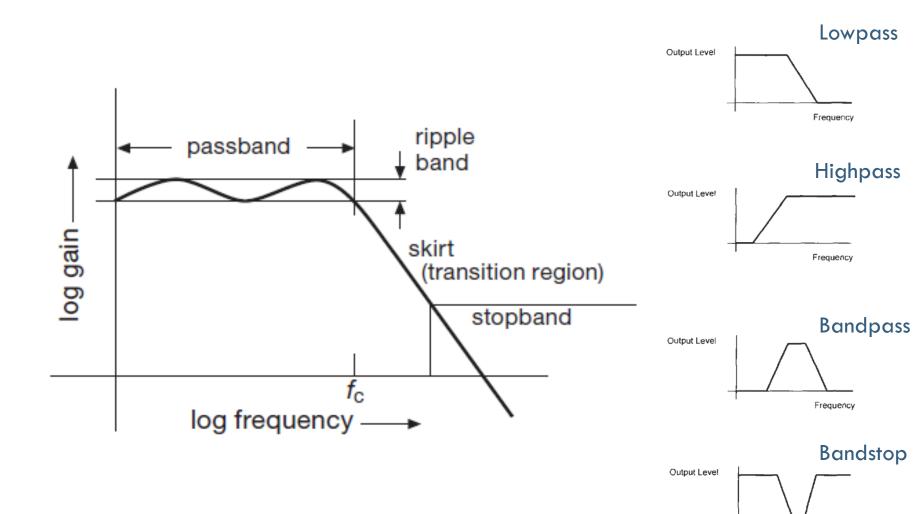


BIOPOTENTIAL FILTERS


EE 471 – F2016 Prof. Yasser Mostafa Kadah

Why Use Filters?

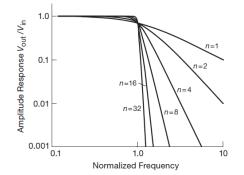
- Detection of a wanted signal may be impossible if unwanted signals and noise are not removed sufficiently by filtering
- Electronic filters allow some signals to pass, but stop others
 - To be more precise, filters allow some signal frequencies applied at their input terminals to pass through to their output terminals with little or no reduction in signal level
- Passive Filters: Rely on passive R, L, and C components only
- Active Filters: Involve Op Amps

Practical Filter Response

Frequency

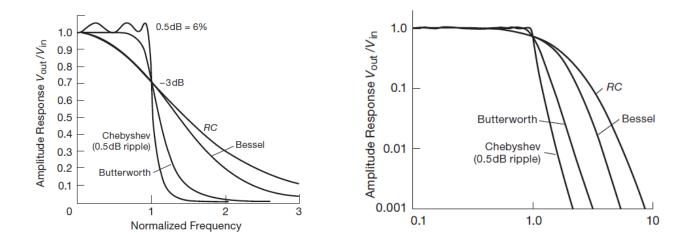
Analog Filter Normalization

- A normalized filter is one in which the passband cutoff point is at ω= 1 rad/s
- \square Passive filters are normalized for a 1 Ω load impedance
- The reason for normalization is to make the calculation of values simple
- Passive analog filters can be designed using tables of normalized component values
 - Same set of normalized component values can be used to design passive lowpass, highpass, bandpass, and bandstop filters with any load impedance

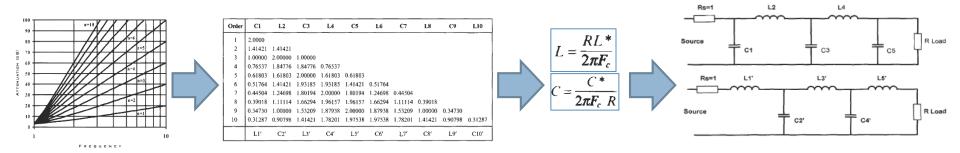

Common Filter Response Functions

Butterworth filter

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1}{\left[1 + (f/f_{\text{c}})^{2n}\right]^{\frac{1}{2}}}$$


Chebyshev filter

$$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1}{[1 + \varepsilon^2 C_n^2 (f/f_{\text{c}})]^{\frac{1}{2}}}$$


Bessel filter

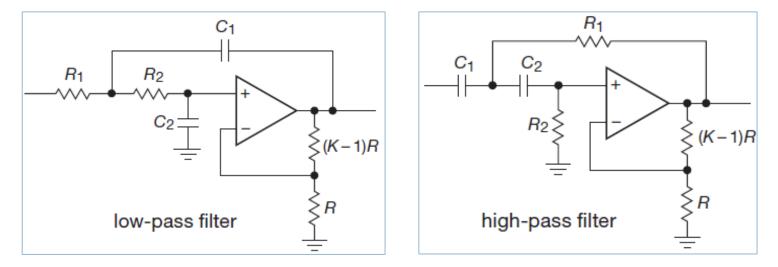
Elliptic function (Cauer) filter

Design with Normalized Analog Filters

- □ Select the type of response required
- Determine the filter order using the frequency response graphs
- Use normalized analog filter tables to obtain a set of normalized component values
- Scale the obtained normalized component values for the frequency, impedance, and frequency response (lowpass, highpass, etc.) as required



Passive Filter Design Issues


- (+) Synthesis of filters from passive components (R, L, and C) is highly developed, with rich literature of traditional handbooks and now software tools making such designs easy
- □ (-) Inductors are bulky, expensive, and always non-ideal (lossy)
- \Box (-) Passive filters using L and C are not electrically tunable
- We need a way to make *inductor-less* filters with the same characteristics of ideal *RLC* filters
- Active filters allow us to do that

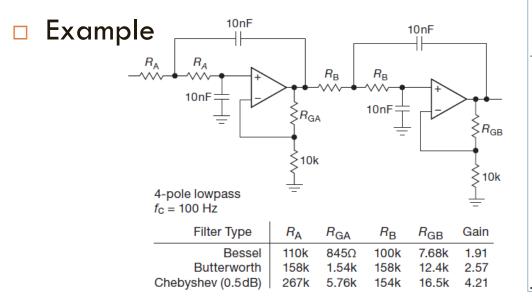
Sallen-Key Filters

□ Simple Sallen-Key Filters: Gain=1 and 2 poles (2nd order)

Voltage Controlled Voltage Source (VCVS) filters: Gain=K > 1

VCVS Filter Design Using Table

□ To construct *n*-pole filter, cascade n/2 VCVS sections


• Within each section, $R_1 = R_2 = R$, and $C_1 = C_2 = C$

Set gain K of each stage according to table entries

To calculate values for R and C:

D Butterworth: use $RC = 1/2\pi f_c$

• Chebyshev/Bessel: use $RC = 1/2\pi c_n f_c$

Table 6.2 VCVS Lowpass Filters							
Poles	Butter- worth	Bessel		Chebyshev (0.5dB)		Chebyshev (2dB)	
д	K	cn	K	c _n	K	c _n	K
2	1.586	1.272	1.268	1.231	1.842	0.907	2.114
4	1.152	1.432	1.084	0.597	1.582	0.471	1.924
	2.235	1.606	1.759	1.031	2.660	0.964	2.782
6	1.068	1.607	1.040	0.396	1.537	0.316	1.891
	1.586	1.692	1.364	0.768	2.448	0.730	2.648
	2.483	1.908	2.023	1.011	2.846	0.983	2.904
8	1.038	1.781	1.024	0.297	1.522	0.238	1.879
	1.337	1.835	1.213	0.599	2.379	0.572	2.605
	1.889	1.956	1.593	0.861	2.711	0.842	2.821
	2.610	2.192	2.184	1.006	2.913	0.990	2.946

Design of VCVS Other Filter Responses

- □ Same lowpass filter design table is used for all filter types
- □ To design highpass filter, interchange R and C components
 - Butterworth filters: everything else remains unchanged
 - Bessel and Chebyshev filters: K values remain same, but normalizing factors c_n must be inverted (i.e., 1/c_n)
- To design bandpass filter, cascade overlapping lowpass and highpass filters
- To design band-reject filter, sum outputs of two nonoverlapping lowpass and highpass filters

Reading Assignment

Read Chapter 6 of Art of Electronics