# EE 470 - Signals and Systems

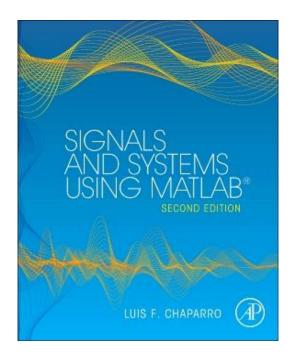
#### 2. Continuous-Time Systems

Prof. Yasser Mostafa Kadah



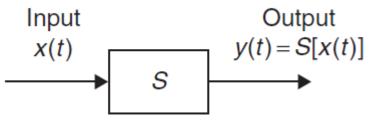
### Textbook

# Luis Chapparo, Signals and Systems Using Matlab, 2<sup>nd</sup> ed., Academic Press, 2015.



## "System" Concept

Mathematical transformation of an input signal (or signals) into an output signal (or signals)
Idealized model of the physical device or process



- Example: Electrical/electronic circuits
- In practice, the model and the mathematical representation are not unique

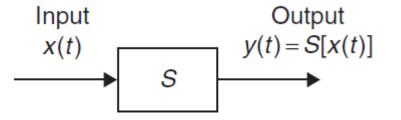
### System Classification

- Static or dynamic systems
  Capability of storing energy, or remembering state
- Lumped- or distributed-parameter systems
- Passive or active systems
  - Example: circuits elements
- Continuous time, discrete time, digital, or hybrid systems
  - According to type of input/output signals

### **Continuous-Time Systems**

 A continuous-time system is a system in which the signals at its input and output are continuous-time signals

$$x(t) \Rightarrow \gamma(t) = S[x(t)]$$
  
Input Output



# Linearity

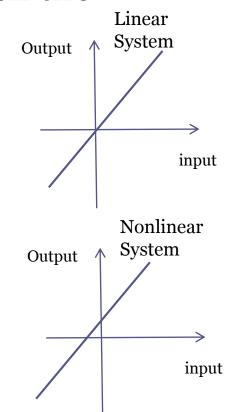
- A linear system is a system in which the superposition holds
   Scaling
  - Additivity

$$\mathcal{S}[\alpha x(t) + \beta v(t)] = \mathcal{S}[\alpha x(t)] + \mathcal{S}[\beta v(t)]$$

 $= \alpha \mathcal{S}[x(t)] + \beta \mathcal{S}[v(t)]$ 

• Examples:

$$y(x) = a x \qquad \longrightarrow \qquad \text{Linear}$$
  
$$y(x) = a x + b \qquad \longrightarrow \qquad \text{Nonlinear}$$



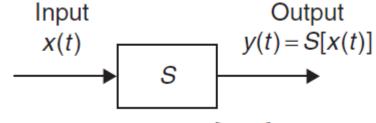
### Linearity - Examples

Show that the following systems are nonlinear:
(i) y(t) = |x(t)|
(ii) z(t) = cos(x(t)) assuming |x(t)| ≤ 1
(iii) v(t) = x<sup>2</sup>(t)
where x(t) is the input and y(t), z(t), and v(t) are the outputs.

Whenever the explicit relation between the input and the output of a system is represented by a nonlinear expression, the system is <u>nonlinear</u>

### **Time Invariance**

- System *S* does not change with time
  - System does not age—its parameters are constant

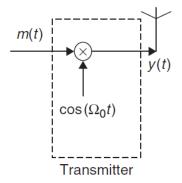


$$x(t) \Rightarrow \gamma(t) = \mathcal{S}[x(t)]$$

$$x(t \mp \tau) \Rightarrow y(t \mp \tau) = S[x(t \pm \tau)]$$

• Example: AM modulation

$$\gamma(t) = \cos(\Omega_0 t) x(t)$$

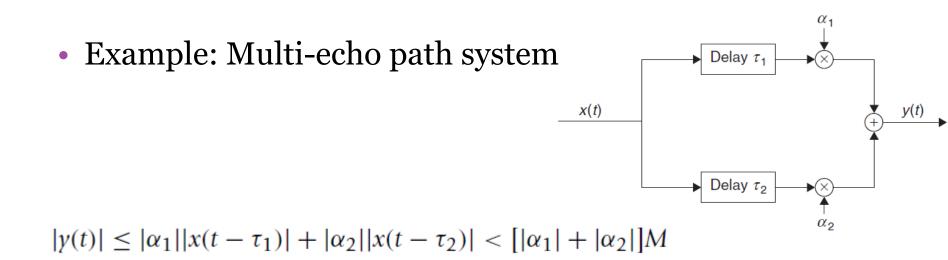


# Causality

- A continuous-time system *S* is called causal if:
  - Whenever the input x(t)=0 and there are no initial conditions, the output is y(t)=0
  - The output y(t) does not depend on future inputs
- For a value τ > 0, when considering causality it is helpful to think of:
  - Time *t* (the time at which the output *y*(*t*) is being computed) as the *present*
  - Times  $t-\tau$  as the *past*
  - Times  $t + \tau$  as the *future*

### Bounded-Input Bounded-Output Stability (BIBO)

• For a bounded (i.e., well-behaved) input *x*(*t*), the output of a BIBO stable system *y*(*t*) is also bounded



# Representation of Systems by Differential Equations

• Given a dynamic system represented by a linear differential equation with constant coefficients:

$$a_0 y(t) + a_1 \frac{dy(t)}{dt} + \dots + \frac{d^N y(t)}{dt^N} = b_0 x(t) + b_1 \frac{dx(t)}{dt} + \dots + b_M \frac{d^M x(t)}{dt^M} \qquad t \ge 0$$

- N initial conditions: y(0),  $d^k y(t)/dt^k|_{t=0}$  for k = 1, ..., N-1• Input x(t)=0 for t < 0,
- Complete response *y*(*t*) for *t*>=0 has two parts:
  - Zero-state response
  - Zero-input response

$$y(t) = y_{zs}(t) + y_{zi}(t)$$

# Representation of Systems by Differential Equations

- Linear Time-Invariant Systems
  - System represented by linear differential equation with constant coefficients  $y(t) = y_{zs}(t)$
  - Initial conditions are all zero
  - Output depends exclusively on input only
- Nonlinear Systems
  - Nonzero initial conditions means nonlinearity
  - Can also be time-varying

 $\gamma(t) = \gamma_{zs}(t) + \gamma_{zi}(t)$ 

# Representation of Systems by Differential Equations

• Define derivative operator *D* as,

$$D^{n}[y(t)] = \frac{d^{n}y(t)}{dt^{n}} \qquad n > 0, \text{ integer}$$
$$D^{0}[y(t)] = y(t)$$

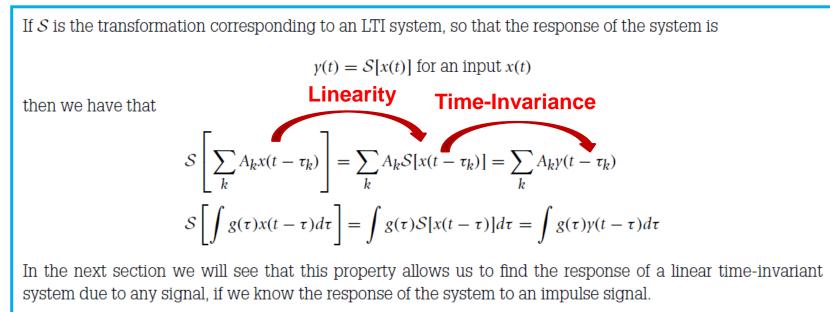
• Then,

$$a_{0}y(t) + a_{1}\frac{dy(t)}{dt} + \dots + \frac{d^{N}y(t)}{dt^{N}} = b_{0}x(t) + b_{1}\frac{dx(t)}{dt} + \dots + b_{M}\frac{d^{M}x(t)}{dt^{M}} \qquad t \ge 0$$

$$a_{0} + a_{1}D + \dots + D^{N})[y(t)] = (b_{0} + b_{1}D + \dots + b_{M}D^{M})[x(t)] \qquad t \ge 0$$

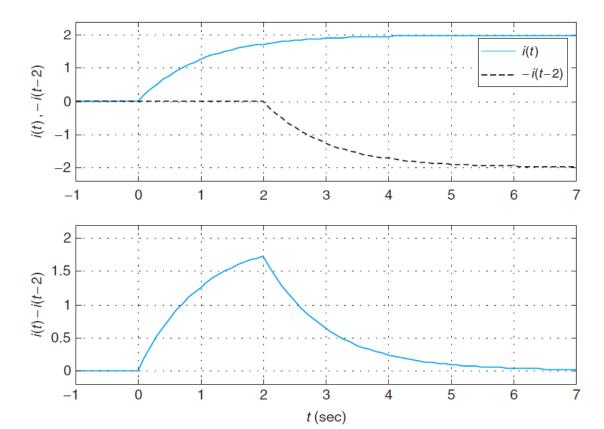
### Application of Superposition and Time Invariance

- The computation of the output of an LTI system is simplified when the input can be represented as the combination of signals for which we know their response.
  - Using superposition and time invariance properties



### Application of Superposition and Time Invariance: Example

• Example 1: Given the response of an RL circuit to a unitstep source u(t), find the response to a pulse v(t) = u(t) - u(t - 2)



### **Convolution Integral**

• Generic representation of a signal:

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau$$

Convolution

Integral

- The impulse response of an analog LTI system, *h*(*t*), is the output of the system corresponding to an impulse δ(*t*) as input, and zero initial conditions
- The response of an LTI system S represented by its impulse response *h*(*t*) to any signal *x*(*t*) is given by:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{\infty} x(t-\tau)h(\tau)d\tau$$
$$= [x*h](t) = [h*x](t)$$

#### **Convolution Integral: Observations**

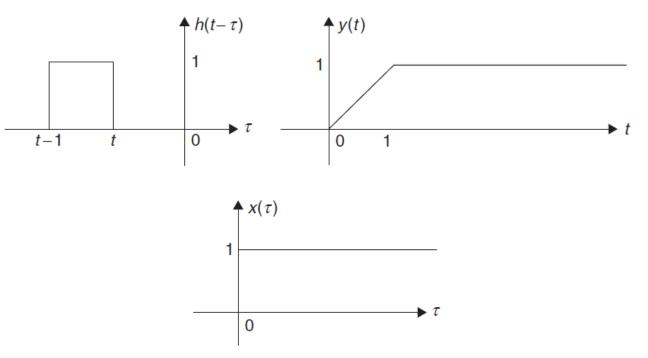
- Any system characterized by the convolution integral is linear and time invariant by the above construction
- The convolution integral is a general representation of LTI systems, given that it was obtained from a generic representation of the input signal
- Given that a system represented by a linear differential equation with constant coefficients and no initial conditions, or input, before t=0 is LTI, one should be able to represent that system by a convolution integral after finding its impulse response *h*(*t*)

### **Causality from Impulse Response**

An LTI system represented by its impulse response h(t) is *causal* if h(t) = 0 for t < 0The output of a causal LTI system with a causal input x(t) (i.e., x(t) = 0 for t < 0) is  $y(t) = \int_{0}^{t} x(\tau)h(t - \tau)d\tau$ 

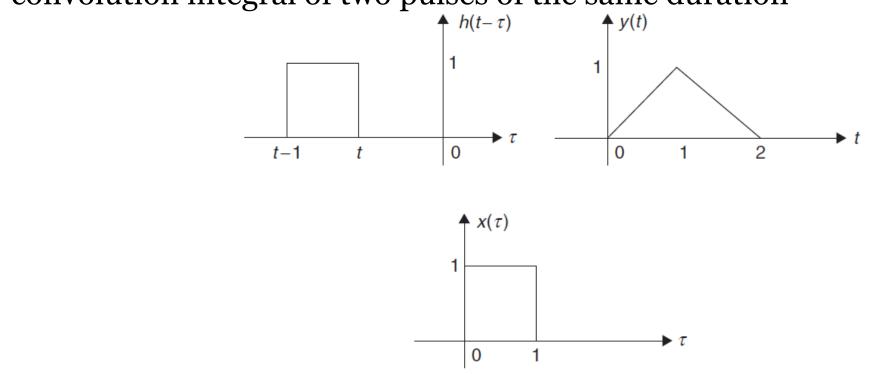
### Graphical Computation of Convolution Integral

 Example 1: Graphically find the unit-step y(t) response of an averager, with T=1 sec, which has an impulse response h(t)= u(t)-u(t-1)



### Graphical Computation of Convolution Integral

• Example 2: Consider the graphical computation of the convolution integral of two pulses of the same duration



The length of the support of y(t) = [x \* h](t) is equal to the sum of the lengths of the supports of x(t) and h(t).

### Interconnection of Systems-Block Diagrams

• (a) Cascade (commutative)

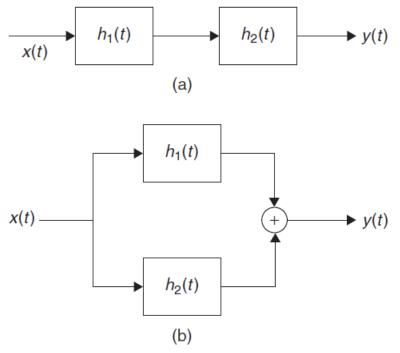
 $h(t) = [h_1 * h_2](t) = [h_2 * h_1](t)$ 

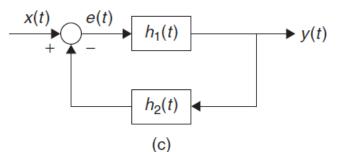
• (b) Parallel (distributive)

 $h(t) = h_1(t) + h_2(t)$ 

• (c) Feedback

$$h(t) = [h_1 - h * h_1 * h_2](t)$$





#### **Covered Material and Assignments**

- Chapter 2 of Chaparro's textbook
- Assigned Problem Set #2