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Fourier Transform Definition

Fourier

x(t) ‘ Transform ‘ X(€)

() & X(Q)

where the signal x(t) is transformed into a function X(£2) in the frequency domain by the
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Fourier transform: X(Q) = f x(H)e I3 gt
_m

while X(€2) is transformed into a signal x(t) in the time domain by the

o0
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Inverse Fourier transform: x(t) = 5 [ X(Q)eimdsz
T
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Fourier Transforms from
Laplace Transforms

- If the region of convergence (ROC) of the Laplace
transform X(s) contains the jQ axis, so that X(s) can be
defined for s= D jQ, then:
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Table 5.2 Fourler Transform Pairs
Function of Time Function of 2
1 8(1) 1
2 S(t—r1) e IS
3 u(h) o Q)
4 u(—i) o +rsQ)
5 sgn(r) = 2[u(r) — 0.5] J%
6 A —00<t< 2w AS(S2)
_ A
7 Ae ™u(t), a >0 Fomw
_at A
8 Ate“u(t), a =0 Go+a)?
—a 2
9 el g4>0 Tror
10 cos(Qpf), —00 <t < 0 T[6(2 — Qo) + (2 + Qp)]
11 sin(Qot), —o0 <t < 00 —i[8(2 — Qo) — 8(Q + Qo)
12 Alu(t4+17)—ut—1)], t>0 2AT Si”sg?r)
13 snld u(S2 + Qo) — u( — Qo)
14 x(t) cos(2pt) 0.5[X(2 — Q2p) + X(2 + Q2p)]




Linearity

- Fourier transform is a linear operator
 Superposition holds

If Flx(t)] = X(2) and Fly(t)| = Y(2), for constants « and g, we have that

Flax(t) + By(0)| = aF[x(0)| + BF|y(1)]

= aX(£2) + pY(€2)




Inverse Proportionality of Time and
Frequency

» Support of X(Q) is inversely proportional to support of x(t)
 If x(t) has a Fourier transform X(Q2) and «a+0 is a real
number, then x(at) is:

m Contracted (o > 1),

m Contracted and reflected («¢ < —1),

m EBExpanded (0 <« < 1),

m EBExpanded and reflected (=1 < « < 0), or

m Simply reflected (o0 = —1)

« Then, ] O
x(at) <& —X ()
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Inverse Proportionality of Time and
Frequency - Example

 Fourier transform of 2 pulses of different width
= 4-times wider pulse have 4-times narrower Fourier
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Duality

- By interchanging the frequency and the time variables in
the definitions of the direct and the inverse Fourier
transform similar equations are obtained

« Thus, the direct and the inverse Fourier transforms are
dual

x(t) < X(Q)
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Duality: Example
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R
Signal Modulation

m Frequency shift: If X(£2) is the Fourier transform of x(t), then we have the pair
X0 & X(Q - Qo)
m Modulation: The Fourier transform of the modulated signal
x(1) cos(£2pt)
is given by

0.5 [X(2 — Qp) + X(2 + Q)]

That is, X(€2) is shifted to frequencies ¢ and — 2, and multiplied by 0.5.




Signal Modulation: Example

Xo(1) cos(10t)

Yo(t)=
S
o
;
|

| Yo(Q)|




Fourier Transform of Periodic Signals

For a periodic signal x(t) of period T, we have the Fourier pair

x(t) = Xl o X(Q) =) 27X,8(2 — kQ0)
ke k

obtained by representing x(t) by its Fourier series.

- Periodic Signals are represented by Sampled Fourier
transform

- Sampled Signals are representing by Periodic Fourier
Transform (from duality)



Fourier Transform of Periodic Signals:
Example
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Parseval’s Energy Conservation

For a finite-energy signal x(t) with Fourier transform X(€2), its energy is conserved when going from the time
to the frequency domain, or

oo 1 o0
E, = f |x(t)|2dt=2— f IX(Q)]2d2 (5.15)
s
—00 —00

Thus, |X(2)|? is an energy density indicating the amount of energy at each of the frequencies .

The plot [X(§2)|? versus € is called the energy spectrum of x(t), and it displays how the energy of the signal is
distributed over frequency.

« Energy in Time Domain = Energy in Frequency Domain



Symmetry of Spectral Representations

If X(2) is the Fourier transform of a real-valued signal x(t), periodic or aperiodic, the magnitude |X(2)] is an
even function of :
X()] = IX(—)| (5.16)
and the phase ZX(£2) is an odd function of Q:
ZX(Q) = —ZX(—Q) (5.17)
We then have:
Magnitude spectrum: |X(£2)] versus Q
Phase spectrum: ZX(2) versus 2
Energy/power spectrum:  |X(£2)|2 versus €2

« Clearly, if the signal is complex, the above symmetry will
NOT hold



Convolution and Filtering

If the input x(t) (periodic or aperiodic) to a stable LTI system has a Fourier transform X(£2), and the system has
a frequency response H(j2) = F[h(t)] where h(t) is the impulse response of the system, the output of the LTI
system is the convolution integral y(t) = (x * h)(t), with Fourier transform

Y(Q) = X(Q) H(jQ) (5.18)

- Relation between transfer function and frequency

respomnse:
“ H(jQ) = 1)
Y= X @)

H(j2) = LIh(®)]|s=ja
= H(s)|s=jo




Basics of Filtering

« The filter design consists in finding a transfer function
H(s)= B(s)=A(s) that satisfies certain specifications that
will allow getting rid of the noise. Such specifications are
typically given in the frequency domain.

Y(£2) = H(jR)X(£2)




ldeal Filters
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Spectrum Analyzer

Power

I LPF | measurement > Fx(0)

| BPF, ||  Power | L b

measurement
x(t)
Power
| BPFy |—» )
N measurement Px(E2n)
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Time Shifting Property

If x(t) has a Fourier transform X(£2), then

X(t—tg) & X(Q)e Jio
X(t+19) & X(Q)eltHo

e ExampleI Jf(t) — A[(‘j([ — 1') + S(I + T)]

4

X(Q) = A[1e74%7 4 1%7]



Differentiation and Integration

If x(t), —o0 < t < o0, has a Fourier tranform X(€2), then

dN}f(t) ) N
Q) X(Q2
= e (M@
[
[.:C(J)dﬂ' = X_(—;;)—FHX(O)MQ}
J
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where

o0

X(0) = /x(t)dt

—00




Table 5.1 Basic Properties of the Fourier Transform

Signals and constants
Linearity
Expansion/contraction in time
Reflection

Parseval's energy relation
Duality

Time differentiation
Frequency differentiation
Integration

Time shifting

Frequency shifting
Madulation

Periodic signals
Symmetry

Convolution in time
Windowing/multiplication
Cosine transform

Sine transform

Time Domain

x(t), y(t), z(t), , B
ax(t) + By(t)
xot), @ £ 0
x(—t)

E, = [ Ix()|2dt
X(t)

%ﬁj, n = 1, integer
—jtx(t)

[ x(t)Hdt'

Xt —a)

e*20ty (1)

x(t) cos(£2:1)

x(t) = ¥ Xpelt !
x(t) real

z(t) = [x* y](1)
x(t)y(t)

x(f) even

x(t) odd

Frequency Domain

X(Q), Y(2), Z(£2)
aX(2) + BY()
mX(2)

X(—8)
E, =+

2mx(—L2)

(JE2Y"X(2)

dA ()
da

A+ 1X(0)5(2)

e X Q)

X(Q — Q)

0.5[X(Q2 — Qo) + X(Q2 + Q)]
X(Q) = Y, 2nX,8(Q2 — kS20)
1X(R2)| = [X(—£2)]

ZX(Q) = —ZX(—Q)

Z(Q) = X(QY(Q)

=X #Y](Q)

X(Q) = [%, x(t) cos(Qu)dt, real
X(Q) = —j [%, x(t) sin(Qo)dt, imaginary

o IX()2dQ




Problem Assignments

« Problems: 5.4, 5.5, 5.6, 5.18, 5.20, 5.23

« Partial Solutions available from the student section of
the textbook web site



