

BIOINSTRUMENTATION PHYSICS

Prof. Yasser Mostafa Kadah – www.k-space.org

EE 370 – 2015

Work

 \Box Work done by a force F_x as it moves a solid from x_1 to x_2

Area under curveEqual to increase in K.E.

$$W = \int_{x1}^{x2} F_x(x) dx$$

v

Work done by a gas

$$W_{bygas} = \int_{V1}^{V2} p \cdot dV$$

Example: Respiration Work

Example: Heart

Boltzmann Factor

Relative probability of finding system A with energy U_r or U_s at absolute temperature T is given by

$$R = e^{-(U_s - U_r)/k_B T}$$

k_B is the Boltzmann constant

- Example: Atmospheric Pressure Variation with Altitude
 - Potential energy (gravitational) $=m \times g \times y$

$$\frac{P(y)}{P(0)} = \frac{C(y)}{C(0)} = e^{-mgy/k_BT}$$

Nernst Equation

Concentration of ions on the two sides of a semi-permeable membrane and its relation to the voltage across the membrane

$$\frac{P(2)}{P(1)} = \frac{C_2}{C_1}$$

 $\Box \quad U = E_{kinetic} + E_{potential} (E_{kinetic} \text{ is the same})$

• Potential energy is $E_p = zev$

$$\frac{C_2}{C_1} = e^{-ze(v_2 - v_1)/k_B T}$$

□ Substitute $R = N_A K_B$ and $F = N_a e$ and rearranging, we get:

$$v_2 - v_1 = \frac{RT}{zF} \ln\left(\frac{C_1}{C_2}\right)$$

Continuity Equation

- We deal with substances that do not "appear" or "disappear"
 "Conserved"
- Conservation of mass leads to derivation of continuity equation
 - Change in mass within a unit volume is related to difference between input and output to that unit volume
- □ 1D continuity equation:

Brownian Motion

- Application of thermal equilibrium at temperature T
- □ Kinetic energy in $1D = k_B T/2$
- □ Kinetic energy in $3D = 3k_BT/2$
- Random motion \rightarrow mean velocity v = 0

lacksquare can only deal with mean-square velocity v^2

$$\frac{1}{2}m\overline{v^2} = \frac{3k_BT}{2} \Longrightarrow v_{rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3k_BT}{m}}$$

Brownian Motion

Particle	Molecular weight	Mass (kg)	$v_{\rm rms}$ (m s ⁻¹)
H_2	2	3.4×10^{-27}	1940
H_2O	18	3×10^{-26}	652
O_2	32	5.4×10^{-26}	487
Glucose	180	3×10^{-25}	200
Hemoglobin	65000	1×10^{-22}	11
Bacteriophage	$6.2 imes 10^6$	1×10^{-20}	1.1
Tobacco mosaic			
virus	40×10^6	6.7×10^{-20}	0.4
$E. \ coli$		2×10^{-15}	0.0025

Diffusion: Fick's First Law

- Diffusion: random movement of particles from a region of higher concentration to a region of lower concentration
 - Diffusing particles move independently
- □ If solute concentration is uniform, no net flow
- □ If solute concentration is different, net flow occurs

$$j_x = -D\frac{\partial C}{\partial x}$$

D: Diffusion constant (m²s⁻¹)

Diffusion: Fick's Second Law

Derived by combining Fick's first law and continuity equation

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

$$C(x,t) = \frac{N}{\sqrt{2\pi}\sigma(t)} e^{-x^2/2\sigma^2(t)}$$

$$\sigma^2(t) = 2Dt$$

Compressible and Incompressible Fluids

Mechanics of Incompressible Fluids

Viscosity is equivalent to "friction" in solid mechanics

Fluid flow without (flat profile) and with viscosity (parabolic profile)

Pressure, Flow and Vascular Resistance

Analogous to Ohm's law in electricity

$$R = \frac{8\eta \Delta x}{\pi R_p^4} \qquad \qquad R = \frac{\Delta p}{i}$$

Series Vessels

$$R_{\rm tot} = R_1 + R_2 + R_3 + \cdots$$

Parallel Vessels

$$\frac{1}{R_{\rm tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

Reynolds Number Measure of Flow Turbulence

Location	Average	Blood	$\mathrm{Diameter}^{b}$	Length^b	Wall	Avg.	Reynolds number at
	pressure	$volume^a$	(mm)	(mm)	$\mathrm{thickness}^{b}$	velocity ^b	maximum flow c
	(torr)	(ml)			(mm)	$(m \ s^{-1})$	
			Systemi	c circulation	n		
Left atrium	5						
Left ventricle	100						
Aorta	100	156	20	500	2.00	4.80×10^{-1}	9400
Arteries	95	608	4	500	1.00	4.50×10^{-1}	1 300
Arterioles	86	94	0.05	10	0.2	5.00×10^{-2}	
Capillaries	30	260	0.008	1	0.001	1.00×10^{-3}	
Venules	10	470	0.02	2	0.002	2.00×10^{-3}	
Veins	4	2682	5	25	0.5	1.00×10^{-2}	
Vena cava	3	125	30	500	1.5	3.80×10^{-1}	3 000
Right atrium	3						
			Pulmona	ry Circulati	on		
Right atrium	3						
Right ventricle	25						
Pulmonary artery	25	52					
Arteries	20	91		ſ		T 7	7 800
Arterioles	15	6			<u>, 1</u>	$\mathcal{N}[\rho]$	
Capillaries	10	104			$N_R = -$		
Veins	5	215			10	η	2 200
Left atrium	5			l		1	

Nature of Light

- □ Light travels in a vacuum with a velocity $c = 3 \times 10^8 m/s$
- When light travels through matter, its speed is less than this and is given by

$$c_n = \frac{c}{n},$$

n is index of refraction of substance

depends on both the composition of substance and color of light.

Nature of Light

Controversy over the nature of light existed for centuries

- Isaac Newton: particle model
- Thomas Young: Interference experiments
- □ Late 19th century: waves
- Early 20th century: dual nature
- \square Wave Period T, frequency v, and wavelength λ , are related as:

$$\nu = \frac{1}{T}, \qquad c_n = \lambda \nu.$$

□ Each particle of light or photon has energy E given by:

$$E = h\nu = \frac{hc_n}{\lambda}.$$

Nature of Light

- As light moves from one medium into another where it travels with different speed, frequency remains the same
 - Wavelength changes as the speed changes

Name	Wavelength	Frequency (Hz)	Energy (eV
Radio) waves		
	1 m	300×10^6	1.24×10^{-6}
Micro	owaves		
	$1 \mathrm{mm}$	300×10^9	1.24×10^{-3}
Extre	me infrared		
	$15~\mu{ m m}$	20×10^{12}	0.083
Far in	ifrared		
	$6~\mu{ m m}$	50×10^{12}	0.207
Midd	le infrared		
	$3~\mu{ m m}$	100×10^{12}	0.414
Near	infrared		
	$750 \mathrm{~nm}$	400×10^{12}	1.65
Visibl	le		
	400 nm	$750 imes 10^{12}$	3.1
Ultra	violet		
	12 nm	24×10^{15}	100
X ray	s, γ rays		

Scattering and Absorption of Radiation

- Imagine that we have a distant source of photons that travel in straight lines, and that we collimate the beam
 - a nearly parallel beam of photons
 - Imagine also that we can see the tracks of the N photons in the beam

- Passing through
- □ Scattering
- □ Absorption

Scattering and Absorption of Radiation

Assume N photons passing through a thin layer of material dz

$$dN_s = \mu_s N dz, \qquad dN_a = \mu_a N dz.$$

$$dN = -(dN_s + dN_a) = -N(\mu_s + \mu_a)dz$$

$$N(z) = N_0 e^{-\mu z} = N_0 e^{-(\mu_s + \mu_a)z}.$$

Beer's Law

 \square μ is the total linear attenuation coefficient.

 \blacksquare μ_s and μ_a are linear scattering and absorption coefficients

Interaction Cross Section

- Interaction of photons with matter is statistical
- The cross section σ is an effective area proportional to the probability that an interaction takes place
- Used in describing X-ray interactions

The Eye

Snell's law

h'

dS'

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

lh

dS

α

□ Thin lens equation

α

 $\Omega = \frac{\pi a^2}{u^2}$

u

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$

 πa^2

Optometry: Vergence (diopters)

$$U = -\frac{1}{u} \quad \text{(diverging from the object)},$$
$$V = \frac{1}{v} \quad \text{(converging to the image)},$$
$$F = \frac{1}{f} \quad \text{(a converging lens)}.$$

$$V = F + U.$$

The Eye

Accommodation

- Decreases with age: bifocals
- □ Emmetropic (normal) eye: V=F (when U=0)
- Nearsightedness or myopia: F>V
- □ Farsighted or hypermetropic: F<V
- □ Astigmatism

Eye is not symmetric about an axis through center of lens

Chromatic aberration

Index of refraction of lens varies with wavelength.

Spherical aberration

Refractive power changes with distance from the axis of the eye.

Suggested Readings and Assignments

Suggested supplementary textbook for more information:

R. Hobbie and B. Roth, Intermediate Physics for Medicine and Biology, 2007.

Homework posted on web site