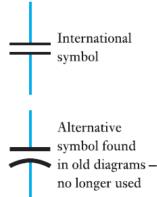
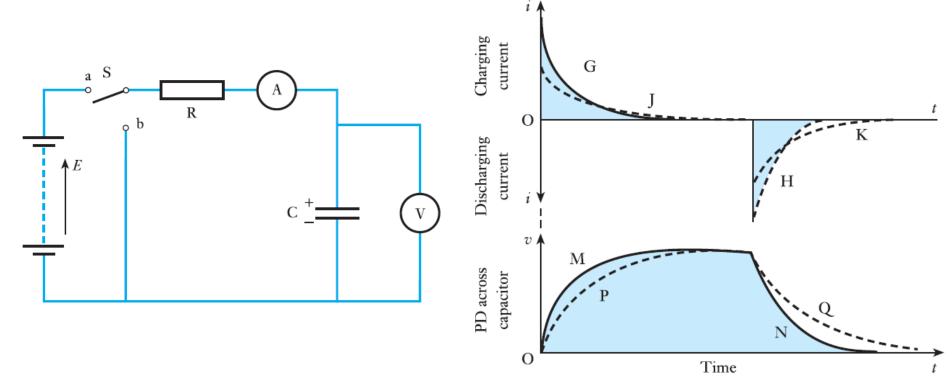

CAPACITANCE AND CAPACITORS


EE 306 – SS2015

Prof. Yasser Mostafa Kadah – www.k-space.org

Basics

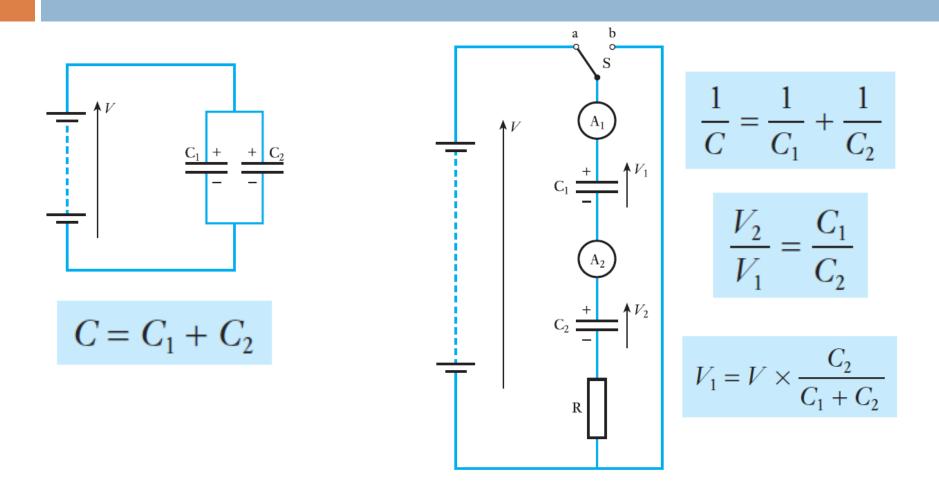

- Capacitor or Condenser is a device which can store electric charge for short periods of time
 - Just like filling container with water, it takes time to pour charge into capacitor
- Conductors would hold much greater electric charges provided that they were held in close proximity to one another yet kept apart
 - The greater surface area of conductors the greater stored charge
 - Simple capacitor can be made from two strips of metal foil sandwiched with two thin layers of insulation (e.g., paper)

Basics

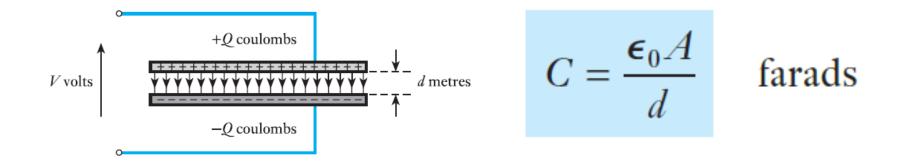
- Capacitor's ability to hold electric charge is measured in farads
 Very large unit and most capacitors are rated in microfarads or less
- Charged capacitor may be regarded as reservoir of electricity that can be charged/discharges

Charge and Voltage

For a given capacitor,


 $\frac{\text{Charge on C [coulombs]}}{\text{PD across C [volts]}} = \text{a constant} = \text{capacitance [farads]}$

- The property of capacitor to store electric charge when its plates are at different potentials is referred to as its capacitance
 - Unit of capacitance is termed the farad (F) defined as capacitance of capacitor between the plates of which there appears a potential difference of 1 volt when it is charged by 1 coulomb of electricity


Capacitance

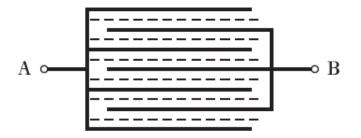
Capacitors in Parallel and in Series

Parallel Plate Capacitor

Permittivity of free space Symbol: ϵ_0 Unit: farad per metre (F/m) 8.85×10^{-12} F/m

Parallel Plate Capacitors – General Case

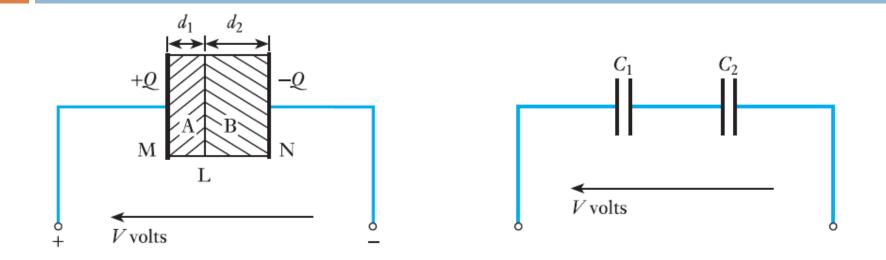
0			
		Material	Relative permittivity
Glass dielectric		Vacuum	1.0
		Air	1.0006
		Paper (dry)	2–2.5
$C = \frac{\epsilon_0 \epsilon_r A}{d} \text{farads}$	Polythene	2–2.5	
		Insulating oil	3-4
		Bakelite	4.5-5.5
	farads	Glass	5-10
		Rubber	2-3.5
		Mica	3–7
		Porcelain	6–7
		Distilled water	80
		Barium titanate	6000+


Relative permittivity

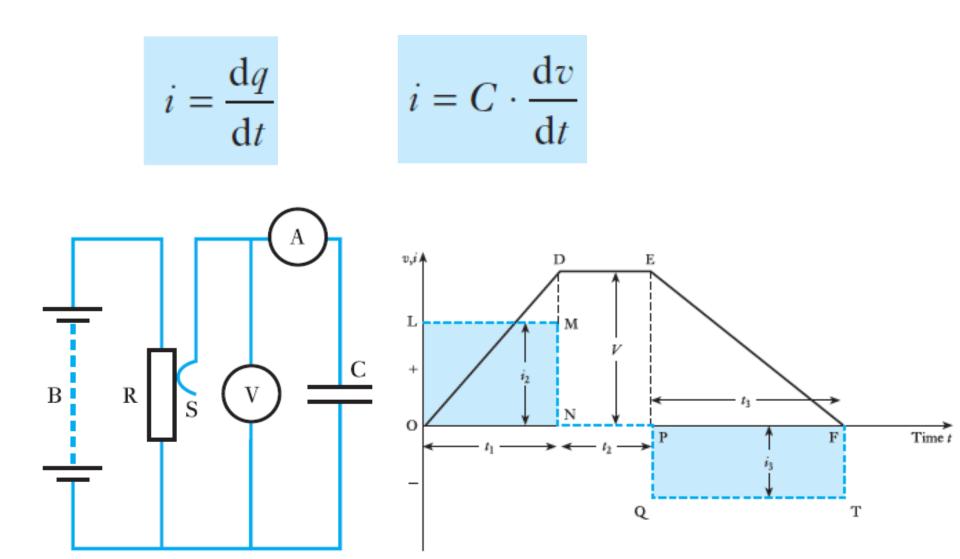
Symbol: $\epsilon_{\rm r}$

Unit: none

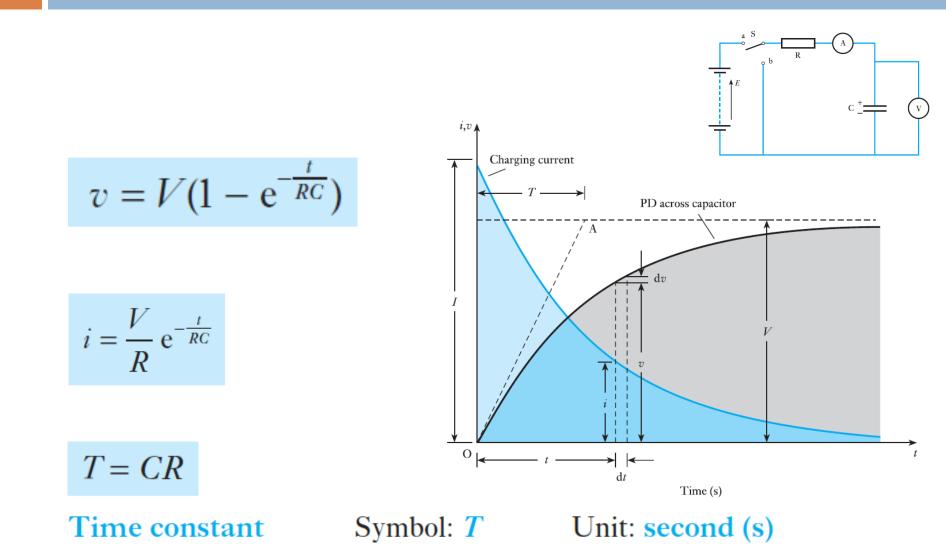
Capacitance of Multi-Plate Capacitor


Suppose a capacitor to be made up of n parallel plates

- *A* = area of *one* side of each plate in square metres
- d = thickness of dielectric in metres
- $\boldsymbol{\epsilon}_{\mathrm{r}}$ = relative permittivity of the dielectric


Capacitance =
$$\frac{\epsilon_0 \epsilon_r (n-1)A}{d}$$
 farads

Composite Dielectric Capacitor



$$C_1 = \frac{\epsilon_1 \epsilon_0 A}{d_1}$$
 and $C_2 = \frac{\epsilon_2 \epsilon_0 A}{d_2}$ \Longrightarrow $\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$

Charging and Discharging Currents

Exponential Growth and Decay

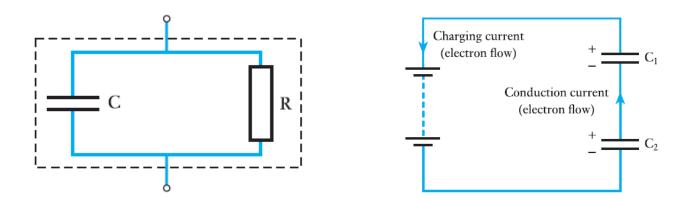
Energy Stored in Charged Capacitor

Instantaneous value of power to capacitor is,

$$iv \text{ watts} = vC \cdot \frac{\mathrm{d}v}{\mathrm{d}t} \text{ watts}$$

Total energy can be given as,

$$\int_{0}^{V} Cv \cdot dv = \frac{1}{2} C \left[v^{2} \right]_{0}^{V} = \frac{1}{2} C V^{2} \text{ joules} \qquad W = \frac{1}{2} C V^{2}$$

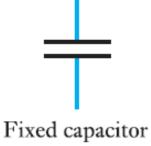

Dielectric Strength

- If the p.d. between the opposite sides of sheet of solid insulating material is increased beyond certain value, material breaks down
- Potential gradient necessary to cause breakdown of insulating medium is termed its dielectric strength (megavolts per meter)

Material	Thickness (mm)	Dielectric strength (MV/m)
Air (at normal pressure and temperature)	0.2	5.75
	0.6	4.92
	1	4.46
	6	3.27
	10	2.98
Mica	0.01	200
	0.1	176
	1.0	61
Glass (density 2.5)	1	28.5
	5	18.3
Ebonite	1	50
Paraffin-waxed paper	0.1	40-60
Transformer oil	1	200
Ceramics	1	50

Leakage and Conduction Currents in Capacitors

- Every dielectric has few free electrons and therefore effectively acts as insulator of very high resistance between plates of capacitor
 - Practical capacitor has equivalent circuit of parallel R-C
 - \blacksquare Usually, resistance has value in excess of 100 $M\Omega$
 - When voltage is applied across capacitor plates, small leakage current passes between plates charge decays with time
- Leakage is different from conduction current
 - Flow of electrons which does not pass through the battery



Types of Capacitors

Fixed capacitors

Paper – electrolytic – ceramic – mica – tantalum

- Capacitance is a measure of the ability to store electric charge.
- **Capacitance** is also a measure of the ability to store energy in an electric field.
- Charging is the process of increasing the charge held in a capacitor.
- Discharging is the process of reducing the charge held in a capacitor.
- **Farad** is the capacitance of a capacitor which has a p.d. of 1 V when maintaining a charge of 1 C.
- Leakage current is the rate of movement of charge through a dielectric.
- **Permittivity** is the ratio of electric flux density to electric field strength measured in farads per metre.

Suggested Readings and Exercises

- Hughes textbook Chapters 5
- □ Exercise 5 (Hughes)

Problems 1, 4, 5, 19, 20, 23, 34, 35, 40