toses[!]' 

 

    "toses[!]" 

      link type 'Ce' to word '2:supposes.v' 

      link type 'Dmc' to word '3:his' 

      link type 'Spx' to word '5:are.v' 
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CHAPTER 6 

INTERACTION EXTRACTOR M ODULE  

  

6.1Introduction 

 

Interaction Extractor is the main component of the PIELG system. The aim 

here is to do deep analysis of the sentence to extract multiple and nested 

interactions from the sentence. Our IE system is based on a deep parse tree 

structure presented by the Link Grammar. It considers a thorough case based 

analysis of contents of various syntactic roles of the sentences like their 

subjects (S), verbs (V), objects (O) and modifying phrases (M) as well as their 

linguistically significant and meaningful combinations like S-V-O or S-V-M. 

Each of syntactic roles has some meaning and context in the sentence they are 

talked about.  

 

The sentences are made up of different syntactic constituents like Noun 

Phrases, Verb phrase, Modifying Phrases etc. Each of these constituent plays a 

role (e.g. subject of main verb) based on the theme or the event the sentence is 

talking about. To keep the Interaction Extractor as generic as possible, we used 

basic constituents types based on the órolesô they play: 

 

Subject - subject of main verb. 

Object - one or more object of main verb for the given subject. 

Modifying Phrase (MVP) - One of more MVP for both subject and object. 
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Given these syntactic constituents we identity the roles based on the 

information they contain. For example in sentence óóDMP-1 regulates DSPP 

during early odontoblast differentiation.ôô subject ñDMP-1ò contains one 

protein name, object ñDSPPò contains one protein name, and modifying phrase 

ñduring early odontoblast differentiationò contains one protein name. For each 

syntactic role of the sentence, the role type matcher identifies the type of each 

role based on its matching content.  

 

6.2 Information Extractor Algorithm  

 

The interaction extraction scheme uses a series of mapping rules to extract 

information about protein- protein interactions. Those mapping rules could be 

applied to first identify all the main verbs. Then, determining if those verbs are 

truly representing the interaction between two protein names (interaction 

words), in the text or not. If the main verb is not an interaction word then the 

algorithm detects all verbs in the sentence until detecting an interaction word. 

 

The algorithm (Algorithm 1) as shown in Table (6-1), is based on generic 

templates constructed using English Grammar syntax, looks into all parts of the 

sentence. The input to IE is the preprocessed and role typed simple clause 

structures. The IE algorithm (Algorithm 1) progresses bottom up, starting with 

each syntactic role subject, verb or modifying phrases, and expanding them 

using the lattice provided in until all ñCompleteò singleton or composite role 

types are obtained. 
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6.2.1 The main verb is an interaction word  

 

If the main verb is an interaction word, the system applies a set of rules to 

predict the subject for each of these. The scheme also helps to find out the 

object of the verb, when present, as well as the modifiers of all verbs and 

nouns. The prediction scheme begins once the sentence has been passed 

through the link parser and the linkage for that sentence has been obtained. As 

the link grammar requires that no two links cross each other, no two links 

connect the same pair of words and all the words form one unit, the linkage 

structure can be represented in the form of a tree. The elements of the tree are 

then analyzed to first find the main verbs and then if possible, find their 

subjects (S), verbs (V), objects (O) and modifying phrases (M) as well as their 

linguistically significant and meaningful combinations like SïVïO, SïVïM. 

Then finding and extracting proteinïprotein interactions only if a syntactic role 

(or meaningful combination) has at least two protein names and an interaction 

word.  
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Table (6 -1): (Algorithm 1): Algorithm for Interaction Extractor 

(Algorithm 1) Algorithm for Interaction Extractor  

INPUT: Simple clausal Structures of the sentence. 

OUTPUT: Protein-Protein Interactions, Example :( Protein1, Interaction 

Word, Protein 2). 

1. Identifying the main verb of the sentence. 

2. Using the linkage given by the Link Grammar parser, for the given 

sentence, obtaining the constituents Subject, Object and the Modifying 

Phrase (S, O and MP respectively). 

3. If the main verb is an interaction word and the Subject, Object or 

Modifying Phrase is a protein name. Then extract interaction from the 

combination of Subject, Verb and Object (S-V-O) roles. Similarly 

extract interaction from the combination of Subject, Verb and Modifying 

Phrase (S-V-O) roles.  

4. If the main verb is not an interaction word the system detects the place of 

the interaction word. Then the system extracts interaction from the 

combination of (S-V-O) and (S-V-O) roles. We have taken various 

possible cases in which interaction can occur in a sentence. 

5. If the sentence contains combinations of prepositions the system uses 

Preposition-based patterns to find agent, theme and action to extract the 

interaction, for both active and passive voices. 

 

6.2.1.1 Identifying the main verbs 

 

The system uses the procedure proposed in [93] for identifying the main verb. 

The link parser itself tags the verbs of the sentence with a óvô tag but all of 

them are not main verbs and all of them do not require subjects. Here, a main 

verb is considered to be the word in the verb phrase which actually represents 

the action done, i.e., words like infinitives (e.g. - to, will), modal verbs (e.g. - 
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must, should) and sometimes forms of be are neglected. Also, verbs do not 

need subjects when they are acting as an adjective. In order to identify the main 

verbs, all the words tagged with óvô are considered first. Then verbs are pruned 

out based on the conditions presented in [93]. After identifying the main verb, 

if it is marked as an interaction word from the interaction word tagger the 

system will continue to predict the subject and the object.    

 

After all the main verbs have been identified, the subject, the object (if it 

exists) and the modifying phrases of both the verb and the object will also have 

to be predicted based on the rules presented in  [93]. The rules are applied in 

hierarchical to identify the subjects (S), and objects (O) as well as all available 

modifying phrases (M) of the sentences. After identification, the interaction 

extractor algorithm progresses bottom up, starting with each syntactic role 

subject, verb or modifying phrases, and expanding them until all composite 

interaction role types are obtained. If subject, object or modifying phrase role 

itself is a protein name, then the system will extract interaction from the 

combination of subject-verb-object (S-V-O) or subject-verb- modifying phrase 

(S-V-M). We have taken various possible cases in which interaction can occur 

in a sentence. So, almost all information about protein - protein interactions 

could be extracted from the text, for both active and passive voices.  

 

6.2.1.2 Rules for Verb Prediction 

 

In order to identify the main verbs, all the words tagged with óvô are considered 

first [93]. Then verbs are pruned out based on the following conditions:- 
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1. Verbs which make an óAô link with some noun to their right or make a óMô 

link with some noun to their left without making any other link act as 

adjectives and so they do not need a subject. (Refer Figure (6-1)) 

 

 

Figure (6-1): Verb as adjective 

 

2. Infinitives, modal verbs and forms of ñbeò, when followed by a verb are 

neglected. This is done by neglecting all words which make a óP, óPP or óIô 

link with some word to their right. Also, if a verb makes a óTO link with 

ñtoò which in to makes an óIô link with some word, then both are neglected. 

(Refer Figure (6-2)) 

 

 

Figure (6-2): Pruning verb phrase 

 

3. In some cases, adjectives are also treated as verbs because they too form óP 

links with forms of ñbeò and, óMVô and óTOô links with modifying phrases 

just l i.e. verbs. This is necessary to predict the subjects of verbs occurring 

in modifying phrases. (Refer Figure (6-3)) 
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Figure (6-3): Adjectives as verbs 

 

6.2.1.3 Rules for Subject Prediction 

 

After all the main verbs have been identified, the subject and object (if it exists) 

for each of them is predicted based on the following rules. First, let's go 

through the rules for subject prediction. The rules are applied in hierarchical 

fashion with the next rule being applied only if the subject is not found with all 

the rules before it. The only exception is that rule 4 is applied only if the 

subject is found in a rule before it. Also, each rule is applied not only to the 

main verb identified but also to each word occurring in the verb phrase. 

 

1. The most basic and obvious way of identifying the subject is by finding 

a word which makes either a óSô, óSIô, óSX or óSXIô link with the verb. 

(Refer Figure (6-4)). 

 

 

Figure (6-4):  He + plays 
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2. If a verb is connected to a noun by a óBô link and the verb also bears a 

óRSô link then the noun with which it has the ñBô link is its subject. 

(Refer Figure (6-5)). 

 

Figure (6-5): Men --t eat 

 

3. The above rules do not work in the case of passive sentences as the word 

with the óSô link is actually the object. A sentence is deduced as passive 

if a óPvô link is present in the verb phrase. In such sentences, the subject 

is usually present in the form of the phrase ñby subjectò. Or else, the 

object is identified as done for normal cases and classified as the subject. 

(Refer Figure (6-6)). 

 

Figure (6-6): him + hit + She 

 

4. In some cases, the actual subject may be connected by a óMX*rô link to 

the subject found by any one of the above three rules. (Refer Figure (6-

7)). 
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Figure (6-2): John + was 

 

5. When the verb occurs in the form of a gerund, the subject may he 

attached to the verb with the óDP link. (Refer Figure (6-8)). 

 

Figure (6-8): Your + scolding 

 

The above five rules are the basic rules for finding the subject directly. 

 

6. If a verb is connected to the object of some other verb with óMgô link 

then that object is the subject for this verb. (Refer Figure (6-9)). 

 

 

 

Figure (6-9): men -i having 
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7. If a verb occurs in the phrase modifying a verb, wherein the phrase is 

connected to the verb with óMVô link, then its subject is the subject of 

the verb it modifies. (Refer Figure (6-10)). 

 

 

Figure (6-10): He + using 

 

8. If a verb occurs in the phrase modifying a verb, wherein the phrase is 

connected to the verb with óTO link, then its subject is the object (if it 

exists) of the verb it modifies. If the verb which is modified does not 

have an object then its subject is the required subject. (Refer Figure (6-

11)). 

 

Figure (6-11): him --t leave 

 

9. In the extreme case of all the above rules failing, the subject of the verb 

is taken as any noun to which the verb is connected with a óM link. This 

rule need not be correct at all times. 
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From the above rules it is clear that to find the subject, the object of the verb (if 

it exists) and the modifying phrases of both the verb and the object will also 

have to be found.  

 

6.2.1.4 Rules for Object Prediction 

 

The rules for finding the object are as follows: 

 

1. Here too, the most basic way of finding the object is to find the word 

which makes either an óOô, óOD or óOTô link with the verb. 

 

2. If the verb makes a óBô link with a noun and the verb does not have a 

óRSô link then that noun is the object of the verb. (Refer Figure (6-12)). 

 

 

Figure (6-12):  we + got + dog 

 

3. If a verb makes a óMvô link with the object of some other verb then that 

object is the object of this verb as well. (Refer Figure (6-13)). 
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Figure (6-13): known + men 

 

4. Also, as already mentioned, in the case of passive sentences, the subject 

and object are interchanged. 

 

6.2.1.5 Rules for Modifying Phrase Prediction  

 

After finding the verb, subject and object, their modifiers have to be found as 

they are required to find the subject and object of verbs occurring later. Any 

phrase which forms a complete linkage structure on its own and is connected to 

a verb by a óMVô or óTOô link is classified as a verb modifying phrase. 

Similarly, for subjects and objects, in fact for any noun, a phrase is said to 

modify them if it forms a complete linkage structure on its own and is 

connected to the noun by means of a "M" link. For instance, in the sentence 

ñHe is said to have killed him.ò it is not possible to deduce who is the subject 

for the verb said from the article alone. Such verbs are called óagentless 

passivesô. 

 

Example 1 (active main verb):- The sentences from the biomedical 

abstracts are parsed using the Link Grammar Parser (LGP). For example, if the 

input of the system is a clausal structure of the sentence: DMP-1 regulates 

DSPP during odontoblast differentiation. The LG parser gives the output in the 

form of links between words as shown in Figure (6-14). The output will be in 
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the form: (PROTEIN1, Interaction word, PROTEIN2) as explained in the 

following algorithm for Interaction Extractor.  

 

1. The main verb regulate is identified.  

2. The algorithm uses the links given by the LG parser to predict and obtains 

subject, object and modifying phrase as shown: Subject (S): DMP-1 Object 

(O): DSPP which are both protein names. Modifying Phrase (MV): 

odontoblast differentiation.  

3. The main verb is an interaction word. 

4. The system tries to extract interaction between subject, verb and object 

combination (S-V-O). 

5. Since the main verb is tagged as an interaction word, the interaction 

extractor uses the S-V-O composite role from to find and extract the 

following complete interaction:  [DMP-1, regulate, DSPP] 

 

 

 

 

Figure (6-14): The linkage given by the link grammar parser. 

 

Example 2 (modifying of the interaction word): - For extracting 

interaction between subject and modifying phrase combination let us consider 

another example for the sentence "OPN interacts with cell surface CD44 

through their ino termini." The LG parser gives the output in the form of links 

between words as shown in Figure (6-15). The boundaries of the subject and 

the modifying phrase are identified as explained in the following algorithm for 

Interaction Extractor.  

+---------------------------------------------------------pX----------------------------------+     

+                    |------------pJ--------------+-----pMV------|                                          +     

+                   |---------A---------+          |           +---sO---+--------sS---+-----dW-----+     

    |                      |                    |              |          |           |                             |                   | 

.a differentiation.n    .[?]1 regulates.v DSPP during odontoblast-WALL DMP-LEFT 

http://www.link.cs.cmu.edu/link/dict/section-X.html
http://www.link.cs.cmu.edu/link/dict/section-J.html
http://www.link.cs.cmu.edu/link/dict/section-MV.html
http://www.link.cs.cmu.edu/link/dict/section-A.html
http://www.link.cs.cmu.edu/link/dict/section-O.html
http://www.link.cs.cmu.edu/link/dict/section-S.html
http://www.link.cs.cmu.edu/link/dict/section-W.html
http://www.link.cs.cmu.edu/link/unknown-explanation.html
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1. The main verb interact is identified.  

2. The algorithm uses the links given by the LG parser to obtain subject, 

object and modifying phrase as shown below: Subject (S): ñOPNò and 

Modifying Phrase (MV): ñwith cell surface CD44ò.  

3. The main verb is an interaction word. The main verb óóinteract" is 

identified and the system tries to extract interaction between subject and 

Modifying Phrase combination (S-V-MP).  

4. Then the roles are found for each one of them, here subject is a protein 

name and modifying phrase is a protein name. 

5. Since the main verb is tagged as an interaction word, information extractor 

uses the S-V-M composite role to find and extract the following complete 

interaction: [OPN, interact, cell surface CD44].  

 

 

 

 

 

Figure (6-15): The linkage (parse) given by the link grammar parser. 

 

6.2.2The main verb is not an interaction word  

 

The system has searched for all occurrences of the interaction words where 

they occur as main verbs. If the main verb is not an interaction word each 

occurrence of the interaction word or one of its synonyms and hyponyms is to 

+-----------------------------------------------------------------pX-----------------------------------------+ 

+          |---------pJ------------+----------------------pMV-----------------|                                   +     

+         |----*uD--------+         |         +--------- -----sJ----------|                                   |            +     

+         | ----A-----+         |          |       +--GN---+--AN---+     +-pMV--+--sS---+-----dW------+     

    |                      |            |             |        |            |               |          |          |       |                |           | 

.n .[?].a termini[?]WALL OPN interacts.v with cell.n surface.n CD44 through their ino-LEFT 

 

 

 

 

 

http://www.link.cs.cmu.edu/link/dict/section-X.html
http://www.link.cs.cmu.edu/link/dict/section-J.html
http://www.link.cs.cmu.edu/link/dict/section-MV.html
http://www.link.cs.cmu.edu/link/dict/section-D.html
http://www.link.cs.cmu.edu/link/dict/section-J.html
http://www.link.cs.cmu.edu/link/dict/section-GN.html
http://www.link.cs.cmu.edu/link/dict/section-AN.html
http://www.link.cs.cmu.edu/link/dict/section-MV.html
http://www.link.cs.cmu.edu/link/dict/section-S.html
http://www.link.cs.cmu.edu/link/dict/section-W.html
http://www.link.cs.cmu.edu/link/unknown-explanation.html
http://www.link.cs.cmu.edu/link/unknown-explanation.html
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be one occurrence of the required interaction. So, by finding the subject, object 

as well as all available modifiers, almost all information about that instance of 

the event can be extracted from the document.  Now use the rules enumerated 

in the previous section to identify the subject and object (if present) of the verb 

as well as the modifiers of all three (verb, subject and object). 

 

The PIELG system will apply different approach if the main verb is not an 

interaction word or if there more than one interaction in the sentence. We need 

to detect the interaction word whatever its place in the sentence. Then the 

system predicts its subject, object and modifying phrase for each interaction 

word. Then the program starts to check if they are a protein name or not. And 

so on to extract the relation between two protein names in the sentence 

whatever its place. In the following section we will display various sentences 

and the output of the sentence. 

 

Example 1 (nested interactions):- For example for the sentence "DSPP 

binds DMP-1 and activates DPP". The LG parser gives the output in the form 

of links between words as shown in Figure (6-16). The extracted information 

will be [DSPP, bind, DMP-1] and [DSPP, activate, DPP] as explained in the 

following algorithm for Interaction Extractor.  

 

1. There are two interaction words. One is the main verb which is bind the 

other is "activate". All interaction words in the sentence whatever its place 

are identified.  

2. The algorithm uses the links given by the LG parser to predict and obtain 

subject, object and modifying phrase for each interaction word in the 

sentence. 
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3.  The Subject (S) is: DSPP. The Object (O) of the first interaction word bind 

is: DMP-1. The Object (O) of the second interaction word activate is: DPP. 

Both the Subject and the object of each interaction word is a protein name.  

4. The system tries to extract interaction between verb, subject and object. 

5. Since the main verb is tagged as an interaction word, the interaction 

extractor uses the S-V-O composite role from to find and extract the 

following complete interaction:  [DSPP, bind, DMP-1]. 

6. The second verb is tagged as an interaction word, the interaction extractor 

uses the S-V-O composite role from to find and extract the following 

complete interaction:  [DSPP, activate, DPP]. 

 

 

 

 

 

 

 

 

 

 

Figure (6-16): The parse given by the link grammar parser. 

 

Example 2:- Another example "BMP enhances the expression of DSPP by 

directly stimulating DGI". The LG parser gives the output in the form of links 

between words as shown in Figure (6-17). There are two interaction words the 

  +-- Ss- +-- Os-- +                      

  |     |      |                      

DSPP binds.v DMP - 1 and activates.v DPP  

 

 

  +------------ Ss----------- +--- Os-- + 

  |                         |       |  

DSPP binds.v DMP - 1 and activates.v DPP  

 

 

http://www.link.cs.cmu.edu/link/dict/section-S.html
http://www.link.cs.cmu.edu/link/dict/section-O.html
http://www.link.cs.cmu.edu/link/dict/section-S.html
http://www.link.cs.cmu.edu/link/dict/section-O.html
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output of the system in that case will be as follows [BMP, enhance, DMP-1] 

and [BMP, stimulate, DGI] as explained in the following algorithm for 

Interaction Extractor.  

 

1. There are two interaction words. One is the main verb which is enhance 

the other is stimulate. All interaction words in the sentence whatever 

their places are identified.  

2. The algorithm uses the links given by the LG parser to predict and 

obtain subject, object and modifying phrase for each interaction word in 

the sentence. 

3.  The Subject (S) of both interaction words is: BMP. The Object (O) of 

the first interaction word enhance is: expression of DSPP. The Object 

(O) of the second interaction word stimulate is: DGI. Both the Subject 

and the object of each interaction word is a protein name.  

4. The system tries to extract interaction between verb, subject and object. 

5. Since the main verb is tagged as an interaction word, the interaction 

extractor uses the S-V-O composite role from to find and extract the 

following complete interaction:  [BMP, enhance, DMP-1]. 

6. The second verb is tagged as an interaction word, the interaction 

extractor uses the S-V-O composite role from to find and extract the 

following complete interaction:  [BMP, stimulate, DGI]. 

 

 

 

 

Figure (6-17): The linkage (parse) given by the link grammar parser. 

 

  +-------------------------------------Xp--------------------------------------------------------------+ 

    |                                  +--------------MVp--------------------+                                            | 

    |                                  +-------Os--------+                          +-------Mgp------+                  | 

    +------Wd-----+---Ss--+           +---D*u--+---Mp--+-Js+   |     +----Em----+---Os---+     | 

    |                      |            |            |            |                |      |     |     |                |                |      | 

LEFT-WALL BMP enhances.v the expression.n of DSPP by directly stimulating.v DGI . 

.  

 

 

 

 

http://www.link.cs.cmu.edu/link/dict/section-X.html
http://www.link.cs.cmu.edu/link/dict/section-MV.html
http://www.link.cs.cmu.edu/link/dict/section-O.html
http://www.link.cs.cmu.edu/link/dict/section-M.html
http://www.link.cs.cmu.edu/link/dict/section-W.html
http://www.link.cs.cmu.edu/link/dict/section-S.html
http://www.link.cs.cmu.edu/link/dict/section-D.html
http://www.link.cs.cmu.edu/link/dict/section-M.html
http://www.link.cs.cmu.edu/link/dict/section-J.html
http://www.link.cs.cmu.edu/link/dict/section-E.html
http://www.link.cs.cmu.edu/link/dict/section-O.html
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6.2.3 Phrasal-prepositional Verbs Patterns  

 

Phrasal-prepositional verbs are a small group of multi-word verbs made from a 

verb plus another word or words. Many people refer to all multi-word verbs as 

phrasal verbs. There are three types of multi-word verbs: prepositional verbs, 

phrasal verbs and phrasal-prepositional verbs. Here, we are interested in 

phrasal-prepositional verbs. Phrasal-prepositional verbs are made of: Verb + 

adverb + preposition. Many verbs in English are followed by an adverb or a 

preposition (also called a particle), and these two-part verbs, also called phrasal 

verbs, are different from verbs with helpers. A phrasal verb can contain an 

adverb and a preposition at the same time. Again, the verb itself can have a 

direct object: 

¶ No direct object: The driver got off to a flying start.  

¶ Direct object: Onlookers put the accident down to the driverôs loss of 

concentration.  

 

Phrasal-prepositional verbs could be viewed as: Verb + Particle + Preposition 

Combinations (Phrasal Verbs + Prepositions). In this part we treated the case of 

preposition combinations. There are a small number of preposition 

combinations, such as by-of, from-to etc., which occur frequently within the 

clauses. Those prepositional combinations are used to distinguish the agent, the 

predicate and the theme of the interactions. To solve this problem, the system 

uses phrasal-prepositional verbs patterns to find agent, predicate, theme and 

action to extract the interaction, for both active and passive voices. This is an 

example of phrasal-prepositional verbs "Gene expression of TGF-beta1 was 

sharply down-regulated by LTA in odontoblasts." 
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Phrasal-prepositional verbs pattern Matching is the phase in an information 

extraction process that does the main job of finding interesting information bits 

from the output of the Link Grammar Parser and extracting that information for 

further processing. Depending on the complexity of the requested information 

model and the way in which the information is presented in the source data, the 

information extracted by this phase is combined and transformed to produce the 

final output of the information extraction process. For preposition based deep 

extraction the system uses a pseudo code. The algorithm is repeated for each 

sentence of the text. This code starts by finding pattern corresponding to the 

prepositional combinations in the string. If the prepositional combinations 

exists the pattern (predefined patterns), then extract protein - protein 

interactions using the pattern.  

 

Example 1:- This is an example of prepositional combinations in phrasal-

prepositional verbs "Gene expression of TGF-beta1 was sharply down-

regulated by LTA in odontoblasts." In this example, there is a preposition 

combination between by and in. There are two modifier phrases. The first one 

is LTA which is the subject of the passive voice. The second one is 

odontoblasts which is the modifier of the main verb. The system used the 

Phrasal-prepositional verbs pattern to distinguish the modifier of the verb 

from the subject of the passive voice. In this sentence, the main verb (action) is 

an interaction word which is down-regulated. The agent is LTA which is a 

protein name. The predicate is gene expression of TGF-beta1 which is also a 

protein name.  The theme is odontoblasts. Odontoblasts are cells lining the 

inner surface of the tooth. The predefined patterns for this sentence is the by-in 

pattern [(PROTEIN1 (predicate)) (is/are) or (was/were) (Interaction-Word 

(action)) by ... (PROTEIN2 (agent)) ... in... (Theme) ...]. The interaction 

extractor is able to extract the correct interaction (LTA, down-regulate, TGF-

beta1, in, odontoblasts). The final step in the interaction extraction module is 
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re-transformation. The main job of the re-transformer is to insert multiple 

words of protein names back after manipulation. 

 

Example 2:- The following sentence is in the passive voice "DSP is cleaved 

into DPP in odontoblasts." Here the main verb (action) is an interaction word 

which is cleaved. This sentence is an example of the into-in combination in the 

passive voice. Here there is no agent (subject of the active voice). The predicate 

is DSP which is a protein name.  The patient is DPP which is also a protein 

name.  The theme is odontoblasts. The predefined patterns for this sentence is 

the into-in pattern [(PROTEIN1 (predicate)) (is/are) or (was/were) (Interaction-

Word (action))...into ... (PROTEIN2 (patient))... in... (Theme)...].The 

interaction extractor is able to extract the correct interaction (DSP, cleaved, 

into, DPP, in, odontoblasts).  

 

6.2.4 Nominal form  

 

Biochemical interactions described in PubMed abstracts are rarely stated as 

simply as ñprotein A activates protein B.ò Various syntactic structures are used 

to compact several interactions, as well as other information, into a single 

sentence. Among the most frequently used are nominalization (converting a 

predicate to a noun phrase) and coordination (combining two or more 

predicates with coordinating conjunctions). Examples for nominalization are 

"interaction of, interaction between, the association of, "phosphorylation of, 

dephosphorylation of, activation of, and so on".  While many previous 

information extraction projects have concentrated only on the verbal forms of 

interactions, patterns for the nominal form in the case of óphosphorylateô 

interactions is needed. Here we present a series of examples to illustrate how 
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the rules operate and identify the desired information. The following examples 

illustrate nominalization.  

 

1. The theme can appear before óup-regulationô as in óDMP-1 up-

regulationô:-  

¶ When an argument (protein) appears before óup-regulation,ô this 

protein is likely to be the agent. Its role is normally indicated 

clearly; such as with the theme appearing after óup-regulationô as in 

the following pattern: [_AGENT_ up-regulation] NP by 

_THEME_].  

¶ Let us take the following sentence as an example :  

 

¶ "DMP-1 up-regulation by Cbfa in human dental pulp stem 

cells was activated" . 

o THE RESULT IS : [--Cbfa up-regulated DMP-1---- 

inð human dental pulp stem cells] 

¶ "The phosphophoryn activation of Smad1 implies this is a 

direct effect". 

o THE RESULT IS : phosphophoryn.n--activation.n--of-

-Smad1---- 

 

2. The agent and theme can also appear after óphosphorylationô as 

captured by the following pattern:  

¶ [Phosphorylation of _THEME_ (by _AGENT_)? (in /at _SITE_)]. 

The arguments are attached through the "of" and "by" prepositional 

phrases, where the latter identifies the agent role.  

¶ Let us take the following sentences as examples :  
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¶ "Phosphorylation of Smad1 by phosphophoryn was 

enhanced."  

o THE RESULT IS : [phosphophoryn--phosphorylated 

Smad ï1] 

¶ "The Up-regulation o    f DMP-1 promoter by Cbfa in HDPSC 

was activated". 

o THE RESULT IS : [--Cbfa -- Up-regulated -- DMP-1--

in --HDPSC -] 

3. The system is also able to identify dephosphorylation relations, as 

exemplified by the following nominalization example, from which we 

extract that DSPPðare dephosphorylaed by DMP-1. Let us take the 

following sentence as an example :  

¶ Dephosphorylation of DSPP by DMP-1 was carried out. 

o THE RESULT IS: [--DMP-1- dephosphorylated--- DSPP]. 

4. Another example as captured by the following pattern: [Nominalized 

interaction word between _THEME_ and _THEME_] . The 

arguments are attached through "between" prepositional phrase where 

they identify the theme role. Let us take the following sentences as 

examples :  

¶ Interactions between DMP1 and DSPPP provide that DMP1 

regulates the expression of the DSPP gene. 

o THE RESULT IS :DMP1--interactions.n----DSPPPð 

o THE second RESULT IS :DMP1--regulates---- expression of 

the DSPP gene.-- 

5. Another example as captured by the following pattern: [Nominalized 

interaction word of _THEME_ and _THEME] . The arguments are 

attached through the "of" prepositional phrase, where the latter identifies 

the theme role. Let us take the following sentences as examples : 

¶ Up-regulation of ITGA1 and CD44 has been reported separately. 

o THE RESULT IS : upregulation.n--of--ITGA1--and---CD44-- 
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CHAPTER 7 

RESULTS AND EVALUATION  

  

 

The first part of this chapter presents the results produced by the PIELG 

system. The remaining part presents the evaluation of the results of the PIELG 

system and an analysis based on the evaluation. The evaluation is divided into 

two phases. The first phase of the evaluation process for PIELG system was the 

evaluation of the information extraction performance by measuring the metrics 

Precision and Recall. And so, perform experimental evaluations with two other 

state-of-the-art extraction systems ï the BioRAT and IntEx comparison 

indicate that PIELG system achieves better performance. The second phase of 

the evaluation process for PIELG system was the evaluation of the PIELG 

system as compared to the visualizing software requirements. 

 

7.1 Results 

 

Surface Variations of the Same Information, IE can be seen as a process that 

reduces diverse surface forms in text into a fixed standard representation when 

they express the same information. Whether two forms in text express the same 

information or not depends on the perspectives or interests researchers have. 

For example, ñEntity1 interacts with non-polymorphic regions of Entity2ò can 

be considered to express the same information as ñEntity1 interacts with 

Entity2ò if one is interested in general protein-protein interaction regardless of 

their modes of interaction, but cannot be for others whose interests are the 

modes. In short, the application-specific nature of IE resides in this kind of 

perspective-dependency in the definition of information. 
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However, there are other types of surface variations that express the same 

information regardless of usersô perspectives, such as ñEntity1 activates 

Entity2ò and ñEntity2 is activated by Entity1ò. In some cases, a surface form 

can be considered to contain as its part the same information that another form 

expresses, regardless of usersô perspectives. ñEntity1 can activate Entity2ò vs. 

ñEntity1 activates Entity2ò are such examples. We mean that by a Link 

Grammar parser, a program which assigns standard forms to surface sentences, 

the same information of these kinds is represented in the same formats. In this 

format, all the surface forms in Table (7-1) share the same information ñEntity1 

activates Entity2ò as their part.  

 

What is important here is that computation from surface sentences to linkage 

representation can be carried out regardless of usersô perspectives and that 

linkages represented by single forms the same information that appear in very 

different sequences of words. Due to such reduction in complexity, we can 

expect that the construction algorithm of IE rules that works on linkage 

representations needs a much smaller training corpus than those working on 

surface word sequences. Furthermore, due to the reduction of surface diversity 

at the linkage representation level, an IE system with extraction rules at this 

level should show improved performance in terms of recall. 

 

7.1.1 Classification of treated forms 

 

Although many previous biomedical IE system focus on verbs which represent 

target events by themselves (i.e. ñactivateò, ñbindò), there are many cases that 

combinations of verbs, prepositions and certain nouns form proper IE patterns. 

We investigated and classified forms which are needed to extract interacting 

protein pairs to see what forms are required in addition to ones that consist of 

only one verb. We found nine classes based on constituents of the verbs. Table 

(7-1) shows Syntactical variation of the interaction words in various contexts. 
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The PIELG system covered nine classes based on the syntactical variation of 

the interaction words in various contexts as shown below: 

 

¶ Class (1) consists of the simplest sentence form, which includes only one 

verb and interacting proteins (entities). This kind of sentences was the main 

part of early works.  

 

¶ Class (2) includes the passive case where the order of the subject and the 

object is reversed.  

 

¶ Class (3) consists of the simplest sentence form, which includes only one 

verb and interacting proteins (entities) and a modifying phrase of the verb. 

   

¶ Class (4), includes verbs after auxiliary verbs.  

 

¶ Forms in class (5) include verbs in the past participle forms.  

¶ Class (6) is the infinitive case.  

¶ Ones in class (7) are based on nouns representing interaction themselves 

(ex. ñinteractionò, ñPhosphorylationò).  

 

¶ Class (8) includes the phrasal-prepositional verb Patterns. This case where 

there is a combination between the prepositions. 

  

¶ Class (9), includes the case where there are more than one interaction word 

in the sentence. In most cases, one of the verbs in the patterns is used to 

modify a noun phrase. 
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Table (7-1):- Linguistic variation of the interaction words in various contexts. 

 

Class (1):- Active main verb  

¶ Entity 1 recognizes and activates Entity 2. 

¶ Our results indicate that Entity 1 inhibits  the activated Entity 2. 

¶ Entity 1 activates Entity 2 and binds Entity 3. 

¶ Entity 1 up-regulates the expression of Entity 2. 

¶ Entity 1 prevents the decrease of Entity 2 and inhibits Entity 3. 

Class (2):- Passive      

¶ Entity 2 is activated by Entity 1. 

¶ The expression of Entity 1 is induced by Entity 2 in primary cultured 

dental pulp cells not in calvaria osteoblasts. 

¶ A gene encoding Entity 1 is processed into two proteins Entity 2 and 

Entity 3. 

Class (3):- Modifying phrases of verbs 

¶ Both Entity1 and Entity 2 interact with cell surface Entity 3 through 

their amino termini. 

¶ Entity 1 associates with the Entity 2. 

¶ Entity 1 consists of Entity 2 and Entity 3. 

¶ Entity 1 binds strongly to Entity 2. 

¶ Entity 1 is able to bind specifically with the Entity 2. 

Class (4):- After an Auxiliary Verb   

¶  

¶ Entity 1 may bind large amount of Entity 2. 

¶ Entity 1 must be proteolytically processed to form these two Entity 2 

proteins. 

¶ The sites of Entity 1 may also contain Entity 2. 
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Class (5):- Past particle   

 

¶ Entity 1 activated Entity 2. 

Class (6):- Infinitive  

¶ Entity 1 is able to inhibit Entity 2. 

Class (7):- Nominalization 

¶  

¶ The Up-regulation of Entity 1 by Entity 2 in Entity 3 was activated.  

¶ Entity 1 up-regulation by Entity 2 in Entity 3 was activated.  

¶ Dephosphorylation of Entity 1 by Entity 2 was carried out. 

¶ The phosphophoryn activation of Entity 1 implies this is a direct effect . 

¶ Phosphorylation of Entity 1 by Entity 2 was enhanced . 

¶  

Class (8):- Phrasal-prepositional Verbs Patterns  

¶  

¶ Entity 1 was expressed in Entity 2. 

¶ Entity 1 was expressed by Entity 2 throughout Entity 3 in the Entity 

4 . 

¶ Entity 1 was performed for Entity 2. 

¶ Entity 1 is primarily synthesized as Entity 2 . 

¶ Entity 1 is cleaved into Entity 2 and Entity 3 in Entity 4.  

¶ Entity 1 is associated with mutations in Entity 2. 

¶ Entity 1 is probably regulated by Entity 2 during dentinogenesis . 

 

¶ Class (9):- Nested interactions  

¶ Entity 1 signals Entity 2 by directly stimulating Entity 3. 

¶ Entity 1 prevents the decrease of Entity 2 and inhibits Entity 3.  
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7.2 Evaluation 

 

The evaluation process for the PIELG system is divided into two phases. The 

first phase of the evaluation process for PIELG system is the evaluation of the 

information extraction performance by measuring the metrics Precision and 

Recall. Then, experimental evaluations with two other state-of-the-art 

extraction systems ï the BioRAT and IntEx indicate that PIELG system 

achieves better performance. The second phase of the evaluation process for 

PIELG system is the evaluation of the PIELG system as compared to the 

visualizing software requirements set in chapter 9. 

 

7.2.1The First Phase of the Evaluation Process 

 

Information extraction systems are evaluated on the basis precision and recall 

measures. Precision and Recall for PIELG system are calculated using the 

equations 7.1 and 7.2. Then, we perform experimental evaluations with two 

other state-of-the-art extraction systems ï the BioRAT and IntEx. Information 

Extraction researchers can use their systems to extract protein-protein 

interactions, and then compare these with the records in protein- protein 

interactions databases like: DIP, BioGRID
17

   and so on.  Each record of the 

database has a pair of proteins that interact with each other. Each protein 

defined with entry keys to different protein databases. And so, in our evaluation 

phase we choose BioGRID database.  

 

7.2.1.1 Algorithm  

 

First, we evaluate our system by selecting pairs of proteins which are known to 

be interacting with each other from BioGRID, the protein-protein interaction 

                                                           

17
 http://www.thebiogrid.org/ 
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databases. We choose six queries currently considered to have applications in 

dental medicine: osteopontin (SPP1), CD44 molecule (CD44) (Indian blood 

group), Dentin matrix acidic phosphoprotein; dentin matrix protein-1 (DMP-

1), Collagen, type I; alpha 1 (COL1A1), decorin (DCN), biglycan (BGN). Then 

we look up their interaction properties using BioGRID database. Then, we send 

those six queries to PubMed separately retrieving 30 abstracts. After manually 

reviewing all these abstracts, we found that 89 (82%) among them are correct.  

 

The second queries are arbitrary pairs of proteins. Then, we evaluate our 

system by determining pairs of unknown proteins. We didn't know their 

interaction properties. The proposed system starts to extract all the information 

about interaction properties of both proteins from the linkage representations of 

the retrieved abstract. Then we evaluated the obtained interactions by referring 

to BioGRID. Then we start to compare their interaction properties to measure 

the metrics Precision and Recall. Then, we perform experimental evaluations 

with two other state-of-the-art extraction systems ï the BioRAT and IntEx. 

 

7.2.1.2 Recall Analysis 

 

Recall is a measure of sensitivity of the system, giving an account of how often 

the system is able to extract the right results. It is calculated as the ratio of true 

positives to the sum of true positives and false negatives. The true positive is 

the interactions extracted correctly. The false negative is the interaction 

extracted incorrectly. The summation of the true positive and false negative is 

the total interactions present in the text.  

 

 

                                                                                                                 (7.1) 

 

|in textpresent  nsInteractio |

|correctly extracted nsInteractio |
 =Recall
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For recall comparison with BioGRID database, we compared our extracted 

results with BioGRID entries manually. If an interaction (both the protein 

names) matches with a BioGRID entry for a given abstract, we take this as 

óMatchô. If no BioGRID entry matches an extracted interaction for a given 

abstract, then we take it as óNo Matchô. These numbers are given in Table (7-

2). We have 250 interactions as matches and it gives a recall of 47.4%. Low 

figure for recall is due to the fact that BioGRID database has interactions from 

both abstract and full text of the paper, and for our evaluation we extracted 

interactions only from abstracts. 

 

Table (7-2): Recall of PIELG when compared with BioGRID database 

 

 

 

 

 

 

 

Like BioRAT and IntEx, We manually re-analyzed these records with no 

reference to BioGRID but instead we counted how many of PIELGôs 

predictions were correctly extracted from the text. Table (7-3) shows the recall 

from these abstracts by PIELG , namely 47.4%, which is much higher than 

BioRAT (20.31%) and IntEx (26.94%). 

 

 

 

 

 

 

 

PIELG  Cases Percent % 

Match 250 47.4% 

No Match 277 52.56% 

Totals 527 100.00 
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Table (7-3): Recall comparison of IntEx and BioRAT from 229 abstracts when 

compared with BioGRID database 

 

 

 

7.2.1.3 Precision Analysis 

 

The Precision value of a system is a measure of the specificity of the system. It 

gives an idea of the correctness of the system by measuring the number of 

times the results are extracted correctly in comparison with the total number of 

results.  

 

                                                                                                                      (7.2) 

                                                                                                                       

 

We evaluated precision of extracted interactions manually, and we also 

compared these interactions with BioGRID database. A total of 399 

interactions were extracted from 229 abstracts and each one of the interactions 

was manually checked for correctness. Out of 399 interactions, we found 250 

of these as "Match" with BioGRID entries for the same abstract. Table (7-4) 

shows these results. Table (7-5) shows the precision from these abstracts by 

PIELG, 62. 65%, which is a bit higher than BioRAT (55.07%) and but lower 

than IntEx (65.66%). 

 

Recall 

Results 

PIELG  IntEx  BioRAT 

Cases Percent % Cases Percent % Cases Percent % 

Match 250 47.4% 142 26.94 79 20.31 

No Match 277 52.56% 385 73.06 310 79.69 

Totals 527 100.00 527 100.00 389 100.00 

| extracted nsInteractio |

|correctly extracted nsInteractio |
 =Precision 
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Table (7-4): Precision results for PIELG system, when compared with 

BioGRID database. 

 

 

 

 

 

 

Table (7-5): Precision comparison of IntEx and BioRAT from 229 abstracts 

 

 

 

7.2.1.4 The corpus  

 

The first phase of the evaluation process for PIELG system was performed on 

the selected corpus. The scope of our experiments is limited to abstracts 

describing human protein function. The corpus of the PIELG is selected in 

order to evaluate the proposed protein-protein interaction validation method. 

This corpus is selected to be about proteins currently considered to have roles 

in dentine formation process and involved in dentinogenesis. 

 

 Amounts of the non-collagenous proteins in dentin; decorin (DCN), biglycan 

(BGN) , osteonectin (SPARC), osteocalcin, osteopontin ( SPP1), bone 

sialoprotein, and Dentin matrix protein-1 (DMP-1), which are detected in the 

 
PIELG compared with  BioGRID 

Cases Percent % 

Match 250 62. 65% 

Totals 399 100.00 

Precision 

Results 

PIELG  IntEx  BioRAT 

Cases Percent % Cases Percent % Cases Percent % 

Correct 250 62. 65% 142 35.58 239 55.07 

Incorrect 149 47.45% 257 34.34 195 44.93 

Totals 399 100.00 399 100.00 434 100.00 

http://www.thebiogrid.org/SearchResults/summary/112560
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bone matrix, are also found in the dentin.  However, two extracellular matrix 

proteins have been shown to be specific for the dentin matrix: the Dentin 

Sialoprotein (DSP) and the Dentin Sialophosphoprotein (DSPP). Furthermore, 

dentin is a reservoir of growth factors such as Transforming Growth Factor 

Beta (TGF3), Bone Morphogenetic proteins (BMPs), and Fibroblast Growth 

Factors (FGFs), since these molecules are captured in the dentin matrix  

  

7.2.1.5 Results for the first evaluation step 

 

In The first step we evaluated our system by selecting pairs of proteins which 

are known to be interacting with each other from BioGRID. The result of the 

first step is that our system has extracted successfully that osteopontin (SPP1), 

interacts with CD44 molecule (CD44). Dentin matrix acidic phosphoprotein; 

dentin matrix protein-1 (DMP-1) interacts with CD44 molecule (CD44). 

Collagen, type I; alpha 1 (COL1A1) interacts with decorin (DCN), biglycan 

(BGN) and CD44 molecule (CD44). Also we notice that Dentin 

sialophosphoprotein (DSPP) consists of two proteins Dentin 

phosphoprotein (DPP) and Dentin sialoprotein (DSP). 

 

For the second queries which are arbitrary pairs of proteins the system 

downloaded abstracts related to that pairs of proteins. The selected corpus 

consists of 229 abstracts out of 1000 sentences, including abstract titles, with 

annotated proteins and interactions. Those 1000 sentences are sentences which 

contain one pair of proteins and one interaction word. If a sentence includes 

more than one interaction, all interactions are counted as answers. Additionally, 

the presented system tried to extract all.  The parser processed 880 sentences, 

and did not process 120 sentences. The percentage of parsed sentences is 88%. 

The percentage of failed sentences is 12%. After lexicon expansion, the parser 

could parse additional 89 sentences, and only 31 of 120 sentences are left out. 

The parser success rate is higher after personal name conversion and 
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transformation phases. And so, the percentage of failed sentences becomes 

1.2%.  

 

The extracted interactions correspond to 229 abstracts from the PubMed. Using 

abstracts IDôs (PubMed IDôs) of these 229 abstracts; we downloaded 527 

records form BioGRID
18

 database those interactions represented in the 229 

abstracts. BioGRID database entries were downloaded as a flat file from. 

PIELG system extracted 399 interactions from these 229 abstracts. Among of 

those 399 interactions 250 interactions are extracted correctly (matched 

BioGRID). For fair comparison, we have also limited our protein name 

dictionary used for tagging genes to the iHOP
19

  entries. 

 

 

The extracted interactions were compared with BioGRID entries manually.  If 

an interaction extracted by PIELG is not found in BioGRID, it can be that (a) it 

is a false-positive example, reducing the precision of PIELG; or (b) the 

interaction is missing from BioGRID. The latter case consists of interactions 

that are mentioned in papers, but have not been added to BioGRID. We 

manually re-analyzed these records with no reference to BioGRID but instead 

we counted how many of PIELGôs predictions were correctly extracted from 

the text. The results of the first phase of the evaluation process gives a rate of 

recall and precision of extraction by PIELG are 47.4% and 62. 65%. BioGRID 

contains protein interactions from both abstracts and full text. Since our 

extraction system was tested only on the abstracts, the system missed out on 

some interactions that were only present in the full text of the abstract. 

 

 

                                                           

18
 http://www.thebiogrid.org/ 

19
 http://www.ihop-net.org 

http://www.thebiogrid.org/
http://www.thebiogrid.org/
http://www.ihop-net.org/
http://www.ihop-net.org/
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7.2.1.6 Error Analysis 

 

A detailed analysis of the sources of all types of errors associated with all the 

protein-protein interaction extraction processing stages by PIELG system is 

shown in Figure (7-1),.Different sources of errors identified are: Link Grammar 

Parse, Protein Name Tagging, Interaction Word (Iword) tagging, Interaction 

Extractor and Preprocessing sentences for Link Grammar Parser. For each error 

occurred, we identified its source and increased its quota toward error count. 

As seen in Figure (7-1), protein name tagging is prime source of most of the 

errors (almost 45%). To improve protein name tagging better a named entity 

recognition module is needed. Most of the other sources of error are between 

5% - 10%, but they need some improvements too. 

 

Among others, the number of errors generated in interaction extraction stage is 

the biggest. The reason is that due to the complicity of the protein interaction 

expression it is rather difficult to compile the appropriate extraction rules and, 

therefore, many interactions are missed out.  

 

Figure (7-1): Analysis of different types of errors encountered. 
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7.2.1.7 Link Grammar Parser Errors  

 

The errors generated in link grammar parsing because Link Grammar Parser 

itself may make some mistakes. For example, when dealing with too long 

sentences Link Grammar Parser will get into panic model in which the parser 

can parse even very long sentences quickly, but with considerably reduced 

accuracy. For example the sentence: DSPP is an extracellular matrix protein 

that is cleaved into DSP and DPP with a highly restricted expression pattern in 

tooth and bone. It is a too long ambiguous sentence.  

 

Other reasons of parsing errors or failures may be for example, failure to 

recognize and correctly assign categories to all words in a sentence. These 

errors are caused by the presence of domain-specific concept notations 

including residue substitutions, chromosome positions, concentrations, cell line 

names, measurements of various parameters, etc.  

 

For example the sentence: COL1A1, BSP, DMP1, the marker for odontoblast 

DSPP and DSP were detected in these cells by immunohistochemistry RT-PCR 

and in situ hybridization. This sentence conteins many domain-specific concept 

notations as immunohistochemistry, and situ hybridization which are not 

familiar to the lexicon of the Link Grammar Parser. A significant portion of 

these terms can be described using regular expression formalism which is 

implemented in the transformation phase.  Lexicon errors constitute the major 

portion of parsing failures. Lastly, parsing failures may occur due to the 

incomplete grammar. 

 

Ambiguity of the syntactic processing is a critical issue in practical applications 

of NLP systems. Due to the general ambiguity of syntactic knowledge, each 

sentence usually yields a number (sometimes very large) of potential sentence 

structures, but only one of them is generally considered correct. The source of 
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ambiguity is investigated on parsed sentences by observing the structure of 

each alternative parse tree and correlating it with the compositional structure of 

the corresponding sentence. This analysis revealed that the major sources of 

ambiguity are variations in prepositional phrase attachment, and structures of 

coordinate conjunctions. For example the sentence: DSPP and DMP-1 was 

induced by TGF-beta3 in primary cultured dental pulp cells. Another example 

the sentence DSP has enhanced DSPP.  

 

The parser gives two linkage representations. The first representation considers 

enhanced DSPP is the object of the verb has while enhanced here is an 

adjective. The second linkage representation considers the sentence in past 

participle tense so DSPP is the object of the verb enhanced.  

 

7.2.1.8 Discussion about the First Phase  

 

The heart of the system lies in the working of the rules for prediction of 

subject, object and their modifiers. The rules for the PIELG system are derived 

by running the link parser on abstracts of scientific papers including abstract 

and titles. Our experimental results show that the PIELG system presented here 

achieves better performance without the need of manual pattern creation (by 

user) which is required for these other systems . 

 

The highly technical terminology and the complex grammatical constructs that 

are present in the biomedical abstracts make the extraction task difficult, Even 

a simple sentence with a single verb can contain multiple and/or nested 

interactions. Thatôs why PIELG is based on a deep parse tree structure 

presented by the Link Grammar and it considers a thorough case based analysis 

of contents of various syntactic roles of the sentences as well as their 

linguistically significant and meaningful combinations.  
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Most missed interactions are caused by semantic problems. Currently it is not 

necessarily the case that more powerful grammars lead to better biochemical 

interaction extraction. Until recently, most Information Extraction systems for 

mining semantic relationships from texts of technical sublanguages avoided full 

parsing [82]. Semantic Parsers for English language will be more useful and 

meaningful for the extraction tasks compared to Syntactic parsers. But 

constructing semantic parser is a difficult task and this parser will be more 

domains dependent. It is important to note, that using the Link Grammar in the 

proposed information extraction system makes it applicable to a large number 

of areas ranging from pathway analysis to clinical information and protein 

structure-function relationships. The time took for full parsing is also a problem 

for Information Extraction systems.  

 

Although we have demonstrated that the Link Grammar Parser has the potential 

to be a useful part of a system for extracting biochemical interactions, its 

current limitations are also evident, as highlighted by the moderate 

performance gain in our experiment. A list of further developments that would 

enhance the importance of link grammar parsing in the biomedical domain is 

listed below. 

 

1. Extending its dictionary to include technical terms.  

2. Extending its unknown-word-guessing rules, so that, for example, the 

parser can guess that a word ending with -ase is a protein name and not 

a verb. 

3. Developing other algorithms, such as template matching, to further 

process link paths extracted from the parser's output. 

4. Modifying the grammar of the parser. 
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The PIELG system success to extract detailed contextual attributes of 

interactions by interpreting modifiers like: location/position modifiers (in, at, 

on, into, up, overé), agent/accompaniment modifiers (by, withé), purpose 

modifiers (foré), and theme/association modifiers (of...). Finally, several 

issues can make extracting interactions and relationships as a difficult job due 

to: 

 

1. The task involves free text ï hence there are many ways of stating the 

same fact.  

2. The genre of text is not grammatically simple.  

3. The text includes a lot of technical terminology unfamiliar to existing 

natural language processing systems. 

4. Information may need to be combined across several sentences. 

5. There are many sentences from which nothing should be extracted. 

6. The abstracts of some papers are also used to take into consideration 

technical style of writing.  

 

7.2.2 The second Phase of the Evaluation Process 

 

PIELG can be augmented with various means of graphical packages. For 

further evaluation of the PIELG system, it is augmented with a graphical 

package for extracting protein interaction information from sequence databases. 

We used Cytoscape
20

 which is a good tool for drawing directed graphs that can 

be adapted for drawing interaction extracted. Cytoscape is a graphical layout 

package developed for directed graphs. The augmentation process is done for 

two reasons. The first reason is to visualize the extracted interactions. The 

second reason is to evaluate the extracted interaction by drawing the pathways 

                                                           

20
 http://www.cytoscape.org/ 

http://www.cytoscape.org/
http://www.cytoscape.org/
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for the extracted interaction. Then we compare those pathways with the stored 

pathways in Cytoscape. 

 

Second evaluation for the PIELG system was done to extract relationships 

between interactions extracted from a collection of sentences (such as one 

interaction stimulating or inhibiting another) to construct (Protein Interaction 

Pathways) from abstracts. This could be done by directed graphs that are used 

for visualization of the extracted pathways. 

 

7.2.2.1 Cytoscape 

 

Cytoscape is an open source bioinformatics software platform for visualizing 

molecular interaction networks and integrating these interactions with gene 

expression profiles and other state data. Cytoscape was initially made public in 

July, 2002 (v0.8); the second release (v0.9) was in November, 2002. and v1.0 

was released in March 2003.  Version 1.1.1 is the last stable release for the 1.0 

series.  Latest version of Cytoscape is 2.6.0.  Cytoscape Core developer team 

continue to work on this project and near future, they are going to release next 

major version, Cytoscape 3.0. It will be more modularized and scalable version 

of Cytoscape.  

 

Although Cytoscape was originally designed for biological research, now it is a 

general platform for complex network analysis and visualization.   Cytoscape 

core distribution provides a basic set of features for data integration and 

visualization.   Additional features are available as plugins. Plugins are 

available for network and molecular profiling analyses, new layouts, additional 

file format support, scripting, and connection with databases. Plugins may be 

developed by anyone using the Cytoscape open API based on JavaÊ 

technology and plugin community development is encouraged. Most of the 

plugins are freely available.  

http://www.cytoscape.org/community.php
http://www.cytoscape.org/plugins/index.php
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7.2.2.2 Algorithm  

 

The visualization process (Drawing Pathway Diagram) for a specific protein 

composed of three stages for Creating Networks using Cytoscape: 

 

1. Creating an empty network and manually adding nodes and edges. The 

first stage is to create an empty network and manually add nodes and 

edges.  We gathered the extracted interaction prosperities for a specific 

protein from the extracted interactions by the PIELG system. We used 

Cytoscape to draw Networks for the extracted interactions. Proteins are 

represented by nodes, and interactions (or other biological relationships) 

are represented by edges between nodes. For compactness, a gene also 

represents its corresponding protein. Nodes may also be used to 

represent compounds and reactions (or anything else) instead of genes.  

 

2. Importing pre-existing formatted network files. The second stage is 

retrieving the interaction prosperities of the previously mentioned 

protein from BioGRID database. The interactions of a specific protein 

are downloaded as a flat file from BioGRID database. Then we use 

Cytoscape to Creating Networks by importing pre-existing, formatted 

network files. Network files can be specified in any of the formats. The 

network file can either be located directly on the local computer, or 

found on a remote computer. Here we Load Networks from Local 

Computer. We retrieve the interaction prosperities of a specific protein 

from BioGRID database. The interactions of a specific protein are 

downloaded as a flat file from BioGRID database. Then we use 

Cytoscape to Creating Networks by importing pre-existing, formatted 

network files. 
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3. Importing networks from Web Service. The third stage is to use 

Cytoscape to Creating Networks by importing networks from Web 

Service. From version 2.6.0, Cytoscape has a new feature called Web 

Service Client Manager. Users can access various kinds of databases 

through this function. A web service is a standardized, platform-

independent mechanism for machines to interact over the network. 

These days, many major biological databases publish their system with 

web service API. This enables developers to write a program to access 

these services. Cytoscape core developer team has developed several 

sample web service clients using this framework. Currently, Cytoscape 

supports the following web services: 

 

¶ IntAct: an open source database of protein interaction data, hosted 

at EMBL-EBI. 

¶ Pathway Commons: an open source portal, providing access to 

multiple integrated data sets, including: Reactome, IntAct, 

HPRD, HumanCyc, MINT, the MSKCC Cancer Cell Map, and 

the NCI/Nature Pathway Interaction database. 

¶ NCBI Entrez Gene: a public database of genes, including 

annotation, sequence and interactions.  

 

We retrieve Protein-Protein Interaction Networks from NCBI Entrez Gene.  

 

7.2.2.3 Examples implementing the three steps 

 

The visualization process (Drawing Pathway Diagram) for Collagen, type I 

(COL1A1), transforming growth factor, beta 1 (TGFB1) and DMP-1 will be 

represented as follows.  .   
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7.2.2.3.1 Collagen, type I (COL1A1)  

 

The first stage: - Gathering the extracted result of the PIELG system for 

Collagen, type I (COL1A1) we found that COL1A1 interacts with several 

proteins as shown in Table (7-6). 

 

Table (7-6): Protein interactions identified by PIELG for COL1A1 

 

Name  Description 

DCN  decorin 

TGFBI   transforming growth factor, beta-induced, 68kDa; 

SPARC  osteonectin 

BGN  biglycan 

MMP9  matrix metallopeptidase 9  

MMP2  matrix metallopeptidase 2  

CD44  CD44 molecule (Indian blood group) 

 

 

We used Cytoscape to create an empty network and manually add nodes and 

edges. We draw Networks for the extracted interactions of Collagen, type I 

(COL1A1). Proteins are represented by nodes, and interactions (or other 

biological relationships) are represented by edges between nodes. The final 

network is represented in Figure (7-6) 

 

http://www.thebiogrid.org/SearchResults/summary/108002
http://www.thebiogrid.org/SearchResults/summary/112903
http://www.thebiogrid.org/SearchResults/summary/112560
http://www.thebiogrid.org/SearchResults/summary/107102
http://www.thebiogrid.org/SearchResults/summary/110461
http://www.thebiogrid.org/SearchResults/summary/110457
http://www.thebiogrid.org/SearchResults/summary/107398
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Figure (7-1): COL1A1 Network generated by creating network manually. 

 

The second stage: - retrieving the interaction prosperities of Collagen, type I 

(COL1A1) from BioGRID database. The interactions of Collagen, type I 

(COL1A1) are downloaded as a flat file from BioGRID database. Then we use 

Cytoscape to Create Networks by importing pre-existing, formatted network 

files.  COL1A1 was identified with 51 protein interactions as shown in 

Table (7-7). COL1A1 pathways by Importing Fixed-Format Network Files will 

be explained in Figure (7-2). 

 

Table (7-7): Protein interactions of COL1A1 identified by BioGRID 

Name  Description 

ITGA2   Integrin, alpha 2  

DCN  decorin 

TGFBI   transforming growth factor, beta-induced, 68kDa; 

IGFBP3  Insulin-like growth factor binding protein 3 

http://www.thebiogrid.org/SearchResults/summary/109880
http://www.thebiogrid.org/SearchResults/summary/108002
http://www.thebiogrid.org/SearchResults/summary/112903
http://www.thebiogrid.org/SearchResults/summary/109707
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ITGA5   Integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 

SPARC  osteonectin 

TXN  thioredoxin 

BGN  biglycan 

TMPRSS6  transmembrane protease, serine 6 

MMP9  matrix metallopeptidase 9  

C1QR1  CD93 molecule 

MMP2  matrix metallopeptidase 2  

PDGFB  platelet-derived growth factor beta polypeptide  

CD44  CD44 molecule (Indian blood group) 

P4HB  procollagen-proline, 2-oxoglutarate 4-dioxygenase  

MATN2   matrilin 2 

FGF7  fibroblast growth factor 7|keratinocyte growth factor 

PRELP  proline/arginine-rich end leucine-rich repeat protein 

VWF  coagulation factor VIII VWF; von Willebrand factor 

COL7A1  collagen, type VII, alpha 1  

CD36  CD36 molecule (thrombospondin receptor) 

PAK1  p21/Cdc42/Rac1-activated kinase 1  

THBS1  thrombospondin-1p180; thrombospondin 1 

DDR2  discoidin domain receptor family, member 2 

NID  enactin|entactin; nidogen 1 

FN1  fibronectin 1 

http://www.thebiogrid.org/SearchResults/summary/109884
http://www.thebiogrid.org/SearchResults/summary/112560
http://www.thebiogrid.org/SearchResults/summary/113146
http://www.thebiogrid.org/SearchResults/summary/107102
http://www.thebiogrid.org/SearchResults/summary/127898
http://www.thebiogrid.org/SearchResults/summary/110461
http://www.thebiogrid.org/SearchResults/summary/116580
http://www.thebiogrid.org/SearchResults/summary/110457
http://www.thebiogrid.org/SearchResults/summary/111181
http://www.thebiogrid.org/SearchResults/summary/107398
http://www.thebiogrid.org/SearchResults/summary/111073
http://www.thebiogrid.org/SearchResults/summary/110317
http://www.thebiogrid.org/SearchResults/summary/108543
http://www.thebiogrid.org/SearchResults/summary/111540
http://www.thebiogrid.org/SearchResults/summary/113289
http://www.thebiogrid.org/SearchResults/summary/107691
http://www.thebiogrid.org/SearchResults/summary/107386
http://www.thebiogrid.org/SearchResults/summary/111095
http://www.thebiogrid.org/SearchResults/summary/112915
http://www.thebiogrid.org/SearchResults/summary/110975
http://www.thebiogrid.org/SearchResults/summary/110876
http://www.thebiogrid.org/SearchResults/summary/108621
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Figure (7-2): COL1A1 Network generated by Importing Fixed-Format 

Network Files 

 

The Third stage: - using Cytoscape to Creating Networks by importing 

networks from Web Service. We will retrieve Protein-Protein Interaction 

Networks from NCBI Entrez Gene. NCBI web service client uses this section 

to build networks. Network generated from Entrez Gene data: The network 

below Figure (7-3) is generated from interaction data matching the keyword 

Homo sapiens. Edge color represents data source type (BIND, BioGRID, or 

HPRD). NCBI client extracts interaction data from a huge dataset,  

 

Downloading Pathways and Interaction Networks:- 
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Figure (7-3): COL1A1 Network generated by Entrez Gene data 

 

 


