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ABSTRACT 

 

 
 

Magnetic resonance imaging (MRI) is a versatile imaging modality that allows the 

imaging of both anatomy and function. Using this technique, true 3D imaging and 

angiography as well as functional and spectroscopic imaging are possible in clinical 

practice. In order to attain the best spatial and temporal resolutions in MRI data 

acquisition, several techniques have been proposed to efficiently utilize the imaging 

hardware. Among those techniques is the use of spiral and radial sampling for image 

acquisition. In this technique, the k-space (frequency domain) of the image is sampled 

nonuniformly in order to collect the information required to reconstruct the image. 

Several methods have been proposed to solve the inverse problem. Even though some of 

them are currently used in routine studies, the optimality of these methods have not been 

shown. Moreover, their performance under varying signal-to-noise ratio levels have not 

been demonstrated or discussed in the literature.  

A new method is derived for the image reconstruction problem in MRI from 

nonuniformly sampled k-space. The new approach tries to compute a super-resolution 

reconstruction based on the information available from the data. Efficient matrix 

computation techniques are used to solve this problem numerically to take advantage of 

the sparsity of the formulation to reduce the computational complexity of the new 

approach. The proposed method is developed theoretically and verified using both 

computer simulations as well as real data from a 1.5T MRI system. Results are analyzed 

both qualitatively and quantitatively and discussed in depth to assess the value of the 

proposed techniques for clinical use. The new method is also applied to reconstruct 

images degraded by patient motion which, in general, results in nonuniformity in the 

acquired k-space. The success of the proposed method shows its potential for practical 

implementation in clinical settings. 
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CHAPTER 1 

 

INTRODUCTION 

 

1. Introduction 
Accurate diagnosis in medical procedures has become widely attainable by the 

advent of the different medical imaging modalities. Among those, magnetic resonance 

imaging (MRI) is currently one of the most promising non-invasive diagnostic tools in 

medicine. In addition to its ability to produce anatomical images of remarkable detail 

and contrast, it can be used to visualize vascular structures, measure blood flow and 

perfusion, detect neural activation, and identify the metabolic information of different 

areas in the acquired images. 

 

Like other medical imaging modalities, MR images reflect the spatial distribution 

of certain tissue-dependent parameters. When a disease sets in, such parameters 

deviate from their normal values thereby allowing the detection of its location and 

spatial extent. Unlike CT, where the X-ray attenuation coefficient is the only physical 

property being imaged, three primary physical parameters can be manipulated in MRI, 

namely the proton density and the transverse and longitudinal relaxation times, T1 and 

T2. From this perspective, MRI is of superior performance for its ability to create 

images that reflect the effect of one of several parameters or different parameter 

combinations. That is, one might get T1-weighted, T2-weighted, or proton density 

images as well as combined parameters-weighted images. When this versatility is 

added to the volumetric acquisition capabilities of the technique, MRI stands out as a 

unique diagnostic tool in medicine. 

 

1.1. A Brief Overview of MRI Physics  

 

MRI is based on the effect of magnetic field on certain nuclei in the human 

tissues, particularly those containing an odd number of protons and neutrons which 
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gives a net charge. The main idea is that molecules are affected to different extents 

when they are placed in a magnetic field. Among many substances in the body, the 

hydrogen nuclei (protons) are the most useful from the imaging point of view. This is 

primarily due to the fact that the organic compounds constituting the human tissues 

are rich of hydrogen atoms which consequently yield high signal-to-noise ratios. 

Moreover, their presence in different amounts and distributions allows a clear 

distinction between the tissues if proton-based images are acquired [1].  

 

In nature, protons have what is called nuclear spin. That is, they are spinning 

around their axes the same way Earth turns around its own axis. Since a spinning 

charged particle generates an electromagnetic field, spinning nuclei will have 

magnetic dipole moments. In other words, each nucleus can be thought of as a tiny bar 

magnet that is oriented in a random direction in the absence of outside influences. In 

this state, the statistical vector sum of all dipole moments is zero. However, in the 

presence of a strong magnetic field, such tiny bar magnets tend to align along the 

direction of that field. In such case, the vector sum of all magnetic dipole moments 

per unit volume tends to have a non-zero value, which is usually referred to as the 

magnetization vector. It is noteworthy that the magnetization is a bulk property of the 

sample rather than a property of the individual spins [1,2]. 

 

An important property of the magnetic dipole moments is that they precess. This 

means that each of these vectors has a fixed tail while its head is revolving, resulting 

in a wobbling motion. The frequency of precession w is related to the strength of the 

applied magnetic field, H, by the Larmor equation [1,2] given by, 

 

 .  w    (1.1) 

 

where γ is the gyromagnetic ratio, which is constant for a given nucleus and equals 

42.577 MHz/Tesla for the hydrogen nucleus. Different elements, even the different 

isotopes of the same element, exhibit significantly different gyromagnetic ratios. 
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As a result of the precession of magnetic dipoles, a radio-frequency (RF) signal is 

emitted from the precessing nuclei. This signal can be detected by a coil that is placed 

around the precessing nuclei. The strength of this radio-frequency signal is a direct 

function of the number of magnetic dipoles or equivalently to the number of nuclei in 

the uniform field.  

 

The number of spins that align with the magnetic field and generate the 

magnetization vector is a very small fraction of the total number of spins even under 

high magnetic fields. Specifically, this fraction is given by the Boltzmann ratio, which 

is a function of the magnetic field strength, absolute temperature, and quantum 

number. The magnetic field applied to align the spins is called the static field, and is 

usually chosen in the Tesla range (0.5-9 T) to allow for a reasonable value (range of 

parts per millions) of the Boltzmann ratio [1,2].  

 

 

1.2. Acquisition of MR Images and the k-Space 
 

In order to reconstruct an image in MRI, the imaged object has to be excited by an 

amount of energy via a radio frequency pulse. This causes the magnetization vector to 

tip from the z-axis, the initial position, toward the transverse plane. The tipping angle 

depends on the duration and strength of the RF magnetic field and the gyromagnetic 

ratio of the sample. When the spins relax, they re-emit the acquired energy in a form 

of radio frequency signal whose frequency and phase depend on the applied magnetic 

field. To correctly reconstruct the image, a unique correspondence between the signal 

emitted from a particular location within the object and its spatial location must be 

established. To achieve this, a gradient system must be used to generate a spatially-

varying and time-varying magnetic field within the sample.  

 

Two complementary procedures are commonly followed to apply the magnetic 

gradients. In the first one, a static gradient is applied along a given direction while the 

signal is being read. This is referred to as the readout gradient. In this case, the 

frequency of the magnetization is dependent upon the spatial position along the 
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gradient direction, which is called the frequency-encoding direction. In the second 

method, the gradient is applied as a sequence of pulses and is thereby called the 

gradient pulse. This means that the spins are phase shifted according to their locations 

and the strength of the gradient pulse. 

 

In the conventional Fourier imaging technique [1], a classical MRI imaging 

technique, an RF pulse is first applied thus the magnetization tips towards the x-y 

plane with a certain angle, usually π/2. Next, a gradient pulse is applied in the y-

direction, followed by a readout pulse in the x-direction and the measured signal, 

which represents a line of the data, is stored. The pulse sequence diagram of this 

operation is illustrated in figure 1.1. Then, after a recovery period, the cycle is 

repeated until the entire image samples are acquired. Stepping the gradient pulse 

slightly in each cycle is required to assign a different phase (code) for each line in the 

y- direction, which is thus referred to as the phase-encoding direction. The recovery 

period is required for the spins to return completely to their equilibrium status, which 

allows measuring a significant signal when the spins are re-excited with the next RF 

pulse. This recovery period takes a few seconds in conventional MRI techniques. It is 

noteworthy that after each of the π/2 RF pulses the spins attempt to dephase in the 

transverse plane thus reducing the measured signal. Therefore, in order to refocus the 

spins, a π RF pulse is applied midway between each measurement and the π/2 RF.  

 

Starting from the Bloch equation [1,3,4], which is a basic theory in MR and the 

one that approximately governs the dynamics of the spins, the measured MR signal 

was found [3,4] to be given by: 

 

   
 




 V rd
trif

ermts



 2

 (1.2) 

 

where t is the time at which the signal is sampled,  rm


 is the magnetic momentum 

amplitude of the spins, at spatial location r


,  rf


 is the precession frequency at that 

location and V is the imaged volume. The precession frequency at a certain location  
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Fig.‎1-1  Pulse Sequence Diagram of the conventional Fourier imaging. 'G' is 

abbreviation of Gradient and Gy(l) is the strength of the phase-encoding gradient 

during the acquisition of line ‘l’ in the k-space. 
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depends on both the applied static magnetic field 
0

B  as well as the magnetic gradient 

G


 as follows   و

 

     rGBrBrf



022 






 (1.3) 

 

If the gradient is time varying, the measured signal is given by, 

 

   
 


 

 V rd
dtrtG

e
tB

ermts



 )(0 

  (1.4) 

   
 


 

 V rd
dtrG

erm
tB

ets



 

0   (1.5) 

 

Dropping constant (position-independent) terms, 

 

    rd
dtrG

e
V

rmts




  

















  (1.6) 

 

Now define,  

 

    



d

t
Gtk 

02


  (1.7) 

 

We get, 

 

    rdrkie
V

rmtks
 

 2,  (1.8) 

Or, 

 

      tkkrmts


F  (1.9) 
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where  tk


 is the spatial frequency variable at time t. The above equation 

demonstrates that the measured signal is just the Fourier Transform of the spin 

distributions. Therefore, the acquired samples are points from the spatial frequency 

domain, which is commonly referred to as the k-space. The k-space variable  tk


 is a 

function in the time and the applied gradient. For the special case of fixed gradient 

vector, G, the variable K equals γG.t/2π where t is the period of applying the gradient. 

Therefore, traversing the k-space is made possible by either the gradient magnitude or 

the interval in which the gradient is on. However, the direction of the traverse is 

determined only by the gradient direction. Traversing the k-space using the 

conventional pulse sequence (figure 1.1) is shown in figure 1.2. 

 

 

 

 

 

 

 

 

 

 

Fig.‎1-2. Traversing of the k-space using conventional pulse sequence. The arrows 

indicate the progress in the time. 

 

 

 

1.3. Nonrectilinear Scanning Trajectories 

 

Form equation (1.7) it can been shown that the sampling trajectory in the k-space 

depends on the time variation of the applied magnetic gradient. In the simplest case, 

the gradient are time pulses and the samples are collected on a rectilinear grid. The 

fast Fourier transform (FFT) can then be used to efficiently reconstruct the image. If 

Ky 

Kx 

to 
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other non-rectilinear sampling scheme is used, use of the FFT is not possible unless 

the samples are first interpolated onto a rectilinear grid. This is called the gridding 

problem. Developing efficient algorithms for calculating the Fourier transform from 

nonuniform samples has attracted the research for a long period. 

 

Although rectilinear trajectories have the advantage of efficient reconstruction, 

several advantages can be obtained by using other non-rectilinear trajectories. One of 

the most important advantage of non-rectilinear trajectories is their inherent fast 

acquisition. It is possible to acquire the entire k-space in a single shot in trajectories 

like the echo-planar [7], spiral [5] or Lissajous [8] trajectories. Nonrectilinear 

trajectories requires less slew time and gradient power and the waveform of the 

gradient is  smoother. 

 

Another advantage is artifact-immunity of some of these trajectories. Some 

studies [5] showed the immunity of the spiral trajectory to flow artifacts. Center-out 

imaging methods such as projection-reconstruction and spiral MRI [5] have been 

shown to reduce motion artifacts. This is attributable in part to over-sampling of 

central k-space, which reduces artifact in a manner similar to multiple averaging in 

conventional imaging.  

 

One of the most widely used nonrectilinear sampling schemes is the spiral 

trajectory. Spiral scanning is accomplished by combining two increasing, oscillating 

gradients. Figure 1.3  depicts a round spiral coverage of k space and a gradient-echo 

version of a related imaging sequence using sinusoidal gradient waveforms. Practical 

implementations on conventional scanners frequently take advantage of interleaved 

techniques (i.e. segmented scanning) rather than emphasizing single-shot capabilities 

as  interleaving improves the SNR and reduce the gradient power. 
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                     A                                                                B 

Fig.‎1-3. Rapid spiral imaging. (A), Pathway through k space for a round spiral  

sequence. (B), Gradient-echo implementation of a corresponding imaging sequence

    

1.4. Motion Artifact 

 

Image artifacts are structures appearing in the image without any correspondence 

to actual structures in the imaged object. Their major cause is that the RF signal from 

a particular tissue voxel is misdirected and displayed in a wrong pixel location.  

 

Artifacts due to object motion are almost always encountered in MRI images. The 

longer the acquisition time the higher the possibility of the patient movements, either 

voluntary or otherwise, to distort the acquired images. Therefore, motion artifacts are 

most prominent in Fourier imaging where it takes several minutes to acquire the entire 

image [1]. One of the symptoms of motion artifacts is the blur, which makes it 

difficult to resolve small structures. Repetitive motion generates ghost-like replicas of 

the moving structures. These ghosts either add to or subtract from the image intensity 

of the underlying structures, thereby degrading the image contrast and reducing the 

detectability of lesions. Until recently, motion artifacts have limited the clinical 

usefulness of MRI in many clinical studies such as those of abdomen.   

 

 



 10 

1.5. Clinical Applications of MRI 

 

MRI has become a major diagnostic imaging modality with applications spanning 

virtually every part of the human body [3,6]. This is because it allows the acquisition 

of high spatial resolution images at any arbitrary orientation and the possibility of 

obtaining high resolution three-dimensional data sets within a reasonable amount of 

time. Furthermore, MRI has superior soft tissue discrimination as compared to the 

conventional X-ray modalities. MRI has proven successful in applications such as 

imaging of the musculoskeletal system, including the knee, shoulder, wrist, foot and 

ankle. The superb clarity of the images is due to the static nature of these structures, 

thereby eliminating the motion artifacts so common elsewhere in the body. Moreover, 

the small size of these structures makes them readily amenable to surface coils, which 

provide high SNR and spatial resolution. Perhaps more importantly, the normal 

absence of signal from bones, tendons or ligaments (because of the lack of free 

protons) provides sharp contrast for the presence of any signal within their structures 

due to abnormalities.  

 

The use of contrast agents has made abdominal and pelvic imaging important 

applications of MRI. Examples include spleen, pancreatic, and hepatic imaging for the 

evaluation of the neoplasia. For vascular hepatic disease, the role of MR is to identify 

occlusive disorders of the hepatic and portal veins where this is suspected but not 

detectable on alternate imaging. For example, not all instances of portal vein 

thrombosis are evident on conventional ultra-sound (US), which is a reflection of the 

threshold sensitivity of US to slow flow. However, when thrombosis is suspected, it is 

readily identified using MRI GRE imaging due to its high sensitivity to the magnetic 

susceptibility phenomenon of the deoxy-haemoglobin (highly concentrated in 

thrombus). Furthermore, MR plays a role in the diagnosis of metabolic hepatic disease 

because of its ability to detect the deposition of iron, and to a lesser extent, fat within 

the liver.  
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Another strongly emerging application is the so-called functional MRI in which 

the brain response to a certain stimulus is to be registered. The result is a map or even 

an evaluation of the brain functions. 

 

 

1.6. Thesis Objectives 

 

It has been shown that the use of non-rectilinear sampling trajectories, like in 

spiral and radial sampling, has many advantages, however, image reconstruction in 

this case becomes a serious one as we have to solve the inverse problem. Even though 

there exist many techniques that solve this problem and some of them are currently 

used in routine studies, the optimality of these methods has not been shown. In this 

thesis, a new solution is derived for the image reconstruction problem in MRI from 

arbitrary sampled k-space. The new approach tries to compute and achieve an 

accurate reconstruction based on the information available from the data. Efficient 

matrix computation techniques are used to solve this problem numerically to take 

advantage of the sparsity of the formulation to reduce the computational complexity 

of the new approach. In chapter 2, we review current solutions to the gridding 

problem and compare their performance from the viewpoint of the reconstruction 

accuracy as well as the reconstruction speed. In chapter 3, we propose an iterative 

gridding solution. The proposed solution is developed theoretically and verified using 

computer simulations as well as real data from a 1.5T MRI system. Results are 

analyzed both qualitatively and quantitatively and discussed in depth to assess the 

value of the proposed techniques for clinical use. Chapter 4 is devoted to an 

application of the new gridding method to the reconstruction of images degraded by 

patient motion which, in general, results in nonuniformity in the acquired k-space. 
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CHAPTER 2 

 

CURRENT IMAGE RECONSTRUCTION TECHNIQUES FROM 

NON-RECTILINEAR K-SPACE TRAJECTORIES 

 

 

Reconstruction of an image from the nonuniform samples of its frequency domain is a 

common problem that arises in many fields ranging from radio astronomy to medical 

imaging (including CT and MRI), 2D-FIR filter design, image processing, geophysics 

and many other fields. An efficient solutions to this problem is to find the frequency 

domain values at a uniform grid so that the FFT can be used to reconstruct the image. 

This solution is referred to as “Gridding”. The gridding problem is basically an 

interpolation problem and getting the optimal interpolation kernel lies at the heart of 

this problem. In this chapter we review many of the techniques used in solving this 

problem. We consider the problem of image reconstruction in MRI and use its 

terminology, however, the manipulation is general and applicable to other areas 

sharing the same problem. 

2. Current Image Reconstruction Techniques From Non-
Rectilinear K-Space Trajectories 

 

2.1. Problem Formulation 

 

Let M be the continuous Fourier transform of the object m to be imaged and S be the 

nonuniform sampling function consisting of a series of impulses at the required 

sampling locations, that is, 

 

 



L

j
jS

1
)()( kkk    (2.1) 

 



 14 

where k is the position vector in the k-space and L is the total number of data points. 

The sampled data is then given by: 

 

 M . S sM   (2.2) 

 

The gridding problem is concerned with getting a “good” estimate of the Fourier 

transform of the object at a rectilinear grid so that the image can be reconstructed 

efficiently using FFT operations. 

 

Given the finite object extent in the image domain, the Nyquist sampling theorem 

states that the measured nonuniform samples are related to the data onto the grid via 

an infinite sinc interpolation. This is, 

 

)(sinc
1

)()( nj

N

n
nMjM kkkk 


  Lj :1,    (2.3) 

 

where N is the required number of grid points,   is some distance measure, ][ jk  is 

the set of k-space coordinates at which the samples are collected, and ][ nk  is the set of 

rectilinear grid points at which the k-space is interpolated. We can rewrite this 

equation in a matrix form as, 

 

rAs    (2.4) 

 

This is basically a linear system problem with a dense system matrix of sinc factors. 

Solving this system of linear equations is feasible if the number of points is small so 

that the inversion of A is practical. This solution is known as the Least Squares 

Reconstruction (LSR) [9]. In cases where the number of points is large, as in the case 

of MRI, or 2-D imaging in general, the inversion is not practical.  
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2.2. Brief  Review of the Current Gridding Techniques 

 

In the following sections, an overview of the current gridding algorithms is 

presented. We can divide the techniques in literature to two broad categories. The fist 

one use a convolution-interpolation to estimate the k-space on a uniform grid. These 

techniques are robust and efficient. However, they suffers from many artifacts. The 

second categories tries to achieve a higher  accuracy through approximating the LSR 

with sub-optimal, but practical, solutions.  

 

2.2.1. Interpolation 

 

The most basic interpolation method used was the fast nearest-neighbor which 

represent a zero-order interpolation. A weighted average of the neighbors of each grid 

point like in bilinear, Gaussian, or truncated sinc function interpolation represent a 

slower but a more accurate solution, although still far beyond the optimal one.  

 

2.2.2. The Conventional Gridding Algorithm 

 

Based on the sampling theorem O’Sullivan [10] presented the conventional 

gridding algorithm that is a convolution-interpolation procedure. In this algorithm 

nonuniform data samples are convolved with an interpolation kernel, and the result of 

this convolution is sampled onto a Cartesian grid, that is 

)()()( njC
j jMnM kkkk  , n=1,2,3….,N  (2.5) 

where (.)C  is the convolution window used. The image is then obtained by applying 

a two-dimensional inverse Fourier transform (2D-IFFT) to the gridded data and a 

post-compensation for the convolution roll-off effect is then performed by dividing 

the image by the inverse Fourier transform of the interpolation kernel c(r).  

 

O’Sullivan [10] showed that the optimal interpolation method of a band-limited 

function is a convolution with an infinite-width sinc function. This solution is not 
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practical and the sinc function has to be truncated, however, the performance degrades 

much when this truncation is carried out. O’Sullivan proposed a criterion for selecting 

another convolution function that is to be of finite width, this criterion is the 

maximization of the main lobe of the Fourier domain of the convolution function 

relative to the side lobes equation (2.13). The optimal function from this viewpoint is 

a zero-order prolate spheroidal wave function (PSWF). He suggested the Kaiser-

Bessel function as a relatively easy-to-calculate function that approaches the 

optimality of PSWF which is harder o calculate. Kaiser-Bessel function is based on a 

zero-order modified Bessel function of the first kind, 

 

)2)/2(1(
0

1
)( WuI

W
uC     (2.6) 

 

and its inverse is given by, 

 

2222

)2222sin(
)(










xW

xW
xc   (2.7) 

 

This  process was termed “Gridding” and consists of the following steps: 

1. Convolution of  the nonuniform samples with a Kaiser-Bessel window 

calculating the result on a rectilinear grid 

2. Performing inverse 2D-IFFT 

3. Dividing by the inverse Fourier transform of the Kaiser-Bessel window to 

compensate for the roll-off resulting form the convolution step.  

 

Due to the nonuniformity in the sampling process, the discrete convolution in step 

(1) is erroneous. The samples should first be compensated for this nonuniformity in 

the sampling density. O’Sullivan suggested that compensation be performed, however 

he has not provided any means to perform it. 
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Later on, Jackson et al. [11] investigated many other convolution functions. For 

each of the discussed windows they obtained the optimal window parameters using a 

modified version of the criterion of O’Sullivan equation (2.14) with the conclusion 

that encourage using the Kaiser-Bessel window. They also introduced the important 

concept of compensating each data point for the variable sampling density, known as 

Density Compensation Function (DCF). They defined a formula for getting this 

compensation factors that is referred to as Area Compensation Factors (ACF) and is 

defined as, 

 

)()()( uCuSu    (2.8) 

 

The gridding algorithm of Jackson was then known as the conventional gridding 

algorithm that consists of the following steps: 

1. Compensating each data point for the nonuniformity in the sampling density 

by multiplying by its ADF 

2. Convolution of the compensated nonuniform samples with a Kaiser-Bessel 

window calculating the result on a rectilinear grid 

3. Performing inverse 2D-IFFT 

4. Dividing by the inverse Fourier transform of the Kaiser-Bessel window to 

compensate for the roll-off resulting form the convolution step.  

 

This algorithm can be described by the following equation, 
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1
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j jM
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
 Nn ,...,2,1,    (2.9) 

 

where j runs over a small neighborhood of the interpolated grid point nk .  

We can write this convolution-interpolation as, 

 

IIIC
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SWCS
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  (2.10) 
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where 
SWCS

M  represent the nonuniform samples, weighted, convolved, and 

uniformly sampled onto a rectilinear grid,  stands for convolution, and III is the 

grid sampling function, the shah function, consisting of a uniformly spaced set of 

impulses. In the image domain, this is equivalent to: 

 

IIIc
SWCS

m sm 


  ).)
1

((( )    (2.11) 

 

where small letter variables stands for the inverse Fourier transform of capital letter 

variables. The roll-off due to the convolution step is compensated to get the final 

image, 

 

c

FOV
IIIc

SWCS
m sm

)(
.]).)

1
((([ )





     (2.12) 

 

where )(FOV is a gate function defined over the field of view. 

 

    Note that the object is repeated (aliased) by the convolution with the shah function 

in equation (2.11). This is because the convolution function C is of finite width and is 

therefore not band-limited in the image domain. The side lobes of  c is aliased back by 

the shah function causing ghost repetitions of the imaged object that is amplified by 

the division by c to correct the convolution roll-off. The amplified amplitudes at the 

periphery of the image is a known artifact of the conventional gridding algorithm 

known as “wings” [12]. The repetition period of the ghosts is inversely proportional to 

the grid spacing in the frequency domain. The repetition period can by increased (less 

aliasing artifact) by sampling onto a finer grid in the frequency domain. This increases 

the computational load as an over-sampling by a factor of two in each direction for 

example increases the computational load four times. 

 

Due to the smoothing effect of convolution step, the SNR is improved. The 

convolution in equation (2.10) is efficient since every rectilinear samples is estimated 

from only a small number of its nonuniform neighbors. The gridding algorithm is so 
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robust and efficient, hence widely used. However it suffers from two problem; first, 

the acquired samples must be compensated for the varying sampling density which is 

not easily fulfilled as the proper DCF may be not available analytically, based on only 

intuitive approaches with no optimality criterion, or not practical to compute. Second, 

the correction for the roll-off resulting form the convolution step results in “wings” as 

a result of the aliasing side lobes of the finite-width convolution kernel. It can be seen 

that the discretized convolution implemented in the gridding algorithm is not an 

accurate convolution [13]. 

 

The conventional gridding algorithm of Jackson et al. then became the most 

widely used method for image reconstruction from nonuniform samples. Many 

authors later tried to optimize the Kaiser-Bessel window parameters and measure the 

gridding accuracy. Another direction in research was to find the best DCF that 

minimize the error in the convolution process. 

 

2.2.2.1. The Convolution Window and Gridding Errors 

 

It has been shown that the side lobes of the Fourier transform of the convolution 

window results in aliasing of the imaged object, that is, ghost repetitions of the object 

wrap into the field of view. A window with a large main lobe and minimum side lobes 

energy is preferred. O’Sullivan introduced a measure for selecting a convolution 

window that maximize , 

 









rrr

rrr

dwc

V dwc
R

)(
2

)(

)(
2

)(
 (2.13) 

 

where c is the inverse Fourier transform of the convolution window and w is some 

weighting  function.  Jackson et al. modified this criterion to include the convolution 

correction step. The functional to be minimized is, 
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The optimal window from this view point is the zero-order prolate spheroidal wave 

function PSWF. The PSWF is hard to compute accurately. An approximation that is 

easier to compute is the Kaiser-Bessel window. Jackson et al. [11] tested many other 

convolution windows with the Kaiser-Bessel giving best results. Wajer et al. [18] 

provided a simple equation to calculate the window parameter taking into account the 

required oversampling required to reduce the aliasing effect. They also analyzed the 

gridding errors in [19,20]. 

 

2.2.2.2. Density Compensation Function (DCF) 

  

Proper sampling density compensation is necessary for accurate calculation of the 

discrete convolution in equation (2.9). Finding the optimal DCF attracted research for 

a long period. In this section we review the currently used Density Compensation 

Functions DCFs and introduce a new DCF that is optimal in the sense that it 

minimizes the reconstruction ghosts within the field of view (FOV). 

 

2.2.2.2.1. Current Density Compensation Functions 

 

The first DCF introduced was that of Jackson et al. [11] and is defined as in 

equation (2.8). This DCF represent a normalization factors for the interpolation 

process such that energy is uniformly distributed over all grid points. Another 

approach [9] calculates the DCF in a way that minimizes the squared error between 

the gridding reconstruction and the LSR solutions. Another [14] iteratively calculates 

the DCF such that the inverse Fourier transform of the DCF-weighted Sampling 

trajectory, namely  )()( kDCFkS
1-F , approaches a delta function. Another [15] 
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partitions the k-space into unit cells such that the area around each nonuniform sample 

is closer to that sample than to any other sample. The unit cell area represent an 

estimation of the inverse of the sampling density. This type of space portioning is 

commonly known as Voronoi diagram. Figure (2.1) shows the Voronoi diagram for 

radial sapling. 

     

Fig.‎2-1. Voronoi diagram for radial sampling 

 

 

In cases where the trajectory has a well defined and differentiable form, the 

determinant of the Jacobian of transformation from the trajectory coordinates to a 

uniform grid is taken to be the compensation factor [16]. In certain cases the density 

compensation is derived from the analytical expression of the sampling trajectory 

[17]. 

 

2.2.2.2.2. A New Optimal DCF 

 

In this part we propose a new DCF based on the analysis proposed by Wajer et al. 

[20].  Let )(rm


 be the image vector of length N resulting by stacking the image 

columns on top of each other and )(kS


 be the k-space vector of length L 

corresponding to L data points which is related to the image by the well-known 

Fourier transform, 
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discretizing the convolution, 
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and nk  represent a patch of k-space around nk  
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where   stands for convolution and )(rPSF


 is the point spread function is defined 

as : 

 


n

rki
enkrPSF


 .2
)(


  (2.21) 

 

By tuning the factors nk  we can obtain a PSF that approximate a Kronecker-delta 

function. Let us develop a solution to this problem. Writing the above equation in a 

matrix form: 

 

dEPSF    (2.22) 

 

where nm kri

mn eE


.2
   and   nn kd   and PSF  is a delta function that has a value 

of one at the origin and zero elsewhere. The least squares minimum norm solution to 

the above equation is given by: 
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PSFEEEd HH 1)(    (2.23) 

 

where H  
denotes Hermitian (conjugate transpose). Looking carefully at the nl entry of 

the matrix EE H  
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where )( nl kkD


 is a Dirichlet-like function defined as  
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The resulting matrix EE H  is easily calculated from the analytical expression in 

equations (2.24) and (2.25) and can be transformed to a sparse format by simply 

truncating  “tiny” elements. The term PSFEH  turns out to be a constant unit 

magnitude vector [1 1 …. 1]. What remains is to solve the system 

PSFEdEE HH )( using the conjugate gradient method. The solution is obtained 

very fast due to the sparse nature of  EE H  and usually a small number of iteration is 

sufficient to yield a good accuracy. 

 

 

2.2.3. Block Uniform Resampling (BURS ) 

 

In the Uniform Re-Sample algorithm (URS), r  is directly obtained from s  by 

inverting the matrix A  in equation (2.4). While such matrix inversion is readily 
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obtained for 1-D signals, the URS algorithm becomes impractical in the 2-D signals 

due to the tremendous size of the matrix A in this case. 

 

The Block Uniform Re-Sampling algorithm (BURS) [12] was introduced as an 

approximation to the URS method in order to reduce the computational effort. The 

BURS algorithm is in essence a numerical method for obtaining the inverse of a large 

matrix.  It is based on isolating a small block, A
b
, of the matrix A centered at entries 

(i,j), where j represents an unknown point in r , which is to be estimated from a few 

measured non-rectilinear samples centered around the entry i in s . The block is 

assumed to reasonably approximate the entire mapping for the unknown point j.  

Next, the inverse of the matrix A
b
 is obtained, namely (A

b)-1
, of which one row 

corresponding to the sample j is kept. This row is used later, during image 

reconstruction, to estimate the rectilinear sample j from the selected few measured 

samples. This process is repeated for the entire points in r .  

The amount of calculation done to construct the gridding matrix is huge, however, it 

has to be made only once for a given trajectory. Regularization is an important issue 

that must be carefully studied while inverting each block A
b
. Unreasonable estimate of 

the rectilinear points was obtained when Lissajous trajectories are used to acquire the 

k-space as pointed out by Hisamoto, et al [8]. The BURS solution was found to be 

very sensitive to noise. This is due to the higher sampling density at the periphery of 

the k-space in this trajectory. Later on, Hisamoto, et al. [21] and Rosenfeld [22] 

independently investigated this problem from the viewpoint of regularization theory 

and estimation theory and suggestions of regularized inversions was made to improve 

the reconstruction accuracy and avoid estimation errors. 

 

 

2.2.4. Optimal Gridding Using Structured Matrix Approximation 

 

Sedarat et al. carried out a deep investigation of DCF used in the gridding 

algorithm and showed that the gridding method is an approximation to the least square 

reconstruction (LSR) in equation (2.4) and found the “optimal” compensation factors 
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in the sense that it minimizes the difference between the gridding solution and the 

LSR solution. They proposed a matrix approximation technique for structured 

matrices (such as diagonal or banded matrices) to obtain the optimal DCF. They also 

proposed a framework for finding both the interpolation kernel and the deapodization 

(convolution compensation) factors that is optimal in that sense. However the matrix 

approximation step is not computationally efficient even for the standard MRI image 

sizes as 128x128 or 256x256.  

 

 

2.2.5. Gridding Using Least-Squares Spatially Variant Gridding Kernel  

 

Fahmy et al. [23]  followed another approach to get the optimal spatially-varying 

interpolation kernel. Based on a model for the object as a series of a basic functions 

(impulse or boxcar) in the spatial domain, they obtained an optimal shift-varying 

interpolation matrix by solving a linear system for each grid point to get the least 

square solution. Each sample on the rectilinear grid is estimated from its neighboring 

sampling on the non-rectilinear grid so that every grid point system has a high number 

of equation representing the object model (a series of impulses or a series of boxcar 

function, ..etc.) and a small number of unknowns that represent the interpolation 

coefficients. The following sub-section presents the mathematical formulation of the 

proposed method and an improved implementation suggested to make the gridding 

matrix construction feasible. 

 

2.2.5.1. Original Formulation 

 

From the sampling theory, one sample fi
r
 on the rectilinear grid can be perfectly 

reconstructed by the deconvolution of an infinite sinc function and the non-rectilinear 

samples. This can be represented as follows: 

 

 }nr{ fiR 
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where Ri{.} represents the deconvolution with an infinite sinc function, sampling the 

result at point i of the rectilinear grid. Using the finite extent property of the MR 

image, one can select a suitable set of orthogonal basis vectors, (Φ1,Φ2,Φ3,…… Φm) 

to define the space of the images, that is 
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This basis can be a set of impulses or boxcar functions uniformly  distributed in the 

image plane. Using the linearity of the deconvolution operator Ri{.}, then 

 


j j{ Φi Rjc  

r
if

  (2.28) 

 

The rectilinear sample fi
r
 is to be calculated from a limited number of the measured 

signal to reduce the computations required by the gridding process. This can be 

represented as, 
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where ia  is a mapping vector, <.,.> is the inner product operator, and T is a truncation 

matrix that sets the entries of the vector f
nr

 to zero except for a small number of 

samples neighboring the sample fi
r
. Substituting from (2.16) into (2.15), we get 
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Considering only the non-zero entries of the above equation. And taking a to be a 

vector containing these entries of ia  that correspond to non-zero entries of TΦj, and 

Φj is the non-zero entries of TΦj. we get 
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Due to the orthogonality of Φj, the following set of linear equations can be obtained 

 

 j ,T Φaj{ Φ
i

R i        j = 1:m  (2.32) 

 

Or,    

  

aΦr   (2.33) 

 

where r =[ Ri{Φ1}, Ri{Φ2},….., Ri{Φm}]
tr
,  Φ =[Φ'1,Φ'2,…,Φ'm]

tr
,  and tr is the matrix 

transpose operator. Note that calculation of R{Φi} is not a problem if the analytical 

expression of Φi is available. For example, a set of impulses distributed within the 

object region can be used as the desired basis set, whereby the elements of Φi, and 

R{Φi} are samples of a complex exponential function taken from a non-rectilinear and 

a rectilinear grid, respectively. Since the number of the basis vectors, m, is always 

greater than the number of unknowns, i.e. the entries of a, equation (2.20) represents a 

system of over-determined equations, which can be solved using the least squares 

criterion.  

 

2.2.5.2. An Efficient Implementation 

 

In this section we propose an efficient method for calculating the spatially-

varying interpolation kernel. Consider the least-square solution to (2.20) which is 

given by the pseudo-inverse of the matrix Φ and can be expressed as 

 

rΦΦ)(Φa
H1H 

   (2.34) 

 

ΦΦ
H is a J x J matrix where J is the number of nonuniform neighboring samples for 

the rectilinear grid point (kxi , kyi) and  rΦ
H  is a J x 1  vector. It can be shown that: 
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where D(.) denote a Dirichlet-like function defined as as in equation (2.5). Similarly, 

we get: 
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H   (2.36) 

 

The problem now reduces to performing the following 2 steps for each rectilinear grid 

point: 

1. Construct ΦΦ
H  and rΦ

H   using the analytical expression above. 

2. Solve the small-size linear system   ( ΦΦ
H ) a = rΦ

H   using  SVD. 

 

It is worth noting that this efficient method was developed by Fessler et al.[24] in 

their solution to the gridding problem. The solution they developed tries to minimize 

the maximum error between the nonuniformly interpolated samples from their 

uniform counterparts. It is not surprising that they got the same interpolation kernel as 

proposed by Fahmy et al. [23] who minimize the least-squares error between the 

uniformly interpolated samples from their nonuniform counterparts. This is because 

the various error norms are basically equivalent.  

 

2.2.6. Matrix Transformation  for Efficient Gridding 

 

In another model-based approach [25], the image is assumed to be piecewise 

constant to take into account the practical display method using pixels.  
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Using the continuous Fourier transform, the mapping of these unknown pixel values 

to the available frequency domain values is derived as , 
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Or in matrix form, Av=b. The resultant model consists of a linear system with a 

system matrix of L rows by N columns, where L is the number of available frequency 

domain samples and N is the number of required pixels in the spatial domain. Even 

though the system matrix of this problem is shown to be dense and too large to solve 

for practical purposes, applying a simple Fourier transformation to the rows of this 

matrix converts the matrix into a sparse format. This is analogous to the DCT 

compressive property used for image compression in standard JPEG.  

 

,)( VVvvb HHH


 MAHHHAA   (2.41) 

 

The problem now becomes the one of solving a large linear system with a sparse 

matrix to obtain the 1-D DFT of the vector containing the spatial domain pixel values 

in the image. This system is subsequently solved using the iterative conjugate gradient 

method.  Each iteration has a computational complexity of O(L) with only a few steps 

needed to achieve a reasonable accuracy.  

 

2.2.7. Other Gridding Approaches  

 

In this section we briefly review other image reconstruction technique that 

involves the nonuniformity of  the sampling pattern. Among those the filtered back-
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projection (FBP) is well-known as it is the standard image reconstruction technique in 

computed tomography (CT). 

2.2.7.1.  Filtered Back-projection (FBP) 

 

The Filtered Back-projection (FBP) is a well-known algorithm for the 

reconstruction of images from projections. This algorithm is the most widely and 

preferred reconstruction technique used in computed tomography (CT). A close link 

between the reconstruction from projections and the gridding algorithm is derived 

from the Fourier slice theorem. It can be shown that the Fourier transform of the 

projection array of an object at a given angle is just a radial line in the k-space of this 

object (figure 2.2). Thus the whole set of projection sat all angles is just the well-

known radial (or polar) sampling trajectory. The FBP algorithm consists of the 

following steps that is performed iteratively: for all projection profiles until a suitable 

solution is achieved: 

1. Get The Fourier transform of the projection array 

2. Filter the transformed projects with a suitable filter that is 

usually a smoothed version of a ramp filter(This is equivalent 

to a ramp DCF) 

3. Inverse Fourier transform the filtered  data 

4. Back-Project each filtered projection along its path through the 

object 

 

The Fourier slice theorem provide a means for solving the image reconstruction 

problem in CT using the fast gridding method rather than the slower back-projection 

technique currently employed. It has been shown that FBP is also applicable to a class 

of spiral trajectories.  
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Fig.‎2-2. Projection of an object in computed tomography. 

 

2.2.7.2. A Continuous to Discrete Mapping  

 

This solution [27] formulate the nonuniform sampling process as a continuous to 

discrete mapping that maps the continuous object space into a finite set of samples. 

They managed to inverse this operator using SVD to get a discrete to continuous 

mapping that has the advantage of arbitrary sampling in the image domain. The huge 

amount of calculation, due to the huge matrix to be inverted, makes this solution 

impractical.  
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CHAPTER 3 

 

ITERATIVE GRIDDING USING DECONVOLUTION-

INTERPOLATION 

3. ITERATIVE GRIDDING Using DECONVOLUTION-
INTERPOLATION 

3.1. Introduction 
 

In this chapter we present a new iterative gridding algorithm that overcomes the 

limitations of the conventional gridding algorithms discussed in the previous chapter. 

One of the most important problems by-passed in the new formulation is the 

calculation of the density compensation function (DCF). The proposed method tries to 

achieves a higher reconstruction accuracy at a reasonable computational cost. The 

basic idea is to interpolate the data using a deconvolution-interpolation approach that 

is more accurate than the convolution-interpolation technique used in the conventional 

gridding algorithm. The problem then reduces to the solution of a linear system with a 

sparse matrix. The conjugate gradient method (Appendix A) is used for solving this 

system iteratively. Finally, the deconvolution effect is compensated in the image 

domain. 

 

3.2. Theory 

 

Starting from the sampling theorem, we found in chapter 2 that the least-squares 

reconstruction (LSR) is obtained by solving the linear system, rs A   where s  = 

[ )( jM k ] is the sampled k-space data vector and r  = [ )( nM k ] is a vector of 

uniformly spaced samples and A is a matrix of sinc factors. The LSR is not practical 

to carry out as the size of the matrix A is prohibitively large. Let us instead solve the 

system, 

 

rs C  ˆ   (3.1) 
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where r̂ is an estimate of the data on the grid and C is an interpolation matrix of 

small width convolution kernel. This linear system can be solved efficiently using the 

conjugate gradient CG method [28] because C is sparse. Few number of iterations is 

usually sufficient to give good accuracy. Solving (3.1) obtains rM̂  as the 

deconvolution of the measured data with a small window )(kC and sampling the 

result of the deconvolution onto a rectilinear grid, that is, 

 

)(.))()(()(ˆ 1
kIIIkkk CMM sr

   (3.2) 

 

where 1 stands for deconvolution and )(kIII is the shah function, consisting of a 

uniformly spaced set of impulses, 
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Using Fourier analysis of this process, the effect of this step in the image domain 

reveals that,  
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where small letter variables stands for the inverse Fourier transform of capital letter 

variables. It is worth noting that solving (3.1) is an accurate deconvolution in contrary 

to the discretized convolution in the conventional gridding algorithm. Note that 

convolution with the shah function )(rIII  results in aliasing of the object in the image 

domain with a repetition period that is the inverse of the grid spacing. 

 

After solving (3.1) for r̂  a 2D-IFFT is performed to get the image. The 

deconvolution step is corrected for in the central region of the image by multiplying 
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by )(rc , the inverse Fourier transform of the convolution window. The final image 

estimate )(ˆ rm  is obtained as, 
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where )(
FOV

r
 is a gate function defined over the FOV. 

 

A Kaiser-Bessel interpolating window of width four in each direction is used in 

all experiments of this study. The Kaiser-Bessel window is chosen because of its good 

side-loop behavior [11]. The optimal window parameter is obtained using the same 

criterion used in the conventional gridding algorithm, equation (2.14), except for 

interchanging the role of )(rc  and 1/ )(rc , where )(rc  is the inverse Fourier transform 

of the Kaiser-Bessel window, that is, 
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where V is the volume of interest. The optimality criterion employed herein is that of 

minimizing the aliased energy into the region of interest after correcting for the 

deconvolution. Table (3.1) presents the optimal free window parameter  for various 

kernel widths. This algorithm iteratively performs the griodding using the 

deconvolution process, hence it is termed Iterative Gridding using Deconvolution 

Interpolation (IGDI). 
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Window width  

2 8.5 

2.5 8.2 

3 8.5 

3.5 11.7 

4 14.1 

4.5 17.5 

5 21 

 

Table 3.1. Optimal Kaiser-Bessel window parameter  for different window widths 

 

 

 

3.3. Methods 

 

The most widely used technique for comparing reconstruction algorithms has 

been to compare the reconstructions when applied to data from human subjects. 

Another technique is to use what physicians call “phantom,” which means taking data 

from a physical object of known structure instead of a human subject. The later 

approach is useful because we know what the true object is. Errors in the 

reconstruction, however, may be due to errors in the data or to errors in the algorithm. 

Shepp and Logan [26] introduced a “mathematical phantom” that simulate a head 

section. The “phantom” consists of multiple piece-wise constant functions , circles 

and ellipses, that is of known dimensions and intensity. This phantom is widely 

known in the image reconstruction community as the Shepp-Logan phantom. In a 

mathematical phantom, there is no measurement error, so any errors in the 

reconstruction are due to the algorithm. Furthermore, any measurement errors can be 

simulated to study its effect.  
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 Sampling of the continuous frequency domain of the Shepp-Logan phantom 

using the analytical expression in [27] is simulated. A 128
2
 data points were sampled 

and the reconstructed image resolution was 128x128. Usually, the number of samples 

is greater to achieve better reconstruction and higher SNR, however, we choose to 

work on the same number of point to emphasize the effect of the reconstruction  

algorithm in cases in which undersampling can occur in some regions of the k-space. 

Two sampling trajectories are used in this study; spiral and radial (polar). In spiral 

sampling, the trajectory traverse a constant angular velocity single-shot spiral. In 

radial sampling, the outer region of the k-space is sampled below the Nyquist limit in 

the azimuthal direction, while the center region is oversampled. The IGDI algorithm 

is implemented and the number of iterations is fifteen. For purpose of comparison the 

image is also reconstructed by the conventional gridding algorithm with two different 

subsampling ratios (NxN) and (2Nx2N) [11]. The simulated data is corrupted with 

random noise with different levels of SNR to test the performance of the new gridding 

algorithm against that of other algorithms. Gaussian-distributed white noise was 

added to the both real and imaginary parts of the original simulated data. The mean of 

the noise was 0 and the ratio of the standard deviation of the noise to the average 

magnitude of the original data was 3:11.  this is a typical on MR machines [8]. The 

reconstruction errors is measured using the root mean squared error (Erms) between 

each reconstructed image and the standard phantom after normalizing images so that 

the maximum gray level is equal to one. In all experiments a Kaiser-Bessel window is 

used with optimal parameter satisfying equation 3.6 for the IGDI algorithm and 

equations 2.14 for conventional gridding respectively. 

 

Both IGDI and the conventional gridding algorithm (NxN) is applied to the 

reconstruction of a real MR image obtained from a 1.5T MRI system. A sixteen- 

interleaved spiral trajectory is used with each interleaf containing 1024 point, so the 

total number of data points is  also 128
2 

. 
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3.4. Results  

 

The reconstructed image for the spiral trajectory using IGDI and its profiles (64
th

  

row and 64
th

  column) are shown in figure 3.1. Note the high image quality, and the 

similarity between the reconstructed and actual lines of the image profiles. The 

reconstructed image obtained using the spiral trajectory with conventional gridding 

(original sized matrix gridding) and its profiles are shown in figure 3.2. As can be 

seen, profile distortions are exhibited in the peripheral regions. The reconstructed 

image and its profiles when subsampling the k-space data onto a double-sized matrix 

are shown in figure 3.3. Although the image quality is greatly improved when 

compared to figure 3.2, there are still small deviations from the ideal profiles due to 

suboptimal weighting. Figure 3.4 shows the reconstructed image and its profiles for 

radial trajectory using the IGDI reconstruction scheme. Note the effect of 

undersampling in the azimuthal direction. Figures 3.5 and 3.6 show the reconstructed 

images and their profiles using the conventional gridding algorithm (original-sized 

and double-sized matrices gridding, respectively) with the radial trajectories. Note the 

large “wings” which appear in the peripheral regions of the reconstructed image, 

which have been reported in earlier studies as well [8, 12]. The “wings” artifacts are 

almost eliminated in figure 3.6. However, a ringing artifact, which is an intrinsic 

problem of spiral sampling because of its coverage of a subregion of the targeted k-

space area, is still visible. The RMS errors between the numerical phantom and the 

reconstructed image using the noise-free data for each trajectory/ gridding scheme are 

summarized in Table 3.2. Note that the quality of the reconstructed images using the 

IGDI is better than those using the conventional gridding algorithm (NxN and 2Nx2N 

subsampling). The reconstructed images with noise-corrupted data (1/11 noise level to 

the average of the original data) and their profiles (64
th

  row and 64
th

  column) using 

spiral/IGDI, spiral/conventional gridding (NxN and 2Nx2N), radial/IGDI, and 

radial/conventional gridding (NxN and 2Nx2N) reconstruction schemes are shown in 

figure (3.7). The RMS error each reconstructed image is summarized in table 3.3. The 

RMS error of IGDI scheme is better than those of conventional gridding methods.  
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Finally, IGDI and the conventional gridding algorithm (NxN) is applied to the 

reconstruction of a sixteen-interleaved spiral real MR image. Figure 3.8 represents the 

image reconstructed from each algorithm. Note the loss of resolution and ghost 

artifacts in the image reconstructed using conventional gridding and the absence of 

these artifacts in IGDI-reconstructed image. 
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                                a                                                   b 

Fig.‎3-1 Image reconstructed using the spiral trajectory and IGDI algorithm (a) and its 

profiles (b) 
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                                a                                                   b 

Fig.‎3-2. Image reconstructed using the spiral trajectory and the conventional gridding 

algorithm (sampling on NxN grid) (a) and the corresponding profiles (b,c) 
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                                a                                                   b 

Fig.‎3-3. Image reconstructed using the spiral trajectory and the conventional gridding 

algorithm (sampling on 2Nx2N grid) (a) and the corresponding profiles (b,c) 
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                                a                                                   b 

Fig.‎3-4. Image reconstructed using the radial trajectory and the IGDI algorithm  (a) 

and the corresponding profiles (b,c) 
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                                a                                                   b 

Fig.‎3-5. Image reconstructed using the radial trajectory and the conventional gridding 

algorithm (sampling on NxN grid) (a) and the corresponding profiles (b,c) 
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                                a                                                   b 

Fig.‎3-6. Image reconstructed using the radial trajectory and the conventional gridding 

algorithm (sampling on 2Nx2N grid) (a) and the corresponding profiles (b,c) 
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                                k                                                   l 

Fig.‎3-7. The reconstructed images using the data containing noise. The mean of the 

noise is 0 and the ratio of the standard deviation of the noise to the average magnitude 

of the original data was 1:11. (a) Image reconstructed using spiral/IGDI scheme. (b) 

Profiles at the 64
th

  row and 64
th

  column of (a). (c) Image reconstructed using a 

spiral/conventional gridding scheme (NxN gridding). (d) Profiles at the 64
th

 row and 

64
th

  column of (c). (e) Image reconstructed using a spiral/conventional gridding 

scheme (2Nx2N gridding). (f) Profiles at the 64
th

  row and 64
th

  column of (e). (g) 

Image reconstructed using radial/IGDI scheme. (h) Profiles at the 64
th

 row and 64
th

 

column of (g). (i) Image reconstructed using a radial/conventional gridding scheme 

(NxN gridding). (j) Profiles at the 64
th

 row and 64
th

 column of (i). (k) Image 

reconstructed using a radial/conventional gridding scheme (2Nx2N gridding). (l) 

Profiles at the 64
th

 row and 64
th

 column of (k).  
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Fig.‎3-8. Real MR image reconstructed using the IGDI (a) and the conventional 

gridding algorithm (sampling on NxN grid) (b) Note the loss of resolution and ghost 

artifact in (b) 

 

 

Algorithm Trajectory 

Spiral Radial 

IGDI 13.2833 9.1816 

Conventional Gridding 

(NxN) 

19.0673 18.1835 

Conventional Gridding 

(2Nx2N) 

14.3560 10.3484 

Table 3.2. RMS error of different sampling/reconstruction schemes with noise-free 

data 

 

Algorithm Trajectoty 

Spiral Radial 

IGDI 13.9758 9.4320 

Conventional Gridding 

(NxN) 

19.4112 18.3457 

Conventional Gridding 

(2Nx2N) 

15.0286 10.6565 

Table 3.3. RMS error of different sampling/reconstruction schemes with noisy data.  
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3.5. Discussion and Conclusion 

 

As seen in tables 3.2 and 3.3, the reconstructed image with a radial/IGDI scheme 

has a lower RMS error and high visual similarity with the numerical phantom when 

compared with other schemes. The RMS error of the spiral/IGDI  and radial/IGDI 

reconstructed image is better than those of spiral/radial using the conventional 

gridding (NxN and 2Nx2N griddings, respectively). These results arise because the 

IGDI provides accurate deconvolution of the data rather than the approximated 

discretized convolution implemented in conventional gridding algorithm. In the 

conventional gridding algorithm, the “wings” artifact results from the amplification of 

the spatial aliasing caused by the suboptimal weighting. The IGDI algorithm is 

applicable to many kinds of trajectories and its reconstructed image is generally of 

high quality. The ringing artifact noted in the reconstruction appears due to lack of 

sampling near the corners of the targeted area of k-space with the spiral trajectory. 

Most of the k-space trajectories generated by the time-varying gradients, such as the 

spiral, circular, and rosette trajectories, cover only a subregion of the targeted k-space 

area. So the reconstructed image is affected, no matter how slightly, by the ringing 

artifacts associated with the trajectory’s further truncation of the sampled region of k-

space.  

 

The conventional gridding algorithm, in which convolution is performed in 

gridding, is less sensitive to noise because convolution using Kaiser-Bessel window 

function more or less averages the data within the window. As a consequence, the 

reconstructed image is not as affected by noise as that using the IGDI algorithm. This 

is demonstrated in Table 3.3, in which the RMS errors of the IGDI algorithm are 

raised by an amount higher than those of the conventional gridding (NxN and 2Nx2N 

gridding).  

 

The proposed method is superior to the conventional gridding algorithm from the 

view point of accuracy. It bypass the problem of calculating the density 

compensation. The computational requirement is larger than the conventional 

gridding algorithm as a cost of the increased accuracy. The dominating step in solving 
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a linear system with a sparse matrix using CG method is a sparse matrix-vector 

multiplication involving the system matrix C. A small number of iterations is usually 

sufficient to achieve a reasonable accuracy and the whole algorithm is still O(rL), 

where r is the number of iterations. 

 

A nice property of the proposed algorithm is that the mapping matrix C can be 

computed efficiently for trajectories that are not known a prioi, This property is 

absent in many current gridding algorithms [12,23,24,25,27], where the mapping 

matrix construction involves a huge amount of computations and hence must be 

performed off-line and any change of the sampling trajectory requires re-construction 

of the mapping matrix. The simplicity of the construction of the mapping matrix in the 

proposed technique extends its application to areas where the location of the samples 

change often, like in 2-D FIR filter design and motion artifact correction [29]. 
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CHAPTER 4 

 

MOTION ARTIFACT SUPPRESSION USING ITERATIVE 

GRIDDING 

4. Motion Artifact Suppression Using Iterative Gridding 
 

4.1. Introduction 

 

One of the major problems in the present MRI technology is its susceptibility to 

substantial artifacts when motion occurs during the image acquisition time. Even 

though fast acquisition methods such as EPI and spiral imaging provide a solution to 

this problem for some applications, these techniques are extremely sensitive to 

magnetic field inhomogeneity effects as compared to regular scanning methods and 

have a generally low signal-to-noise ratio. This makes it difficult to accurately 

correlate the generated images with the physical anatomy because of geometric 

distortion in addition to more profound signal loss within the areas of large 

susceptibility mismatches. Moreover, when these imaging sequences are used in such 

applications as functional magnetic resonance imaging (fMRI), where a set of slices 

are acquired repeatedly, patient motion persists in the form of low delectability of 

activation sites as a result of misregistration of images along the sequences. 

 

Due to practical constraints from the MRI machine hardware, signal-to-noise 

ratio, and image contrast of MRI, the imaging time commonly extends to several 

minutes. As a result, different parts of the collected k-space are acquired at different 

time instants. In the ideal scenario, the imaged object does not change during the 

period of the experiment, and the image calculated by inverse Fourier transformation 

is undistorted. However, in clinical MRI setups, this scenario is not usually 

guaranteed because of physiological and occasional voluntary patient motion and can 

be even impossible to realize for moving organs such as the heart and abdominal 

structures. Consequently, the constructed images suffer varying degrees of distortion 
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depending on the characteristics of the imaging sequence and the severity of motion 

during the scan duration. 

 

 

4.2. Problem Formulation 

 

It  is well known that patient motion during the image acquisition causes artifacts 

in the reconstructed image, which for two-dimensional Fourier Transform (2DFT) 

imaging techniques appears as blurring and ghost repetitions of the moving structure 

[29].  Patient motion can be classified according to its nature as rigid motion in which 

all the object points undergo the same motion and non-rigid motion such as 

physiological movements (respiratory, cardiac). Here we consider the case  of rigid 

motion, which is commonly encountered in MR images of head, brain and limbs. 

First, consider the relation between the MR signal and the density distribution of the 

target in the imaging plane. This is given by, 

 









 dxdyyykxxkjyxfykxkF )](2exp[),(),(    (4.1) 

 

where F (kx,ky) is the MR signal, kx and ky are the spatial frequency coordinates in the 

readout and phase-encoding directions, respectively, f(x,y) is the density distribution 

of the nonmoving imaging target, and x, y are horizontal and vertical coordinates in 

the imaging plane. In (4.1) it is seen that the MRI signal is the 2-D Fourier transform 

of f(x,y). Considering the case when the k-space is acquired as consecutive bands, as 

in the case of PROPELLER or segmented EPI, one can neglect the inter-band motion. 

This is true because the entire band is acquired during a single read-out period. Thus, 

planar rigid motion parameters during the acquisition can be regarded as a function of 

the band number. A planar rigid motion is the combination of translational and 

rotational motions. It is well known that the rotation of an object about the center of 

the image domain results in the same rotation of its k-space, while translational shift 

results in a linear phase term multiplied in the k-space [29]. Thus the effect of the 

motion can be written as,  
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),(.)](2exp[),( ykxkFykyxkxjykxk
d

F


    (4.2) 

 

Here Fd(kx,ky) is the motion-distorted MRI signal and x, y, and  are the translation 

in the x-direction, the translation in the y-direction and the rotation angle, 

respectively, and ),( ykxkF


 is defined as, 

 

)cossin,sincos(),( 
 ykxkykxkFykxkF    (4.3) 

 

To correct for the distortion resulting from motion, one first should estimate the 

unknown motion parameters x, y, and   and use these parameters to reconstruct an 

artifact-free image from the motion-distorted data. 

 

4.3. Current Techniques 

 

Several attempts to solve the problem of motion artifact in MRI have been 

reported in the literature. In general, the available techniques can be classified into 

four main categories. The first category attempts to suppress relative patient motion 

among different k-space lines within a given image through either through breath 

holding and chest strapping or by using cardiac and respiratory gating [30]. This 

minimizes the physiological component of motion between these lines at the expense 

of increased discomfort to the patient and/or significantly longer acquisition times. 

The second category uses averaging of different acquisitions to suppress the motion 

artifacts as well as to improve the signal-to-noise ratio of the final image. This can be 

done by taking the average of the corresponding k-space lines in a number of 

consecutive image acquisitions, or more generally by composing a weighted average 

of the two based on optimizing a certain objective function under given constraints 

[30,31]. The third category applies extra magnetic gradient lobes in the imaging 

sequence to eliminate the effects of motion through signal refocusing assuming a 

simple polynomial model for this motion [32,33]. This technique is used to minimize 
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signal loss from moving blood and CSF within a given voxel[34]. Finally, the fourth 

category assumes simple forms of rigid body motion including translational and 

rotational components and corrects for them in a post-processing step. The motion in 

this category is estimated using external monitoring [35], navigator echo (only for 

translational motion) [36,37], symmetry constraints [38], motion periodicity constraint 

[39,40], or through automated techniques [29,41-46].  The effect of translational 

motion can be suppressed by post-processing through modifying the phase of the k-

space lines according to the a priori knowledge about the motion [29,47,48]. 

 

In spite of the success these methods have met in some applications, they 

represent solutions to only a restricted class of artifacts and cannot generally be 

applied to more complex types of motion such as deformable body motions. 

Moreover, the convergence properties of automatic techniques are not generally 

guaranteed and therefore a general lack of robustness of these methods hindered their 

clinical use outside research facilities. As a result, if the patient moves significantly 

during the experiment, the motion artifact in the resultant images cannot be corrected. 

As a result, the scan has to be repeated at the expense of inefficient use of MRI 

machines and added discomfort to the patient. Moreover, this might not even be 

possible to tolerate in emergency cases. This also complicates the procedure of 

imaging moving organs such as the heart by adding the cardiac/respiratory gating, 

which again contributes to a significant prolongation of the examination time. 

Therefore, a technique for motion artifact suppression that does not impose any 

constraints on the current procedures while robustly constructing images that are free 

of motion artifact will have a rather profound impact on the current MRI technology 

and many of its clinical applications.  

 

One of the new motion artifact suppression techniques is the PROPELLER MRI 

proposed by Pipe [49]. In this technique data is collected in concentric rectangular 

strips rotated about the k-space origin. The central region of k-space is sampled for 

every strip, and  used to estimate relative motion between strips during the scan 

(figure 4.1). This technique is termed (Periodically Rotated Overlapping ParallEL 

Lines with Enhanced Reconstruction (PROPELLER MRI).  
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Fig.‎4-1. The PROPELLER sampling scheme. Note the superimposed hypothetical 

circle in the overlapping area 

 

 

4.4. Methods 

 

In the PROPELLER technique, A method dedicated for motion artifact 

correction, data is collected in concentric rectangular strips rotated about the k-space 

origin [49]. The central region of k-space is used to estimate motion between strips. 

The translation motion is directly corrected by multiplying by a linear phase term 

corresponding to the estimated translation. At the end of a slice scan, the data is 

gridded using the conventional gridding algorithm with a modified density 

compensation function [14,49]. We propose a method for accurate and efficient 

estimation of the motion parameters using the inherent “orbital navigator” information 

in the data. We also propose a method for accurate and efficient gridding of the 

measured data using a look-up table-based version of the proposed gridding 

algorithm. 
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4.4.1. Motion Estimation 

 

Motion of an object during an MRI scan causes two types of errors; bulk rotation 

of the object causes identical rotation of its k-space,  while shifts produce linear phase 

shifts in the k-space. In the original ROPELLER method, the central circle common to 

all strips  is used to estimate the inter-strip motion of the object as follows :  

1. Define a set of Cartesian coordinates that spans the central circle as R.  

2. The data magnitude of each strip is gridded onto R after being rotated with a 

series of angles spanning a range that covers the expected range of motion. 

The gridded data is then correlated with an averaged data set used as a 

reference. The correlation is measured as a function of rotation angle and fitted 

to a second-order polynomial. The peak of the fit polynomial is estimated to 

be the angle of rotation for this strip. The strip coordinates are then rotated to 

match the estimated rotation. 

3. To estimate translational motion, complex data is gridded onto R and an 

average complex data set is used as a reference. Translation in the x and y 

directions  is estimated by detecting linear phase shifts between the gridded 

strip and the reference. This is done by simply finding the peak of the 

magnitude of the Fourier transform of  this phase shift. 

 

The problem with such method is that gridding onto R with all possible rotation 

angle is obviously inefficient and large unexpected rotation may lead to incorrect 

results. Furthermore, the reference data set obtained by averaging is not the optimal 

way to handle data redundancy and may lead to estimation errors. We propose a 

simple, accurate and more efficient method for the estimation of rotational and 

translational motion. First a predefined set of points spanning a circle C in the k-space 

is defined with a specified angular spacing (figure 4.1). The circle C should be  

smaller than the central circle common to all strips. The data measured for each strip 

is interpolated on C using a small Kaiser-Bessel window to form the vector Dn where 

n is the strip number.  Relative rotational motion between strips causes identical 
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rotation of the circle C and thus identical circular shifts in the vector Dn. The max-

correlation between the magnitude of every two successive vectors Dn and Dn+1 is 

then used to estimate the rotation angle. The correlation is performed efficiently by 

evaluating it using the fast Fourier transform ( FFT),  

 

θ = arg max |£
-1

{£ {Dn} . £{Dn+1}
*
}  (4.4) 

 

where £ is the Fourier transform operator and * represent complex conjugate. This 

may restrict us to choose the number of points on C to be FFT-friendly. It is worth 

noting that estimation the k-space on C is an alternative to measuring it as in the 

orbital navigator echo (ONAV) method used in a prospective way to correct for 

patient motion [50.]. The points on C  is then rotated by the rotation angle estimated 

and the phase shift between the two point sets is fitted to a first-order polynomial in 

each direction to estimate the translation motion in both x and y directions. Finally, 

correction for the translational motion is done by removing the corresponding linear 

phase in that strip. Rotational motion is corrected by a gridding procedure of the data 

with its coordinates adjusted by the estimated motion parameters. 

 

 

4.4.2. Motion Correction 

 

Once a slice acquisition is finished, a gridding phase is carried out. The data is 

interpolated onto a rectilinear grid using the conventional gridding algorithm. A 

modified density compensation function (DCF) is used that is iteratively evaluated 

using the estimated data locations [14]. To make it practical, an initial estimate of this 

DCF is pre-calculated and few iterations are carried out during image reconstruction. 

However, the gridding algorithm in this case is not so efficient since the gridding 

coefficients cannot be pre-calculated. Nevertheless, the conventional gridding 

algorithm has been thoroughly investigated and shown to lack optimality [4]. In 

chapter 3, we presented an iterative gridding algorithm that is shown to perform much 

more better than conventional gridding. Given the measured data samples s , the 
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following relation between s  and r̂  (the gridded data stacked into a vector form) 

was derived:   rs C  ˆ . This equation is solved iteratively using the conjugate 

gradient (CG) method and few iterations are usually sufficient to yield good accuracy.  

 

Considering the rigid body assumption, rotation of an object in the image space 

produces identical rotation of its k-space, while translational motion produce linear 

phase shifts in the k-space data. An accurate and efficient implementation of the 

PROPELLER method can be carried out using the proposed gridding algorithm by 

first noting that rotation of any strip about the k-space origin is identical for all strips. 

All possible locations of all strips are just the rotated versions of any strip with all 

possible rotation angles. The matrix C is partitioned into sparse sub-matrices each 

corresponding to  an acquired strip data set. All possible sub-matrices can be pre-

calculated for all possible rotation angles of  a strip for a given angular resolution (say 

0.5°) and the calculated sub-matrices are stored and loaded during image 

reconstruction according to the estimated rotation angle of each strip. The 

reconstruction algorithm can be summarized as follows: 

1. Initialize the mapping matrix C to empty. 

2. Loop on all measured strips and perform 3, 4, and 5. 

3. Estimate the rotational and translational motion of the acquired strip. 

4. Correct for the translational motion by multiplying the strip data by a 

linear phase corresponding to the estimated translation. 

5. Plug the proper sparse sub-matrix in the proper location in the 

mapping matrix C according to the estimated rotation angle.  

6. Solve equation (3.1) using CG method for r̂ . 

7. Finally, the image is obtained by a 2-D IFFT operation on r̂  

followed by the deconvolution compensation discussed in chapter 3. 
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4.5. Results and Discussions 

 

Simulation of the proposed algorithm was carried out using the analytical 

expression for the k-space of the Shepp-Logan phantom. Six strips were acquired with 

seventeen lines per strip. The reconstructed  image dimensions was 64x64. Figure 4.1  

shows the PROPELLER sampling scheme. Note the hypothetical circle C used in the 

estimation phase. 

 

Figure 4.2 shows a plot of the Dn vector (the interpolated data on circle C) for two 

successive strips. The second strips was sampled with a simulated rotation error of 

five degrees. The similarity between the two curves are obvious. The detection 

accuracy was less than 0.1 degree for noise-free data. 

 

 

Fig.‎4-2. The interpolated data onto circle C (see text) from two successive strips. Note 

the similarity between the two curves. 

 

 

The inherent navigator information are easily calculated since the interpolation 

coefficients are the same for all strips. so they can be pre-calculated and stored 

efficiently. The method proposed can be easily generalized for any acquisition pattern 

that include such redundancy in the measured k-space data 
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Inter-strip rotational motion was simulated such that the sampling pattern is as 

shown in figure 4.3. Provided that the motion estimation phase of  PROPELLER is 

perfectly correct, the reconstructed image after fifteen iterations in figure 4.5 shows 

good quality compared to the motion-free image in figure 4.4. The RMS error of the 

motion-free and motion-corrupted data was 6.1718 and 6.2882 respectively  Note that 

rotations of the acquired strips result in large void areas in the k-space, however, the 

reconstructed image is still of good quality justifying the accuracy of the proposed 

gridding algorithm. 
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Fig.‎4-3. The PROPELLER sampling trajectory in the presence of simulated inter-strip 

motion 
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Fig.‎4-4. Image reconstructed using IGDI in the absence of motion (a) , and the 

corresponding profiles (b)  
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Fig.‎4-5. Image reconstructed using IGDI in the presence of motion indicated in 

fig. 4.3 (a) , and the corresponding profiles (b) 

 

 

 

4.6. Conclusion 

 

We proposed two new techniques for motion detection and correction in 

PROPELLER MRI. The new estimation techniques is especially efficient since the 
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data has to be interpolated only on the circle points and not on all the overlapping area 

as in the original PROPELLER. The gridding algorithm presented was discussed in 

the previous chapter and its performance was shown to be better than the conventional 

gridding implemented in PROPELLER. The proposed algorithm uses pre-calculated 

gridding matrices that is calculated for all possible orientations of the sampling strips.  
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CHAPTER 5 

 

CONCLUSIONS 

 

5. Conclusion 
 

A new image reconstruction technique from non-uniformly sampled MR data has 

been proposed in this thesis. This technique replace the current convolution-

interpolation gridding with a deconvolution-interpolation one so that the image 

reconstruction becomes a problem of solving a linear system. The system matrix has a 

sparse structure, so the system can be solved efficiently using the conjugate gradient 

method. This technique has the advantage of increasing the reconstruction accuracy 

and reducing artifacts in current gridding algorithms. The solution accuracy can be 

increased by increasing the number of iterations performed in the conjugate gradient 

method, however, as the number of iterations increase, the reconstruction time 

increases and the SNR decrease. The number of iterations then becomes a control 

variable the trade-offs various reconstruction parameters. The price paid for the 

increased accuracy is the increased amount of computations. 

 

An advantage of the proposed technique is that the system matrix can by 

constructed efficiently, hence, the application of the proposed gridding technique is 

extended to situations in which the k-space trajectory is not know in advance. The 

non-uniformity in k-space sampling due to patient motion during the scan is an 

example of this case. PROPELLER MRI (REF) is a new technique used to collect the 

k-space data in a manner the facilitate the detection and correction of patient motion. 

We proposed a technique to implement the PROPOLLER method with improved 

performance.  

 

Based on the results of this thesis, further research can  be proposed in the 

following points: 

 

 Constrained reconstruction 
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 Artifact-free reconstruction of EPI data based on k-space 

measurements 

 Reconstruction for dynamic imaging data 

 Further applications to motion artifact suppression 

 Partial k-space data imaging 

 Further investigation of the relation between the gridding algorithm 

and filtered back projection (FBP) 
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7. PPENDIX A 

 

APPENDIX 

 

CONJUGATE GRADIENT METHOD 

 

There are many techniques for solving systems of linear equations, i.e., solving 

for x in Ax = b. It is often the case that the system is sparse. The Conjugate Gradient 

(CG) method is suitable for solving any linear system where the coefficient matrix A 

is both symmetric and positive definite. A matrix ‘A’ is positive definite if  <x, Ax>  

is greater than zero for all nonzero vectors x. This condition is equivalent to all the 

eigenvalues of A being positive. The Conjugate Gradient method is often used for 

sparse systems, because each iteration requires only a single matrix-vector 

multiplication operation. In fact, a "matrix free" formulation does not even require 

that you actually have A, but only that you have a function for computing the product 

of A and a vector, say v.  

 

Roughly speaking, CG is an iterative minimization procedure for the equation  

 

b
T

xAx
T

x
2

1
Φ(x)    (A.1) 

 

The minimization is performed a long of A-conjugate directions. A sketch of the 

CG algorithm:  

1. x  =          initial guess for solution of Ax=b 

2. r = b – Ax   =  residual, to be made small 

3. p = r      = initial "search direction" 

4. do while ( new_r , new_r ) not small 
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 v = Ap    ... matrix-vector multiply 

 a = ( r , r ) / ( p , v )    ... dot product  

 x = x + a*p    ... updated approximate solution 

 r_new = r - a*v     ... update the residual 

 g = ( r_new , r_new ) / ( r , r ) 

 p = r_new + g*p    ... update search direction 

 r = r_new 

     end do 

 

CG maintains 3 vectors at each step, the approximate solution x, its residual 

r=Ax-b, and a search direction p, which is also called a conjugate gradient. At each 

step x is improved by searching for a better solution in the direction p, yielding an 

improved solution x+a*p. This direction p is called a gradient because we are in fact 

doing gradient descent on a certain measure of the error (namely sqrt(r , A
-1

 r)). The 

directions pi and pj from steps i and j of the algorithm are called conjugate, or more 

precisely A-conjugate, because they satisfy (pi , A pj ) = 0 if ij. One can also show 

that after i iterations xi is the "optimal" solution among all possible linear 

combinations of the form:  

)(.....)3(
3

)2(
2

)(
10

xiA
i

axAaxAaAxaxa    (A.2) 

 

For most matrices, the majority of work is in the sparse matrix-vector 

multiplication v=Ap in the first step. Operations in CG are also easy to parallelize.  

The rate of convergence of CG depends on the condition number of A. The condition 

number is ratio of the largest to the smallest eigenvalue of A. A roughly equivalent 

quantity is ||A||*||A
-1

|| where the norm of a matrix is the magnitude of the largest entry. 

The larger the condition number, the slower the convergence. One can show that the 

number of CG iterations required to reduce the error by a constant g<1 is proportional 

to the square root of the condition number. One can speed up convergence by 

"preconditioning" at an intermediate stage of the calculatin, solving a related system 

Mz=q, where M is an approximate inverse of A and easy to invert. Choosing a good 

preconditioner is something of an art. 
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