Signal Sampling

Targets

- 1. Practical experimentation with signal sampling.
 - a. Sampling of ECG or any other signals from function generator and display on Matlab.
 - b. Verification of sampling theorem by experimenting with different sampling rates and observing outcome for different signal types including ECG.
 - c. Verification of periodicity of sampled periodic signals and its conditions.
 - d. Study of the effect of sampling quantization.
 - e. Learning importance of using antialiasing filter at the input of sampling pin.
- 2. Understanding of the practical sampling requirements for good quality sampled signals.

Requirements

- 1. Design, conduct and analyze the results of an experiment to implement a sampling system that converts an analog signal into digital version such that:
 - a. Use of Arduino A/D to perform sampling.
 - b. Sampling rate (Samples/s) can be controlled by code.
 - c. Quantization (bits/sample) can be controlled by code.
 - d. Use of proper analog antialiasing filter (use an R-C filter adjusted to proper cutoff).
 - e. Collection of 10s of signal.
 - f. Transfer data into Matlab using serial communication and plot it.
- 2. Sampling rate requirements and aliasing effects:
 - a. Use different sampling rates to collect samples from an ECG signal and check the quality of the outcome and provide your comments.
 - b. Verify the effect of antialiasing filter by comparing outcome from an undersampled signal with and without such filter.

General Requirements

- 1. Experimental <u>Design</u> procedure including all requirements of Assessment Rubrics must be ready and approved by Lab Instructor before conducting any experiment.
- 2. All students must <u>Conduct</u> the experiment and document it according to the requirements of Assessment Rubrics and approved by Lab Instructor after conducting any experiment.
- 3. All students must <u>Analyze</u> the experiment outcomes and document them according to the requirements of Assessment Rubrics and approved by Lab Instructor after conducting any experiment.
- 4. You are free to select any components you prefer for your experiments to be verified/approved by the Lab Instructor.
- 5. You should be prepared to demonstrate your experimental setup and answer questions in all aspects related to your experiment.
- 6. You should work in groups of 3 students each. One report addressing all parts of Assessment Rubrics should be submitted on behalf of the whole group via Blackboard.
- 7. You may use any resources you find useful to your experiment as long as you acknowledge such use in your report in accordance to ethical guidelines.

Assessment Rubrics

SO (5): An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

	КРІ	Exmplary (4)	Satisfactory (3)	Developing (2)	UnSatisfactory (1)	NA (0)
5.1	Effective Team Interactions	Perform all duties of assigned	Perform most duties of	Perform some duties of	Perform no duties of assigned	
		team roles/tasks. Hold	assigned team roles/tasks.	assigned team roles/tasks.	team roles/tasks. few or no	
		Regular team meetings with	Hold regular team meetings	Hold irregular team meetings	team meetings with no written	
		well written team meeting	with adequately written team	with adequately written team	team meeting minutes . No	
		minutes are used to	meeting minutes are used to	meeting minutes are used to	documentation in a portfolio.	
		document team performance.	document team performance.	document team performance.		
		Arrange all documentation in	Arrange most documentation	Arrange some documentation		
		a portfolio that contains all	in a portfolio that contains	in a portfolio that contains		
		relevant documents with	most relevant documents with	few relevant documents with		
		complete information.	complete information.	complete information.		
5.2	Use of Project Management	Define the project (Project	Define most aspects of the	Issues in Defining the project	Incorrect or lacking Definition	
	Techniques	objectives, scope, milestones,	project (most objectives,	(missing objectives, scope,	of the project (missing	
		and deliverables). Plan,	scope, milestones, and	milestones, and	and/orincorrect objectives,	
		prioritize, and schedule tasks	deliverables). Plan, prioritize,	deliverables). May not plan,	scope, milestones, and	
		for team members. Identify	and schedule most tasks for	prioritize, and schedule most	deliverables). Minimum/no	
		issues/risks and their	team members. Identify some	tasks for team members. May	effort to plan, prioritize, and	
		mitigating actions. Use project	issues/risks and their	not identify issues/risks and	schedule task for team	
		management software.	mitigating actions. May not use	their mitigating actions. May	members. Minimum/no effort	
			project management software.	not use project management	to identify issues/risks and	
				software.	their mitigating actions. No use	
					of project management	
					software.	

SO (6): An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

0						
	КРІ	Exmplary (4)	Satisfactory (3)	Developing (2)	UnSatisfactory (1)	NA (0)
6.1	Developing Appropiate	Objectives are identified and	Objectives are identified and	Objectives are identified but	Objectives are not identified.	
	Experiment	measurable. Covers relevant	measurable. Covers relevant	contains technical and	Work Plans are not developed	
		Background/ Theory with	Background/Theory with	conceptual error. Work Plans	step by step. Selects	
		exhaustive references. Work	sufficient references. Work	are developed with no	inappropriate Tools. Fails to	
		Plans are meticulously	Plans are meticulously	distinct steps. Not all	list any pertinent Safety/	
		developed step by step.	developed step by step.	Variables/Tools are	Environmental/ Ethical issues.	
		Identifies Variables and	Identifies Variables and selects	appropriately selected. List		
		selects appropriate Tools.	appropriate Tools, Just lists all	some of the pertinent		
		Lists and explains all	pertinent Safety/	Safety/Environmental/Ethical		
		pertinent	Environmental/Ethical issues	issues.		
		Safety/Environmental/Ethical	fairly.			
		issues comprehensively.				
6.2	Conducting Appropriate Experi	Experimental Set-up is always	Experimental Set-up is mostly	Experimental Set-up is	Experimental Set-up is mostly	
		neat and accurate. Always	neat and accurate. Mostly	workable with minor help.	untidy and iNA (0)ccurate.	
		records complete data.	records complete data.	Records incomplete data e.g.,	Rarely records and collects	
		identifies possible sources of	identifies possible sources of	sampling (number of data	data in a meaningful way.	
		error. Measurements are	error. Measurements are	points) is just sufficient.	Measurements are inaccurate	
		always accurate with symbols.	mostly accurate with symbols.	understands possible sources	and often without symbols.	
		units and significant digits.	units and significant digits.	of error with minor help.	units and significant digits.	
		Collects data always in a	Collects data mostly in a	Measurements are less	Does not demonstrate	
		meaningful way. Always	meaningful way. Mostly	accurate with some errors in	reproducibility as well as	
		demonstrates reproducibility	demonstrates reproducibility	symbols units and significant	required knowledge of lab	
		and good knowledge of lab	and good knowledge of lab	digits Collects data that are	procedures	
		procedures	nrocedures	sometimes difficult to handle	procedures.	
		procedures.	procedures.	and understand Lacks		
				roproducibility in results and		
				demonstrates come		
				knowledge of lab procedures		
				knowledge of lab procedures.		
6.2	6.2 Applysis and	Comprohensively understand	Sufficiently understand the	Eairly understand the data in	Ready understand the data in	
0.5	interpretation of Experiment	the data in terms of variables	data in terms of variables	torms of variables	torms of variables	
	Data and Drawing Candusians	(dependent/independent)	(dependent/independent)	(dependent (independent)	(dependent/independent)	
	Data and Drawing Conclusions	(dependent/ independent),	(dependent/independent),	(dependent/independent),	(dependent/independent),	
		assumptions, deviations and	assumptions, deviations and	assumptions, deviations and	assumptions, deviations and	
		experimental uncertainties	experimental uncertainties	experimental uncertainties	Experimental uncertainties.	
		figures and tables using	figures and tables using	figures and tables using	figures and tables using	
		ingures and tables using	ingures and tables using	ingules and tables using	ingures and tables using	
		modern software tools	modern software tools	modern software tools fairly	modern software tools. Fail to	
		extensively for analysis.	sufficiently for analysis.	for analysis. Discuss/compare	Discuss/compare results in the	
		Discuss/compare results in	Discuss/compare results in the	results in the light of obtained	light of obtained results or	
		the light of obtained results	light of obtained results or	results or theoretical models	theoretical models of similar	
		or theoretical models of	theoretical models of similar	of similar studies from other	studies from other sources.	
		similar studies from other	studies from other sources	sources fairly. Conclude based	Fail to conclude rationally	
		sources extensively. Conclude	sufficiently. Conclude	on experimentation and	pased on experimentation and	
		rationally based on	rationally based on	acceptable reasoning.	acceptable reasoning.	
		experimentation and clear	experimentation and fair	1	1	
		reasoning.	reasoning.			1