

DESIGN PRINCIPLES: ANESTHESIA MACHINE

Prof. Yasser Mostafa Kadah – www.k-space.org

EE 497 – Spring 2015

Recommended Textbook

- John F. Butterworth IV, David C. Mackey and John D. Wasnick, Morgan & Mikhail's Clinical Anesthesiology, 5th Ed., McGraw-Hill Education, New York, 2013. (ISBN: 978-0-07-171405-1)
- Rüdiger Kramme, Klaus-Peter Hoffmann, Robert S. Pozos (Eds.), Springer Handbook of Medical Technology, Springer-Verlag, Berlin, 2011. (ISBN: 978-3-540-74657-7)

Definition

- Anesthesia devices are used in operating rooms in hospitals by medical staff to ensure that operative and diagnostic procedures can be performed on a patient without pain in an unconscious and relaxed state
- On the most basic level, anesthesiologist uses anesthesia machine to control patient's ventilation and oxygen delivery and to administer inhalation anesthetics

Modern Anesthesia Machine - Front

Modern Anesthesia Machine - Back

Functional Schematic

Internal Schematic Examples

Components of Anesthesia Machine

- Anesthesia device consists of following components, according to its intended medical purpose:
 - Drug dosing unit
 - Ventilator with breathing system
 - Monitoring unit consisting of 3 subunits:
 - One monitors drug dosing and the ventilator called device monitoring
 - One monitors the patient called patient monitoring
 - One monitors the depth of anesthesia called anesthesia effect monitoring

Drug Dosing

Two principles are used for delivering O_2 , air, and N_2O , namely mechanical metering values and electronic mixers

Anesthetic Agent Vaporizers

- Volatile anesthetic agents are used to achieve unconsciousness
 Exhalable and evaporate quickly (e.g., isoflurane and sevoflurane)
- Anesthetic agent vaporizer converts anesthetic agent from liquid to vapor and mix it with fresh gas at preset concentration
- Concentration of saturated agent vapor is much higher (20 fold) than therapeutically necessary
 - Vaporizer is primarily designed to reduce high saturation concentration of, e.g., 30% to concentration required during anesthesia, e.g., 2%

Electronic Vaporizer Example

Mechanical Vaporizer Example

Mechanical Vaporizer Example

Monitoring in Anesthesia

- □ Generally, anesthesia devices are equipped with nine sensors
- □ Five device monitoring sensors for drug dosing and ventilation
 - Oxygen
 - Pressure
 - Volume
 - Carbon dioxide (CO2)
 - Anesthetic agent
- Four patient monitoring sensors for monitoring patient health during uncomplicated operations
 - Electrocardiogram (ECG)
 - Noninvasive blood pressure (NIBP)
 - Oxygen saturation (SpO2), and
 - Body temperature.

Bourdon Pressure Gauge

- Cylinder pressure is measured by Bourdon pressure gauge
 - A flexible tube within this gauge straightens when exposed to gas pressure, causing a gear mechanism to move a needle pointer

Oxygen Sensor

CO₂, N₂O, and Anesthetic Agent Sensors

Infrared absorption spectroscopy

- Based on physical principle that polyatomic gases absorb infrared radiation at characteristic frequencies
- Level of absorption depends on concentration of molecules according to Lambert–Beer law: Concentration = Absorption constant × $\ln(I_0/I)$

Volume and Flow Sensor

Hot-Wire Anemometer method

Purely electrical method for volume measurement

Pressure Sensor

Piezoresistive Sensor

 Solid-state device whose electrical resistance depends on elongation of membrane (and hence, pressure)

Flowmeters

Used to measure exhaled tidal volume in breathing circuit on all anesthesia machines, typically near exhalation valve

Oxygen Failure Protection

Suggested Readings and Assignments

- Chapter 4 of Recommended Reference #1
- Chapter 30 of Recommended Reference #2