
Design of Common Analog Filter Families Using Tables

Targets

- 1. Learning about analog filter design methods to fit conventional transfer functions such as Bessel, Butterworth, Chebyshev, elliptic function using design tables for Sallen-Key filter configuration. High filter orders of a minimum of 4 should be targeted.
- 2. Students are divided into groups (3x3) and each group is assigned a different transfer function to implement for the same specifications and they are asked to compare their designs and give their justified opinion on which configuration works best for each set of specifications.
- 3. Designs should include all basic filter types of low-pass, high-pass, bandpass and bandstop.
- 4. Biomedical device applications for each type should be emphasized.
- Design should involve emphasizing the design using realistic common resistor series values. Also, optimization of approximation of calculated filter values to such practical values should be demonstrated.
- 6. Understanding of the limits of linearity of developed design should be demonstrated.

Requirements: Analog Filter Design

- Design, conduct and analyze the results of an experiment to implement a 4-pole <u>low-pass</u> filter with cutoff frequency of 100 Hz based on the filter response family assigned to you. Observe and report the performance and stability of the designed filter with available component tolerances. Also, compare your results with those of other groups and provide a conclusion on which filter family works best with justification.
- 2. Design, conduct and analyze the results of an experiment to implement a 4-pole <u>high-pass</u> filter with cutoff frequency of 1 Hz based on the filter response family assigned to you. Observe and report the performance and stability of the designed filter with available component tolerances. Also, compare your results with those of other groups and provide a conclusion on which filter family works best with justification.
- 3. Design, conduct and analyze the results of an experiment to implement a <u>band-pass</u> filter of order of at least 4 with cutoff frequencies of 1 and 100 Hz based on the filter response family assigned to you. Observe and report the performance and stability of the designed filter with available component tolerances. Also, compare your results with those of other groups and provide a conclusion on which filter family works best with justification.
- 4. Design, conduct and analyze the results of an experiment to implement a <u>band-reject</u> filter of order of at least 4 with cutoff frequencies of 55 and 65 Hz based on the filter response family

assigned to you. Observe and report the performance and stability of the designed filter with available component tolerances. Also, compare your results with those of other groups and provide a conclusion on which filter family works best with justification.

General Requirements

- 1. Experimental <u>Design</u> procedure including all requirements of Assessment Rubrics must be ready and approved by Lab Instructor before conducting any experiment.
- 2. All students must <u>Conduct</u> the experiment and document it according to the requirements of Assessment Rubrics and approved by Lab Instructor after conducting any experiment.
- 3. All students must <u>Analyze</u> the experiment outcomes and document them according to the requirements of Assessment Rubrics and approved by Lab Instructor after conducting any experiment.
- 4. You are free to select any components you prefer for your experiments to be verified/approved by the Lab Instructor.
- 5. You should be prepared to demonstrate your experimental setup and answer questions in all aspects related to your experiment.
- 6. You should work in groups of 2-3 students each. One report addressing all parts of Assessment Rubrics should be submitted on behalf of the whole group via Blackboard.
- 7. You may use any resources you find useful to your experiment as long as you acknowledge such use in your report in accordance to ethical guidelines.

References

- 1. Paul Horowitz, Winfield Hill, *The Art of Electronics*, 3rd ed., Cambridge University Press, pp. pp. 391-424, 2015.
- 2. Analog Filter Design online lecture, <u>https://www.youtube.com/watch?v=HfnzwU3K2sA&list=PLCBpeohGG5-9eAVTi-ZLIKNfRla9hbyxW&index=5</u>

Assessment Rubrics

SO (5): An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

	КРІ	Exmplary (4)	Satisfactory (3)	Developing (2)	UnSatisfactory (1)	NA (0)
5.1	Effective Team Interactions	Perform all duties of assigned	Perform most duties of	Perform some duties of	Perform no duties of assigned	
		team roles/tasks. Hold	assigned team roles/tasks.	assigned team roles/tasks.	team roles/tasks. few or no	
		Regular team meetings with	Hold regular team meetings	Hold irregular team meetings	team meetings with no written	
		well written team meeting	with adequately written team	with adequately written team	team meeting minutes . No	
		minutes are used to	meeting minutes are used to	meeting minutes are used to	documentation in a portfolio.	
		document team performance.	document team performance.	document team performance.		
		Arrange all documentation in	Arrange most documentation	Arrange some documentation		
		a portfolio that contains all	in a portfolio that contains	in a portfolio that contains		
		relevant documents with	most relevant documents with	few relevant documents with		
		complete information.	complete information.	complete information.		
5.2	Use of Project Management	Define the project (Project	Define most aspects of the	Issues in Defining the project	Incorrect or lacking Definition	
	Techniques	objectives, scope, milestones,	project (most objectives,	(missing objectives, scope,	of the project (missing	
		and deliverables). Plan,	scope, milestones, and	milestones, and	and/orincorrect objectives,	
		prioritize, and schedule tasks	deliverables). Plan, prioritize,	deliverables). May not plan,	scope, milestones, and	
		for team members. Identify	and schedule most tasks for	prioritize, and schedule most	deliverables). Minimum/no	
		issues/risks and their	team members. Identify some	tasks for team members. May	effort to plan, prioritize, and	
		mitigating actions. Use project	issues/risks and their	not identify issues/risks and	schedule task for team	
		management software.	mitigating actions. May not use	their mitigating actions. May	members. Minimum/no effort	
			project management software.	not use project management	to identify issues/risks and	
				software.	their mitigating actions. No use	
					of project management	
					software.	

SO (6): An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

-	KPI	Exmplary (4)	Satisfactory (3)	Developing (2)	UnSatisfactory (1)	NA (0)
6.1	Developing Appropiate Experiment	Objectives are identified and measurable. Covers relevant Background/ Theory with exhaustive references. Work Plans are meticulously developed step by step. Identifies Variables and selects appropriate Tools. Lists and explains all pertinent Safety/Environmental/ Ethical issues comprehensively.	Objectives are identified and measurable. Covers relevant Background/Theory with sufficient references. Work Plans are meticulously developed step by step. Identifies Variables and selects appropriate Tools. Just lists all pertinent Safety/ Environmental/Ethical issues	Objectives are identified but contains technical and conceptual error. Work Plans are developed with no distinct steps. Not all Variables/Tools are	Objectives are not identified. Work Plans are not developed step by step. Selects inappropriate Tools. Fails to list any pertinent Safety/ Environmental/ Ethical issues.	
6.2	Conducting Appropriate Experi	Experimental Set-up is always neat and accurate. Always records complete data, identifies possible sources of error. Measurements are always accurate with symbols, units and significant digits. Collects data always in a meaningful way. Always demonstrates reproducibility and good knowledge of lab procedures.	Experimental Set-up is mostly neat and accurate. Mostly records complete data, identifies possible sources of error. Measurements are mostly accurate with symbols, units and significant digits. Collects data mostly in a meaningful way. Mostly demonstrates reproducibility and good knowledge of lab procedures.	Experimental Set-up is workable with minor help. Records incomplete data e.g., sampling (number of data points) is just sufficient, understands possible sources of error with minor help. Measurements are less accurate with some errors in symbols, units and significant digits. Collects data that are sometimes difficult to handle and understand. Lacks reproducibility in results and demonstrates some knowledge of lab procedures.	Experimental Set-up is mostly untidy and iNA (0)ccurate. Rarely records and collects data in a meaningful way. Measurements are inaccurate and often without symbols, units and significant digits. Does not demonstrate reproducibility as well as required knowledge of lab procedures.	
	6.3 Analysis and interpretation of Experiment Data and Drawing Conclusions	Comprehensively understand the data in terms of variables (dependent/ independent), assumptions, deviations and experimental uncertainties etc. Organize the data in figures and tables using modern software tools extensively for analysis. Discuss/compare results in the light of obtained results or theoretical models of similar studies from other sources extensively. Conclude rationally based on experimentation and clear reasoning.	light of obtained results or theoretical models of similar studies from other sources	Fairly understand the data in terms of variables (dependent/independent), assumptions, deviations and experimental uncertainties etc. Organize the data in figures and tables using modern software tools fairly for analysis. Discuss/compare results in the light of obtained results or theoretical models of similar studies from other sources fairly. Conclude based on experimentation and acceptable reasoning.	Poorly understand the data in terms of variables (dependent/independent), assumptions, deviations and experimental uncertainties. Fail to Organize the data in figures and tables using modern software tools. Fail to Discuss/compare results in the light of obtained results or theoretical models of similar studies from other sources. Fail to conclude rationally based on experimentation and acceptable reasoning.	

Appendix I:

Resistor E series tables of values

Below are the common resistor values. They are the standard E3, E6, E12, E24, E48 and E96 resistor values.

E3 STANDARD RESISTOR SERIES

1.0	2.2	4.7

The E3 series resistors are the most widely used and hence these values will be the most common resistor values used within the electronics industry. They are particularly useful for resistor values that are not in any way critical. By keeping to this series, the number of different components in any design can be reduced and this can help reduce manufacturing costs by reducing inventory and the additional management and set up required for additional component types in a design.

E6 STANDARD RESISTOR SERIES

1.0	1.5	2.2
3.3	4.7	6.8

The E6 series resistor values are also widely used within the industry. They provide a wider range of common resistor values that can be used.

1.0	1.2	1.5
1.8	2.2	2.7
3.3	3.9	4.7
5.6	6.8	8.2
	E24 STANDARD RESISTOR SERIES	
1.0	1.1	1.2
1.3	1.5	1.6
1.8	2.0	2.2
2.4	2.7	3.0
3.3	3.6	3.9
4.3	4.7	5.1
5.6	6.2	6.8
7.5	8.2	9.1

E12 STANDARD RESISTOR SERIES