

BIOMEDICAL SENSORS

EE 370 - 2015

Prof. Yasser Mostafa Kadah – www.k-space.org

Measurement Basics

- Measuring is the experimental determination of a measured value by quantitative comparison of the measurand with a comparison value in a direct or indirect manner
- Measured value obtained by this procedure is given as a product of a numeric value and a dimensional unit
- It can be recorded continuously as a temporal variation of a physical value or discontinuously at particular moments
- Deviation of measured value from the measurand is the measurement error
 - Depends on measurement procedure, measurement device, and environmental effects
 - Systematic and random errors are distinguished

Measuring in Medicine

- Aim of measuring in medicine is objective description of state of patient who might possibly not be able to cooperate
- Goal is to help the physician to define the respective therapy and to evaluate the therapy process and assess the prognosis
- Long-term monitoring of physiological parameters is combined with an alarm function if preset limiting values are exceeded
- New developments include closed-loop systems which directly intervene in patient's state after analysis of measured values
- Unique in having inter-individual and intra-individual deviations for biological measurements, owing to biological variability

Measured values vary from patient to patient and within same patient

Measuring in Medicine: Objectives

- Metrological acquisition, conversion, processing and transmission of biological signals
- Measuring the reaction or the behavior of the biological object to an external stimulus
- Measurements during application of extra- or intracorporeal assist systems to support organ functions or as organ compensation, as well as manipulators for therapeutic means
- Application of substances, irradiation or waves and measurement of reflection, absorption, scattering, distribution or fluorescence to display structures and functions in the organism
- Extraction of body fluids, substances and tissues, as well as tests and analysis in clinical and chemical laboratories

Measuring in Medicine: Model

Measuring in Medicine: Unique Aspects

- Extent of inconvenience for patient and measurement procedure directly influences the reliability of measured values
- Biological sources of interference (biological artifacts with physiological origin) superimposing the measurand
- Measurement duration and the reproducibility of an examination are limited for most methods
- Wide variability of examined persons
 - Ranging from fetus, infants and trained athletes to aged people
- Include subjective methods requiring cooperation of patient
 - e.g., audiometry, vibration tests and temperature sensation

Biosignals

- Biosignals can be defined as phenomena to describe functional states and their variations in a living organism
 - Actual measurand that should be metrologically determined for diagnostic purposes
- Provide information about metabolic, morphological and functional changes, describe physiological and pathophysiological states as well as process dynamics
- To analyze them, generation locus and thus spatial and temporal correlation is significant
- Biosignals are acquired from living organisms, organs and organ parts down to single cells

Biosignal Types

- Bioacoustic signals (heart sound, lung sounds, speech)
- Biochemical signals (substance compositions, concentrations)
- Bioelectric and biomagnetic signals (electric potentials, ion currents)
- Biomechanical signals (size, shape, movements, acceleration, flow)
- Biooptical signals (color, luminescence)
- Biothermal signals (body temperature)

Biosignal Examples

Biological Measuring Chain

- Biosensor is a probe to register biological events and morphological structures
- Often, it is directly connected to a transducer, or it transduces the primary measurement signal into a secondary signal itself

Biosensor Requirements

- Feedback-free registration of the signals
- Provide reproducible measurement results
- Transmission behavior has to remain constant for a long time
- Narrow production tolerances
- High biocompatibility
- Low stress to patient
- Small mass and small volume
- Application should be simple and manageable
- □ Allow cleaning, disinfection and possibly sterilization

Sensor Classification

- Active or passive
- Passive sensor does not need any additional energy source
 - Directly generates electric signal in response to external stimulus
 - Examples: thermocouple, photodiode, piezoelectric transducer
- Active sensors require external power for their operation, called excitation signal.
 - Excitation signal is modified by sensor to produce the output signal
 - Examples: thermistor and resistive strain gauge

Sensor Classification

- Absolute or relative
- Absolute sensor detects a stimulus in reference to an absolute physical scale that is independent of the measurement conditions
 - Example: thermistor electrical resistance directly related to absolute temperature scale of Kelvin
- Relative sensor produces a signal that relates to some special case
 - Example: thermocouple produces electric voltage that is function of temperature gradient across the thermocouple wires

Dynamic Properties of Biosensors

- Ideal transmission behavior of a measuring chain is linear
 In reality, relation is not linear, delayed and sometimes oscillating
- □ Signal processing is to correct for such problems

Sensing Effects

- Two basic elements in the operation of sensors
- Sensing effect
 - Physical or chemical interaction between the environment and the sensing material altering the material properties
- Transduction mechanism
 - Conversion of this material property change into a useful signal

Electric and Magnetic Transducers

- Transduce electric signal (ion current) into electric signal (electron current)
- Two groups: microelectrodes (metal microelectrodes) and macroelectrodes (surface electrodes)

Chemoelectric Transducers

- Used for the measurement of individual chemical components in the blood, in body tissues, in the exhaled air or on the skin
 - Potentiometric sensors, based on the measurement of cell potential
 - Amperometric sensors, based on cell current
 - Conductometric sensors, based on admittance

Mechanoelectric Transducers

- Measure length changes, strains, pressure changes in tissue, body fluids and organs as well as for the measurement of sounds, microvibrations and blood flow
- □ Strain Gauge: R=pL/A allows detecting changes in L
- Piezoresistive elements as strain gauge in a Wheatstone bridge
 - Changes in resistivity can be observed that are up to 100 times larger than the geometric effect yielding a more sensitive strain gauge
- Capacitive transducer: force applied to capacitor yielding a change in the distance between its two plates changes C

$$C_X = \varepsilon_0 \varepsilon_\gamma \frac{A}{x}$$

Piezoelectric Effect

- Production of electricity by pressure
 - Practically measured as generated voltage between two electrodes
- Piezoelectricity occurs only in insulating materials and is manifested by the appearance of charges on the surfaces of a piece of material that is being mechanically deformed

Photoelectric Effect

- Depending on the incident light intensity, current flowing through the sensor changes
 - Examples: photoresistors, photodiodes, and phototransistors

Hall Effect

- Electric current flows through material in pretty much a straight line
- When magnetic field is present, Lorentz force makes them deviate from their straight path
- With more electrons on one side of the material, there would be a difference in Hall potential (or Hall voltage) between two sides
 - Voltage proportional to electric current and strength of magnetic field

Thermoresistive Effect

- Temperature variations change electrical resistivity of conductor and semiconductor materials
- Examples: Resistance temperature detector (RTD), Thermistor

Thermoelectric Effect

- Generation of electric voltage proportional to temperature difference
- Thermoelement (thermocouple) is a junction of two conducting (metal or semiconductor) materials, A and B, electrically connected at a "hot" point of temperature, T1, while the nonconnected ends of both legs are kept at another temperature T2 ("cold" point)

Seebeck EMF

$$U_{\rm T} = \alpha_{\rm T} \cdot (T_2 - T_1)$$

Semiconductor Temperature Dependence

- Semiconductor diodes have temperature-sensitive voltage vs. current characteristics
 - When two identical transistors are operated at a constant ratio of collector current densities, the difference in base-emitter voltages is directly proportional to the absolute temperature
- Use of IC temperature sensors is limited to applications where the temperature is within -55° to 150°C range

Advantages: small, accurate, and inexpensive

 Output in analog form (voltage or current proportional to temperature) or digital (communicate digital temperature value)

Comparison of Temperature Sensors

Characteristic	Platinum RTD	Thermistor	Thermocouple	Temperature IC
Active Material	Platinum Wire	Metal Oxide Ceramic	Two Dissimilar Metals	Silicon Transistors
Changing Parameter	Resistance	Resistance	Voltage	Voltage or Current
Temperature Range	-200°C to 500°C	-40°C to 260°C	-270°C to 1750°C	-55°C to 150°C
Sensitivity	2 mv/°C	40 mV/°C	0.05 mV/°C	~1 mv/°C or ~1 uA/°C
Αссигасу	-45 to 100°C: ±0.5°C; 100 to 500°C: ±1.5°C; 500 to 1200°C: ±3°C	-45 to 100°C: ±0.5°C; degrades rapidly over 100°C	0 to 275°C: ±1.5 °C to ±4°C; 275 to 1260°C: ±0.5 to ±0.75%	±2 °C
Linearity	Excellent	Logarithmic, Poor	Moderate	Excellent
Response Time	2-5 s	1-2 s	2-5 s	
Stability	Excellent	Moderate	Poor	Excellent
Base Value	100 Ω to 2 kΩ	1 kΩ to 1 MΩ	< 10 mV	Various
Noise Susceptibility	Low	Low	High	High
Drift	+/- 0.01% for 5 years	+/- 0.2 to 0.5°F per year	1 to 2°F per year	0.1°C per month
Special Requirements	Lead Compensation	Linearization	Reference Junction	None
Device Cost	\$60 - \$215	\$10 - \$350	\$20 - \$235	\$5 - \$50
Relative System Cost	Moderate	Low to Moderate	Moderate	Low

Bioelectric and Biomagnetic Signals

Signal	Frequency (Hz)	Amplitude (mV)
ECG (heart)	0.2-200	0.1-10
EEG (brain)	0.5-100	$2-1000\mu V$
EMG (muscle)	10-10000	0.05 - 1
EGG (stomach)	0.02-0.2	0.2-1
EUG (uterus)	0-200	0.1-8
ERG (retina)	0.2-200	0.005 - 10
EOG (eye)	0-100	0.01-5
FAEP (brain stem)	100-3000	$0.5 - 10 \mu V$
SEP (somatosensory	2-3000	$0.5 - 10 \mu V$
system)		
VEP (visual system)	1-300	$1-20\mu V$

Biomechanical Signals

Signal	Spezification	Amplitude	Conversion
Pulse (rate)		$720 - 200 \min^{-1}$	
Breathing (rate)		$5 - 60 \min^{-1}$	
Blood pressure (arterial)	Systole	8–33 kPa	60-250 mmHg
	Diastole	5-20 kPa	40-150 mmHg
Blood pressure (venous)		0-4 kPa	0-30 mmHg
Intraocular pressure		0-7 kPa	0-50 mmHg
Blood flow		0.05-51/min	
Blood flow velocity		0.05 - 40 cm/s	
Respiratory flow velocity		20–120 cm/s	
Cardiac output		3-81/min	
Respiratory volume		200–2000 ml/gasp	
Muscle work		10-500 W	
Blood volume	Adults	7000 ml	
Amount of urine	Adults	1500 ml/d	
Nerve conduction velocity	Median nerve	50–60 m/s	

Bioacoustic Signals

- Includes sounds of the upper respiratory tracts (snoring, speech), lung sounds and heart sound
- □ Can be registered with a microphone or a stethoscope

Biochemical Signals: Glucose

- Can be determined in vivo or in vitro
- They can be registered directly or indirectly by reaction
- Example: Glucose identification
 - Amperometrically detected by the O₂ consumption or the hydrogen peroxide formation

$$\begin{array}{c} \text{Glucose} + \text{O}_2 \xrightarrow{\text{GOD}} \text{Gluconolactone} + \text{H}_2\text{O} \\ \\ \xrightarrow{\text{H}_2\text{O}_2} \\ \xrightarrow{\text{Gluconic acid} + \text{H}_2\text{O}_2} \end{array}$$

Biochemical Signals: Concentration

Infrared spectrometers measure the intensity attenuation of infrared radiation after passing a measuring cuvette and compare it with a reference

$$I_{\rm a} = I_0 \,\mathrm{e}^{-kcl}$$

• I_{α} :output intensity, I_{0} :input intensity, c :concentration, l :layer thickness, and k :constant of proportionality

Biomechanical Signals: Pressure

IBP: Invasive probe

Biomechanical Signals: Volume

Biomechanical Signals: Flow Velocity

Doppler effect

$$\Delta f = f_1 - f_2 = f_1 \frac{2v\cos\varphi}{c}$$

Biomechanical Signals: Cardiac Output

Indicator-Dilution method

$$\mathbf{CO} = \frac{m_0}{\int\limits_{t_0}^{\infty} c(t) \, \mathrm{d}t}$$

Biomechanical Signals: Mass

Quartz microbalance

measurement is based on resonance frequency shift of an oscillating crystal due to deposition of substances on the crystal surface

$$\Delta f = \frac{2.3 \times 10^6 f_0^2 \Delta m}{A}$$

Biooptical Signals: O₂ Saturation

- Evaluation of color (skin)
- Evaluation of O₂ saturation based on the different absorption characteristics of oxygenated and deoxygenated hemoglobin

Biothermal Signals: Thermography

- The Most important biothermal signal is the body temperature
- Using thermography, temperature distribution on a skin area can be determined.
- Pathological changes can be detected from distribution relative to normal areas
 - Example: reduction of blood flow due to smoking

Artifacts

- Biosignals are often superimposed by interferences, called artifacts
- Those are registered together with the wanted signal and impede or preclude its evaluation
- With respect to their point of origin, artifacts can be divided into biological and technical artifacts
- □ They are caused by metrology, applied method and by patient

Artifacts: Examples

- Physiological artifacts are biological signals superimposed on measured signal from different
 - Example: ECG, EOG, or EMG related artifacts when measuring EEG
- Technical artifacts are errors in recording
 - Examples: cable movements, defects and absence of grounding
- Externally caused technical artifacts from coupled interferences
 - Example: noise from electromagnetic fields on measured ECG signals

Sensor Specifications

Sensitivity Stability (short and long term) Accuracy Speed of response Overload characteristics Hysteresis Operating life Cost, size, weight

Stimulus range (span) Resolution Selectivity Environmental conditions Linearity Dead band Output format Other

Sensor Sensitivity

- Sensitivity is typically defined as the ratio of output change for a given change in input
 - Another definition can be given as the slope of the calibration line relating the input to the output (i.e., $\Delta Output/\Delta Input$)
- Example: Sensor A is more sensitive than sensor B
 - Same displacement, higher output from A

Sensor Dynamic Range

Dynamic range of a sensor corresponds to the minimum and maximum operating limits that the sensor is expected to measure accurately

Also called stimulus range or span

- Example: Temperature sensors have very different ranges that suit different applications
 - From measuring human temperature to measuring temperature in steam sterilizers

Characteristic	Platinum RTD	Thermistor	Thermocouple	Temperature IC
Temperature Range	-200°C to 500°C	-40°C to 260°C	-270°C to 1750°C	-55°C to 150°C

Sensor Accuracy and Precision

- Accuracy refers to the difference between the true value and the actual value measured by the sensor
- Precision refers to degree of measurement reproducibility

Very reproducible readings indicate a high precision

- Precision should not be confused with accuracy
 - Measurements may be highly precise but not necessary accurate

High precision high accuracy

Sensor Resolution

- Resolution is defined as the smallest change of the measurand that can produce a detectable change in the output signal
- Example: sensors with digital output only change in steps of 1 bit
 - 12-bit sensors will have better resolution than 8-bit sensors

Sensor Reproducibility

- Reproducibility is the degree to which an experiment or study can be accurately reproduced, or replicated, by someone else working independently or over time
 - Sometimes called repeatability or stability (short-term and long-term)
- Reproducibility can vary depending on the measurement range
 - Readings may be highly reproducible over one range and less reproducible over a different operating range

Sensor Linearity and Offset

- Linearity is a measure of the maximum deviation of any reading from a straight calibration line
- Offset refers to the output value when the input is zero

Pressure

Sensor Response Time

 Response time indicates the time it takes a sensor to reach a stable (steady-state) value when the input is changed

Sensor Drift

- Drift is a gradual change in the measurement output is seen while the measurand actually remains constant
 - Drift is undesired systematic error that is unrelated to the measurand
 - Drift may affect offset and/or sensitivity

Sensor Hysteresis

- Hysteresis is the difference between output readings for the same measurand, depending on the trajectory followed by the sensor
 - Depending on whether path 1 or 2 is taken, two different outputs are obtained for the same input

Biomedical Application Field	Measurand	Sensor/Measurement Type	Basis of the Sensing Effect	Sensor Structure	Present Status
Body surface	temperature	pyroelectric vidicon	pyroelectric	capacitor	CA*
temperature image	mapping	parabolic antenna	EM waves	microwave antenna	CA
temperature muge		IR camera	photo- or pyroelectric	SSD. POSFET	CA. R&D*
Ultrasound imaging	ultrasound impulse	transmitter/receiver	piezoelectric	capacitor array	CA
<u>8</u> <u>8</u>	time of flight	arrays	1	POSFET array	R&D
Digital	X-ray image	Charpak-detector	ionization	vacuum tube array	R&D, CA
teleradiology		scintillation detector array	fluorescence + electron- hole generation	phosphor-CCD array or mosaic	CA
X-ray computer tomography (CT)	X-ray intensity profile(s)	scintillation or semi- conductor detector	fluorescence + photoelectric effect	BGO/LSO/CWO + PEM/PIN/APD	CA
	-	array	photoelectric effect	Si-SSD, HPGe	R&D
Angiography	γ -intensity map	scintillation Anger camera	fluorescence + photoelectric effect	NaI + PSPEM	CA
Single photon	γ -intensity	scintillation γ -camera	fluorescence +	div. collimator +	
emission CT	distribution	array	photoelectric effect	NaI + PSPEM	CA
(SPECT)			photoelectric effect	Ge, CZT array	R&D
Positron emission	γ -intensity	scintillation γ -detector	fluorescence +	segmented BGO +	CA
tomography	distribution	block rings	photoelectric effect	PSPEM/PIN/APD	
Nuclear magnetic resonance imaging	magnetic pulses	special arrangement of coil inductors	EM induction	cooled Cu or HTS (planar) coils	CA
Biomagnetism	magnetic pulses	SQUID	superconductor quantum interference	1 or 2 Josephson junctions	CA
Ophthalmoscopy	light parameters	SLO, SLT, SLP, OCT	optical	photodiode, APD	CA
Blood vessel lumen	flow mapping	Doppler sonography	piezoelectric	capacitor array	CA
		NMRI	EM induction	EM coils	CA
		MBI	Hall effect	Hall sensor	R&D

Biomedical Application Field	Measurand	Sensor/Measurement Type	Basis of the Sensing Effect	Sensor Structure	Present Status
Body core temp.	temperature	body thermometer ear thermometer	thermoresistive thermoelectric, pyroelectric	thermistor metal junction capacitor	CA CA CA
Blood pressure	pressure	Korotkoff oscillometric	piezoelectric piezoresistive	capacitor Si resistor bridge	CA
Heart rate, apnea Breathing wave Fetal heart rate	pressure pulses	fingertip sensor, phonocardigraph, flexible belt	piezoelectric	capacitor	CA
Glucose in blood and tissues	glucose concentration	GOD-based biosensors	catalytic reaction and transduction with the products	electrochemical cells, optrodes, and calorimetric types	some types CA, others in R&D
		low-potential cyclic voltammetry	acidic behavior of glucose	electrochemical cell	R&D, some types CA
		SPR	plasmon resonance	optrode	R&D
		near IR spectroscopy	attenuated total reflection	optosensors	R&D, CA
Hearing aid	acoustic pressure	microphones	electret-based	capacitor, Si-micromachined	CA
Artificial retina	optical image	planar array on VLSI signal conditioner	photoelectric	photodiode array	R&D
Artificial limbs	tactile image	tactile sensor array	piezoresistive optical capacitive magnetoresistive piezoelectric ultrasonic	resistor array phototr. array capacitor array permalloy array capacitor array transmitter array	R&D, some types CA

Biomedical Application Field	Measurand	Sensor/Measurement Type	Basis of the Sensing Effect	Sensor Structure	Present Status
Hemodynamic	pressure	invasive	piezoresistive	Si resistor bridge	CA
blood pressure	-	catheter tip	piezoresistive	Si resistor bridge	
1		I	optical reflectance	optrode	R&D
Blood temp.	temperature	catheter tip	thermoelectric.	Si-diode, thermo-	СА
Lieou temp	to mp or atom o	cumerer up	thermoresistive	couple, thermistor	011
			phosphorescency	optrode	R&D
Blood flow	flow rate, velocity	SBF sensor	calorimetric	thermopiles	R&D
		hot-film anemometer	calorimetric	thermistor	CA
		Doppler sonography	piezoelectric	twin-capacitor	CA
		electrodynamic	Lorentz-force effect	magnet + contacts	CA
Joint angle	angular displacement	monitor gloves, etc.	piezoresistive	strain gauge	CA
Internal ocular pressure (IOP)	pressure	tonometer	piezoresistive	Si resistor bridge	R&D
Respiratory flow	air flow rate	Fleish sensor	Venturi + piezoresistive	Si resistor bridge	CA
1 2		turbine	Hall effect	Hall sensor	CA
		vortex shedding	piezoelectric	capacitor	R&D
		catheter tip	freflectance	optical fiber	R&D
		nose clip	calorimetric	Si or film	CA
		1		thermistor bridge	
<i>in vitro</i> nuclear diagnostics	β-intensity distribution	β-detector array	photoelectric effect	Si-APD array	R&D, CA
Electronic dosimeter	X- or γ-dosis	semiconductor detector + CMOS counter	photoelectric effect	Si-SSD	CA
Bioelectric signals	electric impulses	pickup electrodes	no transduction effect	electrode array	CA, R&D

Biomedical Application Field	Measurand	Sensor/Measurement Type	Basis of the Sensing Effect	Sensor Structure	Present Status
Blood dissolved O ₂	pO_2	Clark	permeation through	amperometric cell	
		electrochemical cell	membranes	hast controlled	CA
		cell	and membranes	amperometric cell	СА
		optical-fiber technique	fluorescence	optrode	CA
Blood dissolved	pCO ₂	Stow-Severinghaus	permeation through	poteniometric	
CO_2		cell	membranes	cell, pH-ISFET	CA
		Severinghaus cell	membranes	potenciometric cell	СА
		optical-fiber technique	colorimetric effect	optrode	CA, R&D
Blood acidity	pН	electrochemical	H ⁺ -ion-complexation in	potentiometric cell,	CA
		optical fiber	membranes	pH-ISFET	CA D&D
		optical fiber	fluorescence	optrode	KæD
Blood oxygen	SO_2	invasive oximetry	absorbance/reflectance	pure-fiber optrode	CA
saturation		ear oximetry	spectrum variations of	photodiodes	CA
		pulse oximetry	hemoglobin	photodiodes	CA
oxygenation	oximetry	tissue oximetry	cytochrome oxidase	photodiodes	R&D
Ionic compounds in	Na ⁺ , K ⁺ , Ca ²⁺ ,	electrochemical	ion complexation in	poteniometric	CA, R&D
blood	Mg^{-1} , CI, NH_4 concentrations		membranes	cells, ISFE1s	
Gastric acidity	рН	electrochemical	ion complexation in membranes	poteniometric cells, ISFETs	CA, R&D
		optical fiber	colorimetric	optrode	R&D
Sweat analysis	Na ⁺ /Cl ⁻	electrochemical	ion complexation in	Na ⁺ /Cl ⁻ ISFETs	R&D
	concentration		membranes		

Biomedical Application Field	Measurand	Sensor/Measurement Type	Basis of the Sensing Effect	Sensor Structure	Present Status
Tissue acidity and oxygenation	pH/pO ₂ mapping	scanning electrochemical microscopy	electrochemical	microelectrodes and their arrays	R&D
Metabolites and other substrates in blood	urea, uric acid, lactate, cholesterol, ATP, etc.	enzymatic biosensors living biosensors	catalytic reaction and transduction with the products	electrochemical cells, optrodes, and calorimetric types	mainly R&D
Immunoreaction reading	antigens/antibodies	immunosensors	chemical affinity and recognition + indirect/direct sensing	electrochemical, gravimetric SPR, SPRS	mainly R&D
Macromolecules in blood and tissues	DNA	DNA sensors	chemical recognition + direct sensing	BAW, SPR	R&D
	or DNA segment recognition	DNA or genetic chips	or with labeling	fluorescent readout	CA
Pharmacological effects on bacteria	dpH/dt	microphysiometer	pH-shift due to bacterial metabolism	LAPS	R&D

Further Reading and Assignments

- □ Chapter 46 of Springer Handbook of Medical Technology (2011).
- □ Chapter 4 of Sensors in Biomedical Applications (2000).
- □ Chapter 2 of Sensors, An Introductory Course (2013).
- □ Check class web site for problem sets